
An Aspect-Oriented Approach
to implement JML Featuresto implement JML Features

Henrique Rebêlo
fInformatics Center

Federal University of PernambucoFederal University of Pernambuco

Summary

jmlc problems
• bigger code, slower code, no suppport for Java

ME, and bad error messages

Approach
• aspect-oriented programmingp p g g

Contributions
• smaller code faster code Java ME support and • smaller code, faster code, Java ME support, and

better error messages

Java Modeling Language—JML

Formal specification language for Java
• behavioral specification of Java modules
• Sequential Javaq
Adopts design by contract based on
Hoare style with assertionsHoare-style with assertions
• pre-, postconditions and invariants
Main goal Improve functional
software correctness of Java programssoftware correctness of Java programs

Specification Inheritance

T

requires pre

ensures post

requires pre’

ensures post’T’Tensures post ensures post’T’

S
(\old(pre) => post) (\old(pre’)=> post’)

requires ?
requires pre || pre’

p p)

ensures ?
requires pre || pre’

ensures (\old(pre) => post) && (\old(pre’) => post’)ensures (\old(pre) => post) && (\old(pre’) => post’)

Specification Inheritance
requires 0 <= a && a <= 150;
ensures age == a;n ur g ;

also
requires a < 0;requires a < 0;
ensures age == \old(age); disjunction

means

requires (0 <= a && a <= 150) || a < 0 ;

conjunction

requires (0 <= a && a <= 150) || a < 0 ;
ensures (\old(0 <= a && a <= 150) ==> age == a)

&& (\old(a < 0) ==> age == \old(age)) ;&& (\old(a < 0) ==> age == \old(age)) ;

Join of Specifications
requires 0 <= a && a <= 150;
ensures age == a;

T m()
n ur g ;

also
requires a < 0;requires a < 0;
ensures age == \old(age); S m()

means

Specification inheritanceSpecification inheritance

Join of Specifications
requires 0 <= a && a <= 150;
ensures age == a;

T m()
n ur g ;

also
requires a < 0;requires a < 0;
ensures age == \old(age); T m()

means

Specification casesSpecification cases

Modular compilation in jmlc

T

add new
JML spec

m()

T

m()
m() m()

m()

m() m()

Only type T is compiled, but
added spec will be called in

bsubtypes

Separate compilation in jmlc
Only the desired classes

are compiled with the jmlcare compiled with the jmlc
compiler

Tool Support

Many tools, one language

ESC/Java2 Bag.java:15: Warning: Possible null
dereference (Null)

public class Animal implements Gendered {
// ...
protected /*@ spec_public @*/ int age = 0; Warnings

JML Annotated Java

jmldoc

()
if (elements[i] < min) {

^
Bag.java:15: Warning: Array index
possibly too large (..

if (elements[i] < min) {

p p p g
/*@ requires 0 <= a && a <= 150;

@ ensures age == a;
@ also
@ requires a < 0;
@ ensures age == \old(age); @*/

public void setAge(final int a) {
if (0 <= a) { age = a; }

Warnings

jmlunit

jmldoc
Web pages

}
} JACK, Krakatoa, LOOP

Correctness proofjmlc
Unit tests

j

Class file
runtime assertion checker

jmlrac

jmlc: compilation passes
Runtime checks

MultiJava
Front-end Compiler

Code
Generation

Before understanding our Before understanding our
approach with AOP…approach w th AOP…

we will look at the

problem
that motivated its use

The failure of JMLThe failure of JML
(user perspective)(p p)

The generated instrumented code is
t l i t ith J MEnot complaint with Java ME

The overhead in bytecode size is y
significant in relation to constrained
environmentsenvironments
Bad performance due to many

fl ll reflective calls
Dependence of the reflection APIDependence of the reflection API
Wrong line numbers in error messages

More failures of JML…More fa lures of JML…
(implementor perspective)

Many parts of the compiler code
present too many clonespr s nt too many c on s
Generation code is invaded by
chan es because the enerated c de changes because the generated code
is tangled (to the contract
enforcement concern) and scattered
Contract enforcement cannot be Contract enforcement cannot be
understood in isolation

i b t l d d • reasoning about core class code and
contract concern is difficult

Was detected
approximately

4096040960
clone pairs

in the jmlrac
impl m nt ti nimplementation

Source: CCFinder, 2003. http://www.ccfinder.net

Aspect oriented Aspect-oriented
programming…programm ng…

is the

l solution
to the discussed problems of JML

AOP is not…

QuantificationQ
++

Obliviousnessu n
(Filman, Elrad, Clarke, and Aksit 2005)

AOP is…

QuantificationQuantification
+

Non invasivenessNon invasiveness

Problems with OO Problems with OO
implementationmplementat on

public class CadastroContas {

private RepositorioContas contas;

public void Debitar(string numero, double valor) {
Conta c = contas.Procurar(numero);
c.Debitar(valor);

public class Banco {

private CadastroContas contas;

private Banco() {
contas = new CadastroConta
(new RepositorioContasAccess());

public class DBHandler {
private static OleDbConnection connection;
public static OleDbConnection Connection {
get {
if (connection == null) {
string dataSource = "BancoCS.mdb";
string strConexao =c.Debitar(valor);

contas.Atualizar(c);
}

public void Transferir(string numeroDe, string n
umeroPara, double valor) {

Conta de = contas.Procurar(numeroDe);
Conta para = contas.Procurar(numeroPara);
de.Debitar(valor);
para.Creditar(valor);
contas.Atualizar(de);
contas.Atualizar(para);

(new RepositorioContasAccess());
}

public void Cadastrar(Conta conta) {
Persistence.DBHandler.StartTransaction();
try {
contas.Cadastrar(conta);
Persistence.DBHandler.CommitTransaction();
} catch (System.Exception ex){
Persistence.DBHandler.RollBackTransaction();
throw ex;
}

"Provider= Microsoft.Jet.OLEDB.4.0; " +
"Data Source=" + dataSource;

connection = new OleDbConnection(strConexao);
}
return connection;
}

}

public static OleDbConnection GetOpenConnection() {
Connection.Open();

t C ti}

public double Saldo(string numero) {
Conta c = contas.Procurar(numero);
return c.Saldo;

}
}
}

}

public void Transferir(string numeroDe, string n
umeroPara, double valor) {

Persistence.DBHandler.StartTransaction();
try {
contas.Transferir(numeroDe, numeroPara, valor);
Persistence.DBHandler.CommitTransaction();
} catch (System.Exception ex){

i dl ll k i ()

return Connection;
}

public static void StartTransaction() {
Connection.Open();
transaction = Connection.BeginTransaction();

}

}Tangled code
Persistence.DBHandler.RollBackTransaction();
throw ex;
}

}

}

g
(tangling)

Scattered code
(tt i)(scattering)

The failure of OOP
Part of the assertion checking code is
t l d (t th b i) d tangled (to the business concern) and
scattered, cannot be reused
Business code cannot be reused to work
with other assertion checking APIswith other assertion checking APIs
Business code is invaded by changes to

 h kassertion checking APIs
Assertion checking policy cannot be Assertion checking policy cannot be
understood in isolation

Tangling and scattering of...

ConcernsConcerns

P i t DistributionPersistence
Concurrency

Distribution
Use casesy

control
Logging

Assertion
checkingLogging

Business rules
P f

g
...

Performance

Composition at join points
object A

and returns or
throws

a method is called

a method is
called

dispatch

object B

and returns
or throws

dispatch
and returns or throws
a method executes

a method executes
and returns or throws

Behavior can be
modified at join and returns or throwsmo f at jo n
points…

Source: AspectJ Programming Guide

Advice in AspectJ providesAdvice in AspectJ provides
extra behavior at join pointsextra behavior at join points

D fi ddi i l d h h ld b Define additional code that should be
executed...
• before
• after• after

—after returning
after throwing—after throwing

• or around

join points

Around-execution example
class T {

void m() {

class T {

void m(){ {

aspect T {

void around() :void m() {
pre
body

t

void m(){ {
body

}
}

void around() :
exec(T.m) {
pre

d()

=

post
}

}

} proceed();
post

}
}

It is useful when you want to surround
the method with extra behaviorsthe method with extra behaviors

Besides dynamicBesides dynamic
crosscutting with advicecrosscutting with advice…

A tJ l t staticAspectJ also supports static
crosscuttingcrosscutt ng
• change the relation of subtypes

dd b i t l• add members into classes

IIntertype
declarations

The success of AOP
Assertion checking code is localized,
can be understood in isolation part of can be understood in isolation, part of
it can be reused
Business code can be reused to work
with other assertion checking APIswith other assertion checking APIs
Business code is not invaded by changes
t ti h ki APIto assertion checking APIs
Less code, more code units,

Weaving is used to…
Compose the base system with

taspects

A BOriginal system AspectsA BOriginal system
decomposed...

C i i

p

WeaverComposition process

Final system
composed.... A B Aspects

In relation to our approach...n n u pp ...

We use AOP/AspectJ to…
Translate JML features into aspects
G t b t d li t ith b th Generate bytecode compliant with both
Java SE/ME
Check if the program respects the JML
features during runtimefeatures during runtime

ajmlc: implementation
Strategy

Runtime checks

AspectJ
Front-end

p
Compiler

Aspect Code
Generation

ajmlc: more code units ajmlc: more code units
generated…g

Class.class Aspect.class
JML annotated

Java source files

W

Java source files

ClassesOOP
W
e
a
v

AOP
v
e
r

Aspects Class.class Aspect.class

A i hAspects with
JML features

Add before execution as Add before-execution as
precondition

class T {

precond t on
class T { aspect T {

/*@ pre a >= 0;
@ also

/*@ pre a >= 0;
@ also

before(T obj) :
exec(T.m) && within(T)&&=

@ pre a <= 10;
@*/
void m(int a) {

b d

@ pre a <= 10;
@*/
void m(int a) {

b d

() ()
this(obj){
if(!obj.checkPremT()){

throw new Error();body
}

}

body
}

}

throw new Error();
}

}
boolean T checkPremT(){boolean T.checkPremT(){
return (a>=0) || (a<=10);
}

}}

Add after return execution Add after-return-execution
as normal postcondition

class T {

as normal postcond t on
class T { aspect T {

/*@ pre a >= 0;
@ also

/*@ pre true;
@ post \return > 10;

after(T obj)return(int r):
exec(T.m) && this(obj){=

@ pre a <= 150;
@ post \return ==
@ a+5;
@*/

@*/
int m(int a) {

body

() (j){
if(!(!(true)||(r>10))){

throw new Error();
}@ /

void m(int a) {
body
return a+5;

return a+5;
}

}

}
}

}
return a+5;

}
}

Add before and afterAdd before and after-
execution as invariants

class T {

execut on as nvar ants
class T { aspect T {

int x = 10;
//@ invariant x >=10;

int x = 10;
//@ invariant x >= 10;

before(T obj) :
exec(!static * T.*) &&
this(obj){

=

void m() {
body

}

void m() {
body

}

if(!obj.x >=10){
throw new Error();

}
}

}
}

}
}
after(T obj) returning :
exec(!static * T.*) &&
thi (bj){this(obj){
if(!obj.x >=10){
throw new Error();

}}
}

}

Research questions
Does AOP represent the JML features?
Wh t i th d d l ti hi What is the order and relationship
between the generated aspects?g p
How to check Java ME apps using ajmlc
(with aspects)?(with aspects)?
…

The analogy between JML The analogy between JML
and Aspects

AspectJ — An AOP extension for Java

and Aspects
AspectJ An AOP extension for Java
• dynamic crosscutting (e.g., before advice)
• static crosscutting — ITD (e g new fields)static crosscutting ITD (e.g., new fields)
• quantification
• property-based crosscuting — wildcarding (*)property based crosscuting wildcarding ()

execution (* T.*(..))execution (T. (..))

Identifies executions to any method, with any f y m , y
return and parameters type, defined on type T.

The invariants analogy
class T {
int i = 10;
//@ invariant i == 10;

class T {
int i = 10;

//@ invariant i == 10;

void m() {...}
void n() { }

= void m() {...}
void n() { }

Aspect T

void n() {...}
void o() {...}

}

void n() {...}
void o() {...}

}

(→) JML feature as an aspect

(←) An aspect feature as JML spec

B th JML d t tifBoth JML spec and aspect quantify
the same points on type T

Behavioral subtyping analogy
T

m()

T

m()

aspect T
()

m() m()

=
m() m()

m() m() m() m() m() m() m() m()

Both JML spec and aspect quantify the
same points on type T and its subtypes

Other analogies
Not limited to:
• constraint specifications• constraint specifications
• refinement
• model-programs
• …

Other quantification points in JML that can be q p
implemented using AspectJ

Ordering of advice Ordering of advice
executions into an aspectexecut ons nto an aspect

object
T

Aspect
TT

a method is
called

dispatch

and returns
 th

T

or throws

a method executes
and returns or throws

Before advices to check invariants
Before advice to check preconditions
After or around advices to check postconditionsAfter or around advices to check postconditions

After advices to check invariants

ajmlc and Java ME applicationsajmlc and Java ME applications

To verify Java ME applications our compiler To verify Java ME applications, our compiler
only generates aspects that avoid AspectJ

constructs that are not supported by constructs that are not supported by
Java ME

Avoids AspectJ constructs such as…
fl i t t• cflow pointcut

• cflow below pointcut
• thisJoinPoint, …

ajmlc optimizationsajmlc optimizations

Compiling empty classes
• ajmlc generates no codeajmlc generates no code
• jmlc

generates 11 0 KB (source code instrumentation)—generates 11.0 KB (source code instrumentation)
—generates 5.93 KB (bytecode instrumentation)

public class T {public class T {
}

jmlc VS ajmlcjmlc VS ajmlc

ajmlc provides better
error messages

1: class C { 1: class Client {1: class C {
2:
3: //@ pre x > 0;
4: void m(int x) {

1: class Client {
2:
3: static void main(){
4: C c = new C();4: void m(int x) {

5: ...
6: }
7: }

4: C c = new C();
5: c.m(-10);
6: }
7: }

jmlc-5.6

7: } 7: }
ajmlc-1.0

Study
3 Java SE applications

annotated with JML• annotated with JML
• extracted from JML literature
We have compiled these programs
• using ajmlc with two different weaversusing ajmlc with two different weavers

—ajc
—abc—abc

• using jmlc (classical JML compiler)

Considered metric

C d siCode size
• instrumented source code size
• instrumented bytecode size
• Jar size (bytecode size + JML lib)Jar size (bytecode size + JML lib)

Results
Source code Source code

instrumentation

Jar size

Bytecode
instrumentation

ConclusionConclusion

Benefits to use AOP to instrument JML
• suitability (implementors perspective)• suitability (implementors perspective)
• flexibility (user perspective)
• evidence to be less complex (implementor

perspective)
• better error messages (user perspective)
Answers to research questionsAnswers to research questions
ajmlc optimizations

Our current WorkOur current Work

Extendind the ajmlc compiler to treat
other JML features (e g model other JML features (e.g., model
programs)

Supporting assertion checking in a Supporting assertion checking in a
concurrent environment

…

An Aspect-Oriented Approach
to implement JML Featuresto implement JML Features

Henrique Rebêlo
fInformatics Center

Federal University of PernambucoFederal University of Pernambuco

