
The Contract Enforcement Aspect Pattern

Henrique Rebêlo1 Ricardo Lima 1 Uir á Kulesza2 Roberta Coelho2

Alexandre Mota1 Márcio Ribeiro1 Jośe Elias Araújo1

1Informatics Center – Federal University of Pernambuco
50740-540, Recife – PE – Brazil

2Department of Informatics and Applied Mathematics (DIMAp)
Federal University of Rio Grande do Norte

59072-970, Natal – RN – Brazil

{hemr,rmfl,acm,mmr3,jeqca }@cin.ufpe.br, {uira,roberta }@dimap.ufrn.br

Abstract. The most fundamental motivation for employing contracts inthe de-
velopment of OO applications is to improve the reliability.Contract enforcement
is a well-known established technique in object-oriented (OO) programming.
However, the need to intercept well defined points in the execution of a program
to check design constraints makes the enforcement of contracts a crosscutting
concern. Thus, contract enforcement code is interwined with the business code,
hindering maintenance. Moreover, because of the difficultyin separating con-
tract enforcement code and business code, the former is often duplicated across
several different places within a system. In this paper we present the Contract
Enforcement Aspect pattern, which documents an aspect-oriented solution for
the modularization of the contract concern. The use of this pattern minimizes
code duplication as well as increases the reusability and maintainability of the
contract concern and core (business) concern.

Intent

The Contract Enforcement Aspect pattern leverages aspect-oriented programming
(AOP) [Kiczales et al. 1997] techniques to modularize the contract concern, entirely de-
coupling the contract enforcement code from the business code. The pattern also aims to
reduce duplication of contract code by making reuse easier within the same application,
which in turn improves the system maintainability.

Problem

Design by Contract (DbC), also known as Contract Enforcement, was conceived by
Meyer [Meyer 1992] as a means to ensure software quality, reliability, and reusability in
object-oriented (OO) software development [Diotalevi 2004]. Contracts establish mutual
obligations between program modules (e.g., classes) and their clients. The client must ful-
fill certain conditions before calling a method defined by a class (preconditions), as well
as the class must respect certain properties that must hold after a method call (postcondi-
tions). In addition to method pre- and postconditions, class invariants also become part of
contracts. Class invariants or simply invariants denote properties that must be fulfilled by
every instance of a class; before and after any call to an accessible method. Contracts use
assertions written in a Hoare-style, defining such pre- and postconditions [Hoare 1969].
Figure 1 illustrates the use of Java assertions to enforce class invariants.

public class StackAsArray {
public Object [] array;
private int index = 0;

public void push(Object e) {

assert (0 <= index)&& (index < array.length);

this.array[index++] = e;

assert (0 <= index)&& (index < array.length);

}
public void pop() {

assert (0 <= index)&& (index < array.length);

this.array[index-1] = null;
this.index--;

assert (0 <= index)&& (index < array.length);

}
public Object top() {

assert (0 <= index)&& (index < array.length);

Object result = this.array[index-1];

assert (0 <= index)&& (index < array.length);

return result;
}

...
}

Contract concern

Figure 1. The class StackAsArray with scattered and tangled contract code.

Even though Java has assertions (theassert statement was added in version 1.4), there
is no other built-in support for DbC [Meyer 1992]. Hence, using theassert statement
to represent all DbC capabilities is not a straightforward solution. Moreover, putting pre-
and post-conditions directly into source code has serious drawbacks in terms of code
modularity, reusability, and maintainability [Kiczales et al. 2001, Diotalevi 2004].

In a conventional way, the implementation of contracts are scattered throughout the code
and tangled with the business code. As a consequence, most systems have a consider-
able amount of duplicated contract enforcement code (as theinvariant duplicated code
illustrated in Figure 1). Thus, the contract code cannot be altered without changing the
application code as well. This severely increases the maintenance effort. Because the
invasiveness nature of DbC that crosscuts various modules in a system, it can be catego-
rized as a crosscutting concern [Constantinides and Skotiniotis 2002, Marin et al. 2005,
Marin 2006].

Figure 1 illustrates an example of scattered and tangled contract enforcement
code. The classStackAsArray implements the conventional data structure
Stack using Array. Such a class enforces an invariant condition denoted by
assert (0 <= index) && (index < array.length) . It states that every
method call made by an instance of the classStackAsArray must guarantee, both
before and after the call, that the value of the fieldindex is greater than or equal to
zero and less than the length of the fieldarray . If such an assertion does not hold, an
AssertionError is raised signaling the assertion violation. Thus, the contract imple-
mentation (assertions), corresponding to this invariant condition, is placed at the begin-
ning and end of each method declared in the classStackAsArray . (Preconditions and
postconditions are omitted for simplicity as well as just the invariant condition is enough

Figure 2. An example where the use of Contract Enforcement Aspect pattern
avoids duplication, scattering, and tangling of contract code.

to show out the scattered and tangled nature of contract code.)

Solution

The Contract Enforcement Aspect pattern enables the explicit separation of contract code
from business code. It uses aspect oriented programming (AOP) [Kiczales et al. 1997]
features (in specific AspectJ [Kiczales et al. 2001]) to: (i)localize contract enforcement
code within aspect units whose purpose is solely to implement it; (ii) reduce the amount
of duplicated, scattered, and tangled contract enforcement code; (iii) improve the reuse
of the contract code by other system units, modules etc, and (iv) reduce the maintenance
effort of the contract enforcement code of the system.

The overall idea of the Contract Enforcement Aspect patternis to use advice to implement
contracts. We can use these “aspectized” contracts to affect several parts of a program by
means of quantification and composition mechanisms provided by AOP languages.

Figure 2 illustrates how the pattern solves the problems discussed in the previous sec-
tion. The design notation is based on an aspect-oriented modeling language, known as
ASideML, which is used throughout this paper. This languageextends UML with nota-
tions for representing aspects [Chavez and Lucena 2001].

The aspectGenericCEAspect defines the general structure to implement contracts in
a modular way. As noted, such a generic aspect defines both a method (checkInv) and
a pointcut (cePC) as abstract. Thus, they a supposed to be defined by a concreteaspect
which extends it. Also, the generic aspect declares two advice (before andafter
advice) that crosscuts well defined points denoted by the abstract pointcutcePC. These
advice are generic in the sense they are reused by the extending aspect. Hence, the con-

Figure 3. General structure of the Contract Enforcement pattern.

crete aspectStackAsArrayCEAspect is responsible for only provide the abstract
members of its superaspect.

The pointcutcePC define the set of join points to be intercepted and the method
checkInv provides the invariant’s implementation. Once defined, thecePC and
checkInv , the concrete aspect can now crosscuts the target class (which is denoted
by StackAsArray) by injecting behavior (invariant checks) before and afterthe join
points’ execution. The methodspush , pop , andtop denote the set of join points which
are affected by the concrete aspectStackAsArrayCEAspect .

In summary, code duplication, scattering, and tangling areavoided. The different contract
enforcement mechanisms can be easily plugged/unplugged and reused by the business
code of the system. Note that the example depicted in Figure 2is a simplified version
of the general structure of the pattern. We omitted pre- and postcondition templates for
simplicity, since our concern is to solve the problem illustrated by the Figure 1. The
complete structure of our pattern is discussed in the next section (Structure Section).

Structure

Figure 3 illustrates the structure of the Contract Enforcement Aspect pattern. The generic
abstract aspect is denoted by theGenericCEAspect . Its structure declares a set of
attributes and methods. The set of methods are those that must be implemented by con-
crete subaspects. Such methods comprehend thecheckInv (illustrated in Figure 2),
checkPre , andcheckPost , which are responsible for checking the pre- and postcon-
ditions, respectively. Each method is called by its proper advice.

The aspectsCEAspect1 andCEAspect2 are subaspects that extend the generic ab-
stract aspectGenericCEAspect . The main role of these subaspects is to define two

abstract pointcuts (ceInvPC andcePC) from its superaspect. The former pointcut de-
fines the set of join points in which the class invariants shoud be checked. Normally class
invariants should be enforced by all methods of a class. Hence, to represent this quan-
tification, the use of wildcards (‘* ’) is usually adopted. The latter pointcut defines the
set of join points in which pre- and postconditions should beenforced. Contrasting to
the former one, the latter pointcut may not use wildcards since not all methods have pre-
or postconditions to be verified. Finally, the classesClass1 andClass2 define one
method each,method1 andmethod2 , respectively. These methods are intercepted by
advice (e.g.,before advice) of their corresponding concrete aspects in order tocheck
contracts (e.g., preconditions).

In summary, The Contract Enforcement Aspect pattern has three participants:

• Contract Enforcement Aspect
– defines the general contract enforcement structure with abstract pointcuts and
generic advice.

• Specific Contract Enforcement Subaspect
– implements the part of the contract concern that is specificto the business con-
cern of a class.

• Class
– implements the business code of an application, which has one or more methods
that should be validated by contracts.

Dynamics

The following scenarios depict the dynamic behavior of the Contract Enforcement Aspect
pattern.

Scenario I - Checking all Contracts, which is illustrated in Figure 4, presents the pattern
behavior when the aspectCEAspect detects no contract violation:

• A client object calls the methodpush using an instance of classStack .
• Before executing the methodpush , the control is transferred to the contract en-

forcement (CE) aspectStackCEAspect . TheStackCEAspect attempts to
verify the invariant conditions of classStack , imposed on methodpush , using
the CE advicecheckInv . As with JML [Leavens 2006], we check all invariants
before the preconditions and re-check them after postconditions.

• The CE advice ends its execution normally, without raising any errors (invariant
violation).

• The control is again transferred to the CE aspectStackCEAspect , which now
attempts to verify the preconditions of the methodpush using the CE advice
checkPre .

• Control returns to the normal code, which resumes the execution of the method
push .

• After executing the methodpush , the control is transferred to the CE aspect
StackCEAspect , which attempts to check the postconditions of the method
push using the CE advicecheckPost .

• The control is again transferred to the CE aspect, which attempts to re-check the
invariants conditions of classStack , imposed on the methodpush , using the
CE advicecheckInv .

Figure 4. A scenario where no contract violation occurs.

Scenario II - Raising a precondition error, which is illustrated in Figure 5, presents the
pattern behavior when the aspectCEAspect detects a precondition violation:

• A client object calls the methodpush using an instance of classStack .
• Before executing the methodpush , the control is transferred to the contract en-

forcement (CE) aspectStackCEAspect , which attempts to verify the invariant
conditions of classStack , imposed on the methodpush , using the CE advice
checkInv .

• The CE advice ends its execution normally, without raising any errors (invariant
violation).

• The control is again transferred to the CE aspectStackCEAspect , which now
attempts to verify the preconditions of methodpush by using the CE advice
checkPre .

• CE advicecheckPre raises a precondition error.
• Error pre is signaled to the instance ofStack , re-signaled by the latter, and

finally received by the client object.

The Scenario II illustrated in Figure 5 can also be considered to describe the behavior
when the aspectCEAspect detects an invariant violation before method’s execution.As
an invariant can be thought as an implicit pre- and postcondition of a method, the same
flow of the sequence diagram presented in Figure 5 can be used.A similar behavior is
provided if we have an invariant violation after method’s execution. In this case, the
violation only occurs after the execution of the constrained method.

Consequences

The Contract Enforcement Aspect pattern exhibits the following benefits:

Figure 5. A scenario where a precondition violation occurs.

• Improved Separation of Concerns. The contract concern is entirely modularized
in the aspects. The basic classes do not implement any contract behavior and do
not need to be changed (changes in the conventional contractenforcement strat-
egy is required). The aspect-oriented constructs support the separate definition
of contract behavior that affect several units of the system. This separation of
concerns allows better modularity, avoiding tangled code and scattered code over
those units.

• Reusability. The basic contract code is modularized in a generic contract enforce-
ment aspect, which can be reused by concrete aspects.

• Reduced Number of Advice. The idea to modularize and check contracts
with aspects is not new. However, existing approaches [Diotalevi 2004,
Briand et al. 2005, Rebêlo et al. 2008b] do not use a generic aspect which
severely reduces the number of advice responsible for inserting the contract en-
forcement behavior at the join points. The generic advice reduces the number of
advice because thearound advice declared to check pre- and postconditions
is reused for each method of a particular type. On the other hand, the other
approaches [Diotalevi 2004, Briand et al. 2005, Rebêlo et al. 2008b] that do not
consider a generic aspect (with a generic advice) must need at least to write an
around advice per method to check pre- and postcondition.

• Reduction of duplicated contract enforcement code. The pattern supports the iso-
lation of the contract enforcement as aspects, minimizing the code replication.
Class invariants are an example of code duplication that canappear into sev-
eral units (Figure 1 illustrates an example of duplicated code caused by invariant
checks). The use of aspects to modularize contracts mitigate this problem.

• Ease of Evolution. Contract Enforcement (CE) developers need only to augment
the existing pointcuts to include new join points. Additionally, whether neces-
sary, the contract methods (e.g.,checkPre) can also be augmented to support
new contract checks related to the new join points. The well known problem of
pointcut fragility can be a concern by a CE aspect only in the case where a rename
refactoring does not take into account the renamed join point. Adding or removing
a particular join point is not a problem because the impact isonly in the invariant

checking level. Since, an invariant checking is a global property for a particular
type, it does not matter if we add or remove a join point.

• Maintainability. The improved separation of concerns provided by the contract
pattern also contributes to increase system maintainability. Since contract code is
localized, a developer does not have to search through an entire program to change
a certain contract checking code.

• Pluggability. A Contract enforcement (CE) aspect can be easily replaced by an-
other CE aspect implementing different contract verification strategies. This fea-
ture makes it easy to reuse the normal code of an application or part of it across
different systems. Moreover, since the DbC technique is commonly used during
the development phase, it can be easily dropped in the production code due to the
plug-and-play capability added by the use of aspects.

However, this pattern solution has the following drawbacks:

• Increased Size and Complexity in Contract Checking Methods. Unless the meth-
ods that check invariants (i.e.,checkInv), the others (e.g.,checkPre) have a
significant increase in their sizes when there are several methods with pre- and
postconditions to be enforced (checked). This is due to the generic nature of such
methods. For example, the contract checking methodcheckPre is used to verify
the preconditions of all methods. The more methods with preconditions, the more
lines of code the methodcheckPre will have. In addition, the contract check-
ing method such ascheckPre can have severalif statements do handle various
join points that a class can have. Hence, the more methods with preconditions,
the moreif statements the method will have. In the implementation section, we
illustrate these drawbacks with source code samples.

• No Integration with Constrained Environments. There are other patterns related
to the Contract Enforcement Aspect pattern, for instance [Rebêlo et al. 2008b]
(refer to Related Patterns section). The main difference isthat the work reported
in [Rebêlo et al. 2008b] provides the use of Aspect constructs, compliant to both
Java SE and Java ME applications. Since our pattern depends on special variables
of AspectJ [Kiczales et al. 2001, Laddad 2003], such asthisJoinPoint , we
cannot apply it in constrained environments like Java ME. This is due to the need
for using reflection, which is not supported by Java ME for various reasons (e.g.,
performance degradation).

• The Aspect dependency. The use and knowledge of aspects are mandatory to ap-
ply the contract enforcement pattern. Aspects provides more idioms than that
covered by a traditional OO language. Such idioms are responsible for pro-
viding a clean well-modularized implementations of crosscutting concerns (con-
tract enforcement in our case). We recommend that programmers read the As-
pectJ [Kiczales et al. 2001, Laddad 2003] tutorials and examples available in the
literature before deciding to adopt AspectJ and consequently the CE aspect pattern
into a project. The use of AspectJ [Kiczales et al. 2001, Laddad 2003] is required
since the proposed pattern is used to modularize the crosscutting contract enforce-
ment concern of the Java applications. However, we claim that the solution is
general enough (independent of AspectJ) and can be adapted to other languages
that also have corresponding aspect-oriented extensions.

public void meth() throws ArbitraryException {
try{

int r = -10;
constrainedMethodCall(r); // throws a precondition error

}
finally{

throw new ArbitraryException(); // masks the previous precondition error thrown
}

}

Figure 6. An overridden assertion violation by exception handling code.

• Limited Integration with Error Handling Code. A subtle interaction between error
handling code and contract checker can cause the latter to fail to report errors.
This problem is due to the well-known capability of finally clauses to implicitly
override exceptions. Another problem is when a catch block hides a thrown con-
tract error. Besides the pattern we describe in this work, these problems also occur
in other approaches that use or not aspect-orientation to check contracts.

Figure 6 illustrates the forth drawback discussed (limitedintegration with error handling
code). Let us assume that the methodconstrainedMethodCall has a precondition
which states that its argument must be greater than zero. Hence, when we execute the
methodmeth and it calls the methodconstrainedMethodCall passing-10 as ar-
gument, we have a precondition violation. However, since the body of thefinally
clause is always executed, we have the precondition violation overridden by other ex-
ception. This happens due to the exception thrown (ArbitraryException) in the
body of thefinally clause. Thus, Figure 6 depicts a classical example where con-
tract enforcement can fail to report violations in the presence of exception handling code.
For a complete discussion about the interaction between error handling code and contract
checking, please refer to [Huisman 2009].

Implementation

In what follows we describe some guidelines for implementing the Contract Enforcement
Aspect pattern. We give AspectJ [Laddad 2003] code fragments to illustrate a possible
implementation of the pattern, describing details of the Stack example.

1 public abstract aspect GenericCEAspect {
2 public interface TargetType {}
3 declare parents : TargetType implements java.io.Serializable;
4
5 protected abstract pointcut withinType();
6 protected abstract pointcut targetInvariantPC();
7 protected abstract pointcut targetPC();
8 private pointcut invariantPC() : targetInvariantPC() && withinType();
9

10 protected abstract void checkInv(Object thisObject);
11 protected abstract void checkPre(Object thisObject, String sig, Object[] args);
12 protected abstract void checkPost(Object oldThisObject, Object thisObject, Stri ng sig,
13 Object[] args, Object returnValue);
14
15 before():invariantPC(){
16 checkInv(thisJoinPoint.getTarget());
17 }
18
19 Object around():targetPC() && withinType(){
20 Object result = null;
21 checkPre(thisJoinPoint.getTarget(), ...);
22 Object oldThisObject = DeepCopy.copy(thisJoinPoint.getTarget());
23 result = proceed();
24 checkPost(oldThisObject, ...);
25 return result;
26 }
27
28 after() returning(Object result):invariantPC(){
29 checkInv(thisJoinPoint.getTarget());
30 }
31 }

Figure 7. The abstract aspect GenericCEAspect.

Step 1: How to define a Contract Enforcement aspect?

→֒ The Contract Enforcement (CE) aspect (Figure 7) is declaredas abstract (line 1) since
it needs to be redefined in different subaspects. Some abstract pointcuts and methods are
declared in the CE aspect to be implemented by its subaspects. For instance:

• withinType() pointcut (line5) – is used to define the specific type which is
affected by the generic aspect;

• targetInvariantPC() pointcut (line6) – is used to define the set of join
points (of a specific type denoted by the abstract pointcutwithinType) that the
invariant conditions are enforced;

• targetPC() pointcut (line7) – identifies the set of join points (of the type
denoted by the abstract pointcutwithinType) that contain pre- and/or postcon-
ditions to be enforced;

• checkInv() method (line10) – is used to define the invariant checking
code to be executed in the set of join points defined by the abstract pointcut
targetInvariantPC ;

• checkPre() method (line11) – is used to define the precondition checking
code to be executed in the set of join points defined by the abstract pointcut
targetPC ;

• checkPost() method (line12) – is used to define the postcondition check-
ing code to be executed in the set of join points defined by the abstract pointcut
targetPC .

The Contract aspect uses theMarker Interface[Hanenberg and Unland 2003] AspectJ id-
iom in its implementation (line2). This idiom is used to define a generic interface to be
attached to a type (e.g., class or interface) (denoted byTargetType in Figure 7). The
main advantage of using aMarker Interfaceis that no internal knowledge is required ex-
cept the name of theMarker interface(TargetType). Thus, this idiom is useful when,
for example, everything in the pointcut is defined except theclasses where such cross-
cutting contract enforcement occurs. In addition, to theMarker Interface, the contract
aspect successfully applies theAbstract Pointcut, Composite Pointcut, andTemplate Ad-
vice. TheAbstract Pointcutidiom (lines6 and7) increases the reusability of pointcuts
to other aspects, which are not restricted to a certain type (e.g.,TargetType). This
happens because the whole pointcut definition is moved to theconcrete aspect. The
Composite Pointcuteidiom (line 8) is used to compose a complete pointcut in terms
of other component pointcuts which are independent and reusable. This alows one to
modify a single component pointcut without knowing the complete (composite) point-
cut. Finally, theTemplate Advice(lines10 to 30) idiom is very similar to theTemplate
Method[Gamma et al. 1995]. By usingTemplate Adviceone should only implement the
abstract methods (lines10 to 12) inherited from the abstract superaspect. This is useful
to specify variabilities (which are implemented by the concrete methods in subaspects)
invoked inside a template advice. Such an advice is defined within the abstract aspect
(GenericCEAspect) and is inherited by subaspects with no need to re-define it.

In DbC languages (e.g., JML [Leavens 2006]) and approaches,one can refer to old ex-
pressions in postconditions. An old expression refers to anexpression before method’s
execution (known as pre-state). In order to allow postconditions to refer to expressions
evaluated on the entry of a method (pre-state), we use an around advice (lines18 to 25)
to properly refer to old values. Hence, The methodscheckPre andcheckPost are
used within the around advice. The pre-state constitutes the beginning of the around ad-
vice just as before the call to the methodproceed (line 22). Such a call denotes the
call to the original method. In turn, the post-state comprehends any point after the call
to the methodproceed (lines 23 and24). As a consequence, we keep a copy of the
object’s states in the variableoldThisObject (line 21). As noticed, this variable is
assigned in the pre-state. Once the pre-state values are saved, we can refer to them in the
post-state. In this case, we pass the variableoldThisObject as an argument to the
method postcondition (checkPost). Note that all the advice defined within the generic
abstract aspect do not need to be implemented by the concretesubaspects. Hence, we
gain in reusability.�

Step 2: How to define a specific Contract Enforcement aspect?

→֒ Contract subaspects define specific implementations of the Contract Enforcement as-
pect. We can specify a different contract subaspect to each type (class or interface) in
type system. The subaspects must implement the abstract pointcuts and methods of the
Contract aspect. To exemplify, in the stack examples these elements are implemented in
theStackAsArrayCEAspect (Figure 8) aspect, as follows:

• withinType() pointcut (line4) – defines the typeStackAsArray that is
intercepted;

• targetInvariantPC() pointcut (line5) – defines the interception of all non-
static methods of the classStackAsArray , as possible execution points where

1 public privileged aspect StackAsArrayCEAspect extends GenericCEAspect {
2 declare parents : StackAsArray implements TargetType;
3
4 protected pointcut withinType() : within(StackAsArray);
5 protected pointcut targetInvariantPC() : execution(! static * StackAsArray. * (..));
6 private pointcut ConstructorExec() : execution(public StackAsArray.new(int));
7 private pointcut pushExec() : execution(public void StackAsArray.push(Object));
8 private pointcut popExec() : execution(public void StackAsArray.pop());
9 private pointcut topExec() : execution(public Object StackAsArray.top());

10 private pointcut isEmptyExec() : execution(public boolean StackAsArray.isEmpty());
11 private pointcut lengthExec() : execution(public int StackAsArray.length());
12
13 protected pointcut targetPC() : ConstructorExec() || pushExec() || popExec()
14 || topExec() || isEmptyExec() || lengthExec();
15
16 protected void checkInv(Object thisObject){
17 boolean inv = true;
18 StackAsArray stack = (StackAsArray) thisObject;

19 assert (0 <= index)&& (index < array.length);

20 }
21 protected void checkPre(Object thisObject, String sig, Object[] args){
22 boolean pre = true;
23 ...
24 assert (pre);
25 }
26 protected void checkPost(Object oldThisObject, Object thisObject, ...) {
27 boolean post = true;
28 ...
29 assert (post);
30 }

Invariant checking code

Figure 8. The concrete aspect StackAsArrayCEAspect.

the invariants are enforced;
• targetPC() pointcut (line13) – defines the interception of the specific meth-

ods (lines6 to 11) push , pop , top , isEmpty , length , and the constructor
StackAsArray , as possible execution points where the pre- and/or postcondi-
tions are enforced;

• checkInv() method (lines16 to 23) – defines the implementation of
the invariant checking code for the join points specified in the pointcut
targetInvariantPC ;

• checkPre() method (lines24 to 30) – defines the implementation of the pre-
condition checking code for the join points specified in the pointcuttargetPC ;

• checkPost() method (lines31 to37) – defines the implementation of the post-
condition checking code for the join points specified in the pointcuttargetPC .

The Contract Enforcement subaspects must also specify which types implement the in-
terfaceTargetType (step 1). The aspectStackAsArrayCEAspect defines that
the classStackAsArray implements the interfaceTargetType . It specifies a
declare parents AspectJ construction as presented in Figure 8 (line2).

Note that the line19 of Figure 8 represents the code which enforces the invariantcon-
ditions in the join points specified by the pointcuttargetInvariantPC . All that
duplicated, scattered, and tangled invariant checking code illustrated by Figure 1 is now
modularized in a single place of the methodcheckInv (line 19). �

Known Uses

Lipert and Lopes [Lippert and Lopes 2000] were the first work in the literature to show
that this pattern can be used to modularize contracts. Even though their work focus on
exception detection and handling, they also discussed how AOP was used to handle pre-
and postconditions that are interwined and scattered in a conventional way (using OOP).
The authors conducted a study that restructured a Java-based object-oriented framework
for interactive business applications, called JWAM [Breitling et al. 2000]. According to
the authors, such a framework uses contracts (pre- and postconditions) to ensure that
callers do not misuse the methods, and that the methods’ implementations preserve some
of their basic specifications. Due to the crosscutting nature of such contracts, the authors
successfully extracted the contract code from classes intoseparate aspects. As a result,
the authors decreased the 2120 preconditions (without aspects) of the JWAM framework
to 620 preconditions (with aspects).

Kiczales [Kiczales et al. 2001] discusses and demonstrateshow to implement this pattern
in a modular form. Briandet al. [Briand et al. 2005] and Diotalevi [Diotalevi 2004] show
how to use the Design by Contract Aspect Pattern. The authorsconsidered the modular-
ization of pre-, postconditions and invariants into aspects. The solution allows one to write
contracts of the application separately (untangled) from one’s business logic. They also
discuss how the use of aspects provides transparency, better reusability, and flexibility.

Leavenset al. [Leavens 2006] conceived a DbC language known as Java Modeling Lan-
guage (JML). JML constructs are written in a special notation like Java comments. As
JML is a superset of Java with DbC capability, it provides a more expressive way (e.g.,
behavioral subtyping [Liskov and Wing 1994]) to write contract enforcement concern of
Java applications than by using simple Javaassert statements1. The use of JML, as
a DbC tool, minimizes the symptoms of code tangling and scattering of Java applica-
tions. However, since the nature of JML specifications stillare crosscutting, the use of
the contract aspect pattern provides a better solution to separate the contract concern from
the base code, and therefore gaining in attributes such as maintainability. Moreover, as
AspectJ, a programmer must present knowledge in how to use the language and tools
in order to specify DbC properties (e.g., preconditions) onthe Java code. In this sense,
the adoption of AspectJ is more straightforward since the programmers can use a plugin
that can be added in the well-know Eclipse IDE. JML still lacks support to a common
environment that can be used to apply all the JML tools.

Rebêloet al. used this pattern to implement the JML features [Leavens 2006] in a
new JML compiler, known as ajmlc [Rebêlo et al. 2008b, Rebêlo et al. 2008a]. Such
a compiler generates aspects that are suitable to enforce preconditions, postconditions,
and invariants. Also, the ajmlc compiler generates, unlikethe standard JML compiler
(jmlc) [Cheon and Leavens 2002], an instrumented bytecode compliant with both Java
SE and Java ME applications. The authors also empirically analyzed the impact of the
pattern in some applications.

1Programming with assertions –http://java.sun.com/j2se/1.4.2/docs/guide/lang/
assert.html

Related Patterns

The Contract Enforcement Aspect pattern is strongly related to the Design by Contract
(DbC) pattern, proposed by Rebêloet al. [Rebêlo et al. 2008b, Rebêlo et al. 2008a]. The
main difference between DbC and Contract Enforcement Aspect is that, in the latter, the
use of an abstract generic aspect reduces significantly the number of advice used to check
the contracts.

The Contract Introduction pattern [Laddad 2003] uses aspect-oriented programming to
introduce implementations of contract methods (e.g., checkPre) in a transparent way to
the base code of the system. The Contract Introduction uses Contract Enforcement Aspect
to combine the introduced contract methods with advice (which refer to these contract
methods) in order to intercept the well points in the programto check contracts in a
modular form.

Several authors [Lippert and Lopes 2000, Filho et al. 2006, Filho et al. 2007] propose the
use of AOP to modularize exception handling into aspects. For instance, the Error Han-
dling Aspect pattern [Filho et al. 2007] aims at using AOP forseparating exception han-
dling code from the business (core) code. This pattern can beused in combination with
Contract Enforcement Aspect. As a result, both error detection and error handling code
become localized within aspects. The resulting code (of theapplication of both patterns)
is not tangled by error detection (part of the contract concern) and error handling concern.
Such an Error Handling Aspect pattern can define a unique point for handling contract
violations raised during the execution of a system. Once a contract is violated the result
is unpredictable and thefore can not guaranteed. Hence, such a pattern can be used to
handle all the situations when a contract is violated.

The AspectJ [Laddad 2003] implementation of the Contract Enforcement Aspect pattern
uses advanced AspectJ idioms, such asMarker Interface, Abstract Pointcut, Composite
Pointcut, Template Advice[Hanenberg and Unland 2003]. Such idioms facilitate the sep-
arate definition of the base system and aspects. The way in which aspect-oriented features
are applied has a direct impact on how these idioms are reusable in other object-oriented
programs. In the context of Contract Enforcement Aspect, the used idioms make the
pattern successfully reusable in other object-oriented programs.

Acknowledgements

We would like to give special thanks to Tiago Massoni, our shepherd, for his comments,
helping us to improve our pattern.This work has been partially supported by CNPq un-
der grant No. 314539/2009-3 for Ricardo Lima. Henrique Rebˆelo is also supported by
FACEPE under grant No. IBPG-1664-1.03/08. The work is also supported by FINEP and
Cenpes/Petrobras.

References

Breitling, H., Lilienthal, C., Lippert, M., and Züllighoven, H. (2000). The JWAM Frame-
work: Inspired by research, reality-tested by commercial utilization. InOOPSLA 2000
Workshop: Methods and Tools for Object-Oriented FrameworkDevelopment and Spe-
cialization.

Briand, L. C., Dzidek, W. J., and Labiche, Y. (2005). Instrumenting Contracts with
Aspect-Oriented Programming to Increase Observability and Support Debugging. In
ICSM ’05: Proceedings of the 21st IEEE International Conference on Software Main-
tenance (ICSM’05), pages 687–690, Washington, DC, USA. IEEE Computer Society.

Chavez, C. and Lucena, C. (2001). Design-level support for aspect-oriented software
development. InOOPSLA 2001 Workshop: Proc. of the Workshop on Advanced Sepa-
ration of Concerns at OOPSLA’2001.

Cheon, Y. and Leavens, G. T. (2002). A runtime assertion checker for the Java Modeling
Language (JML). In Arabnia, H. R. and Mun, Y., editors,Proceedings of the Inter-
national Conference on Software Engineering Research and Practice (SERP ’02), Las
Vegas, Nevada, USA, June 24-27, 2002, pages 322–328. CSREA Press.

Constantinides, C. and Skotiniotis, T. (2002). Reasoning about a Classification of
Cross-cutting Concerns in Object-Oriented Systems. InSecond Workshop on Aspect-
Oriented Software Development (Workshop Aspektorientierte Softwareentwicklung der
GI-Fachgruppe 2.1.9 Objektorientierte Software-Entwicklung), Bonn, Germany.

Diotalevi, F. (2004). Contract enforcement with AOP: ApplyDesign
by Contract to Java software development with AspectJ. Avaliable at
http://www.ibm.com/developerworks/library/j-ceaop.

Filho, F. C., Cacho, N., Figueiredo, E., Maranh ao, R., Garcia, A., and Rubira, C. M. F.
(2006). Exceptions and aspects: the devil is in the details.In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 152–162, New York, NY, USA. ACM.

Filho, F. C., Garcia, A., and Rubira, C. M. F. (2007). The error handling aspect pattern.
In SugarLoafPLop ’10: Proceedings of the 6th Latin American Conference on Pattern
Languages of Programming (SugarLoafPLop’10), pages 22–45.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Hanenberg, S. and Unland, R. (2003). Aspectj idioms for aspect-oriented software con-
struction. InProc. of the 8th European Conference on Pattern Languages ofProgram-
ming and Computing (EuroPlop’03).

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.Commun. ACM,
12(10):576–580.

Huisman, M. (2009). On the interplay between the semantics of java’s finally clauses
and the jml run-time checker. InProceedings of the 11th International Workshop on
Formal Techniques for Java-like Programs, FTfJP ’09, pages 8:1–8:6, New York, NY,
USA. ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,J., and Griswold, W. (2001).
Getting Started with AspectJ.Commun. ACM, 44(10):59–65.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,C., Jean-MarcLoingtier, and
Irwin, J. (1997). Aspect-oriented programming. InEuropean Conference on Object-

Oriented Programming (ECOOP) , Jyvskyl, Finland, number 1241 in Lecture Notes in
Computer Science, pages 220–242. Springer-Verlag.

Laddad, R. (2003).AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co., Greenwich, CT, USA.

Leavens, G. T. (2006). JML’s rich, inherited specificationsfor behavioral subtypes. In
Liu, Z. and Jifeng, H., editors,Formal Methods and Software Engineering: 8th In-
ternational Conference on Formal Engineering Methods (ICFEM), volume 4260 of
Lecture Notes in Computer Science, pages 2–34, New York, NY. Springer-Verlag.

Lippert, M. and Lopes, C. V. (2000). A study on exception detection and handling using
aspect-oriented programming. InICSE ’00: Proceedings of the 22nd international
conference on Software engineering, pages 418–427, New York, NY, USA. ACM.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16:1811–1841.

Marin, M. (2006). Formalizing typical crosscutting concerns. CoRR, abs/cs/0606125.

Marin, M., Moonen, L., and van Deursen, A. (2005). A classification of crosscutting
concerns. InICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 673–676, Washington, DC, USA. IEEE Computer Soci-
ety.

Meyer, B. (1992). Applying “design by contract”.Computer, 25(10):40–51.

Rebêlo, H., Soares, S., Lima, R., Borba, P., and Cornélio,M. (2008a). JML and aspects:
The beneifts of instrumenting JML features with AspectJ. InSeventh International
Workshop on Specification and Verification of Component-Based Systems (SAVCBS
2008), number CS-TR-08-07 in Technical Report, pages 11–18, 4000Central Florida
Blvd., Orlando, Florida, 32816-2362. School of EECS, UCF.

Rebêlo, H., Soares, S., Lima, R., Ferreira, L., and Cornélio, M. (2008b). Implementing
java modeling language contracts with aspectj. InSAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, pages 228–233, New York, NY, USA. ACM.

Appendix A – Aspect Terminology

In this appendix, we provide a brief overview of the terminology associated with aspect-
oriented programming. We draw on the terminology describedby Laddad [Laddad 2003].
Such a terminology is adopted by many aspect-oriented programming languages, such as
AspectJ [Kiczales et al. 2001, Laddad 2003], a general purpose aspect-oriented extension
to Java.

Aspects.Aspects are modular units responsible for modularizing crosscutting concerns.
An aspect can affect one or more types (classes and interfaces) and/or objects in distinct
manners.

Join Points and Pointcuts. Join points are well-defined points in the execution of a
program (e.g., method calls and method executions).

Advice. Advice are related to dynamic crosscutting mechanism of AspectJ. An aspect
can specify anadvicethat is used to add behavior when a join point is reached. Sucha
behavior is provided by extra code defined by the advice. There are different kinds of

advice: (i) before advice executes whenever a specific join point is reached and before the
original computation proceeds; (ii) after advice executeswhenever a specific join point
is reached and after the original finishes; (iii) around advice run whenever a specific join
point is reached, and this advice has total control under theintercepted join point.

Inter-Type Declarations. Inter-type declarations are a static crosscutting mechanism
that allows one to introduce new methods and fields to an existing class, convert checked
exceptions into unchecked exceptions, and changes the class hierarchy.

Weaving. Weaving is a process responsible for composing classes and aspects. It can be
performed either in compile-time or in runtime.

Appendix B – Online Appendix

We invite researchers to replicate our example used in this paper. Source code of the Stack
example with and without the pattern and the generic Contract Enforcement Aspect code
are available at:
http://www.cin.ufpe.br/ ˜ hemr/sugarloafplop10 .

