The Contract Enforcement Aspect Pattern

Henrique Rebélo! Ricardo Lima! Uira Kulesz& Roberta Coelhd
Alexandre Mota! Marcio Ribeiro’ Jost Elias Araljo!

linformatics Center — Federal University of Pernambuco
50740-540, Recife — PE — Brazil

2Department of Informatics and Applied Mathematics (DIMAp)
Federal University of Rio Grande do Norte
59072-970, Natal — RN — Brazil

{hemr,rmfl,acm,mmr3,jeqca }@cin.ufpe.br, {uira,roberta t@dimap.ufrn.br

Abstract. The most fundamental motivation for employing contracthéde-
velopment of OO applications is to improve the reliabil®pntract enforcement
is a well-known established technique in object-orient®@@) programming.
However, the need to intercept well defined points in thewgigtof a program
to check design constraints makes the enforcement of aistaacrosscutting
concern. Thus, contract enforcement code is interwineld thi¢ business code,
hindering maintenance. Moreover, because of the diffianlgeparating con-
tract enforcement code and business code, the former is dftplicated across
several different places within a system. In this paper ves@nt the Contract
Enforcement Aspect pattern, which documents an aspestted solution for
the modularization of the contract concern. The use of thtsgon minimizes
code duplication as well as increases the reusability anchtaaability of the
contract concern and core (business) concern.

Intent

The Contract Enforcement Aspect pattern leverages asgpiectted programming

(AOP) [Kiczales et al. 1997] techniques to modularize thetiact concern, entirely de-
coupling the contract enforcement code from the busineds.cbhe pattern also aims to
reduce duplication of contract code by making reuse easteinithe same application,

which in turn improves the system maintainability.

Problem

Design by Contract (DbC), also known as Contract Enforcémens conceived by
Meyer [Meyer 1992] as a means to ensure software qualiighiéty, and reusability in
object-oriented (OO) software development [Diotalevi2PD@ontracts establish mutual
obligations between program modules (e.g., classes) ancctients. The client must ful-
fill certain conditions before calling a method defined byassl(preconditions), as well
as the class must respect certain properties that must fiefchamethod call (postcondi-
tions). In addition to method pre- and postconditions,lagariants also become part of
contracts. Class invariants or simply invariants denot@erties that must be fulfilled by
every instance of a class; before and after any call to arsaiiide method. Contracts use
assertions written in a Hoare-style, defining such pre- asdgonditions [Hoare 1969].
Figure 1 illustrates the use of Java assertions to enfoass @hvariants.



public class StackAsArray {
publ i c Object [] array;
private int index = O;

public voi d push(Object e) {
assert (0 <= index)&& (index < array.length);
t hi s.array[index++] = e;
assert (0 <= index)&& (index < array.length);
Lubl ic void pop() {
assert (0 <= index)&& (index < array.length);

t hi s.array[index-1] = nul | ;
t hi s.index--;

assert (0 <= index)&& (index < array.length);

Lubl i ¢ Object top() {
assert (0 <= index)&& (index < array.length);
Object result = t hi s.array[index-1];
assert (0 <= index)&& (index < array.length);
return result;

}

Contract concern

Figure 1. The class St ackAsAr r ay with scattered and tangled contract code.

Even though Java has assertions @hsert statement was added in version 1.4), there
is no other built-in support for DbC [Meyer 1992]. Hence,ngstheassert statement

to represent all DbC capabilities is not a straightforwanidison. Moreover, putting pre-
and post-conditions directly into source code has serisaw/ftacks in terms of code
modularity, reusability, and maintainability [Kiczalesad. 2001, Diotalevi 2004].

In a conventional way, the implementation of contracts aegtered throughout the code
and tangled with the business code. As a consequence, nsietrs/have a consider-
able amount of duplicated contract enforcement code (agtagiant duplicated code

illustrated in Figure 1). Thus, the contract code cannotltezed without changing the

application code as well. This severely increases the eramice effort. Because the
invasiveness nature of DbC that crosscuts various modulasystem, it can be catego-
rized as a crosscutting concern [Constantinides and S&b$r2002, Marin et al. 2005,

Marin 2006].

Figure 1 illustrates an example of scattered and tangledtraxin enforcement
code. The classStackAsArray  implements the conventional data structure
Stack using Array. Such a class enforces an invariant donditlenoted by
assert (0 <= index) && (index < array.length) . It states that every
method call made by an instance of the cl&ackAsArray  must guarantee, both
before and after the call, that the value of the figldex is greater than or equal to
zero and less than the length of the fialday . If such an assertion does not hold, an
AssertionError is raised signaling the assertion violation. Thus, the reatimple-
mentation (assertions), corresponding to this invarianddion, is placed at the begin-
ning and end of each method declared in the citaskAsArray . (Preconditions and
postconditions are omitted for simplicity as well as jus thvariant condition is enough



/I _genericinvCE() [\ /\
before() : cePC() { GenericCEAspect

checkinv(; | T ]
l { | .../l fields and methods
dvi
StackAsArray 6ePC - push() <abstract> checkInv() _a Wire= %
v i |<abstract> cePC =~ e i
+ push() cePC = pop() HE X
+ pop() << - 1 i i.|_genericlnvCE():cePC
PC - t H
+ top() <Ce ........... OP() genericlnvCE()_:cePC

: StackAsArrayCEAspect

=" pointcut

pointcut cePC() :
execution(* StackAsArray.push(..)) ||
execution(* StackAsArray.pop(..)) || ../l fields
execution(* StackAsArray.top(..));

H ... Il methods i
R cePC()
Legend checklnv()
/I contract2()_
a after() returning(Object obj): ce() {
= ass checklnv();
% Aspect /I checklInv()
public void checkInv() {
--- Join point boolean inv = true;
inv = // invariantCondition;
_advice() Before advice if(linv)
. 5 throw new InvariantError(*”);
advice()_ After advice )

Figure 2. An example where the use of Contract Enforcement Aspect pattern
avoids duplication, scattering, and tangling of contract code.

to show out the scattered and tangled nature of contract)code

Solution

The Contract Enforcement Aspect pattern enables the ég@igaration of contract code
from business code. It uses aspect oriented programmingAKiczales et al. 1997]

features (in specific AspectJ [Kiczales et al. 2001]) tolddalize contract enforcement
code within aspect units whose purpose is solely to implente(ii) reduce the amount

of duplicated, scattered, and tangled contract enforcecuade; (iii) improve the reuse
of the contract code by other system units, modules etc, ighcefluce the maintenance
effort of the contract enforcement code of the system.

The overall idea of the Contract Enforcement Aspect patsaimuse advice to implement
contracts. We can use these “aspectized” contracts ta affgeral parts of a program by
means of quantification and composition mechanisms prawgeAOP languages.

Figure 2 illustrates how the pattern solves the problemsudised in the previous sec-
tion. The design notation is based on an aspect-orientectlingdanguage, known as
ASideML, which is used throughout this paper. This languagends UML with nota-
tions for representing aspects [Chavez and Lucena 2001].

The aspecGenericCEAspect  defines the general structure to implement contracts in
a modular way. As noted, such a generic aspect defines botthadneheckinv ) and

a pointcut ¢ePC) as abstract. Thus, they a supposed to be defined by a coaspatet
which extends it. Also, the generic aspect declares twocadfsefore and after
advice) that crosscuts well defined points denoted by theadtpointcutcePC. These
advice are generic in the sense they are reused by the exteasibect. Hence, the con-



... /l fields

.../l methods

<abstract> celnvPC ~ |---mmmmmmmmmmmmmmeeeeey, "

<abstract>cePC ~ {----mssmmssseeeeo---- .

e PREEEEEEPEPS _genericlnv():celnvPC
R EEE L EEE _genericPreOrPost()_:cePC

L genericlnv()_:celnvPC

al > celnvPC2 = method2()
ass. : :
thod2() — cePC2 = method2()
+ method2() |-t _J/\
S |z SSIYEPC = method () w
cePCt - method1
+ method1() e 0 ... Il fields
CEAspedti ... /l methods Pl
Legend —— """ |celnvPC2  f-----s--u-- .
o ../l fields cePC2 Pl
E ass H P
... // methods L L r LT T T r gy -
% Aspect celnVPC1  fr==mmmmmmmmmmmmmemm oo pointcuts
--- Join point For=) =1 0% [ Sy T b

_advice() Before advice

_advice()_ Around advice

advice()_ After advice

Figure 3. General structure of the Contract Enforcement pattern.

crete aspecStackAsArrayCEAspect is responsible for only provide the abstract
members of its superaspect.

The pointcutcePC define the set of join points to be intercepted and the method
checkinv  provides the invariant's implementation. Once defined, ¢e®C and
checkinv , the concrete aspect can now crosscuts the target classh(whdenoted

by StackAsArray ) by injecting behavior (invariant checks) before and after join
points’ execution. The methogsish , pop, andtop denote the set of join points which
are affected by the concrete asp8tackAsArrayCEAspect

In summary, code duplication, scattering, and tanglingaaoeded. The different contract
enforcement mechanisms can be easily plugged/unpluggedeaised by the business
code of the system. Note that the example depicted in FiguseaZsimplified version
of the general structure of the pattern. We omitted pre- agdgondition templates for
simplicity, since our concern is to solve the problem iltaggd by the Figure 1. The
complete structure of our pattern is discussed in the netiose(Structure Section).

Structure

Figure 3 illustrates the structure of the Contract Enforeetspect pattern. The generic
abstract aspect is denoted by tBenericCEAspect . Its structure declares a set of
attributes and methods. The set of methods are those that@implemented by con-
crete subaspects. Such methods comprehendhteekinv (illustrated in Figure 2),
checkPre , andcheckPost , which are responsible for checking the pre- and postcon-
ditions, respectively. Each method is called by its propice.

The aspect€EAspectl and CEAspect2 are subaspects that extend the generic ab-
stract aspecGenericCEAspect . The main role of these subaspects is to define two



abstract pointcutscéInvPC andcePC) from its superaspect. The former pointcut de-
fines the set of join points in which the class invariants shioeichecked. Normally class
invariants should be enforced by all methods of a class. élelacrepresent this quan-
tification, the use of wildcards ") is usually adopted. The latter pointcut defines the
set of join points in which pre- and postconditions shouldebéorced. Contrasting to
the former one, the latter pointcut may not use wildcardsesimot all methods have pre-
or postconditions to be verified. Finally, the clas§€#assl andClass2 define one
method eachmethodl andmethod?2 , respectively. These methods are intercepted by
advice (e.g.pefore advice) of their corresponding concrete aspects in ordehézk
contracts (e.g., preconditions).

In summary, The Contract Enforcement Aspect pattern hae tharticipants:

e Contract Enforcement Aspect
— defines the general contract enforcement structure watradi pointcuts and
generic advice.

e Specific Contract Enforcement Subaspect
— implements the part of the contract concern that is spdoifice business con-
cern of a class.

e Class
—implements the business code of an application, which ha®omore methods
that should be validated by contracts.

Dynamics

The following scenarios depict the dynamic behavior of tbat@act Enforcement Aspect
pattern.

Scenario | - Checking all Contracts which is illustrated in Figure 4, presents the pattern
behavior when the aspeCEAspect detects no contract violation:

¢ A client object calls the methgaush using an instance of cla&tack .

e Before executing the methqulish , the control is transferred to the contract en-
forcement (CE) aspe@tackCEAspect . The StackCEAspect attempts to
verify the invariant conditions of classtack , imposed on methopush , using
the CE adviceheckinv . As with JML [Leavens 2006], we check all invariants
before the preconditions and re-check them after posttondi

e The CE advice ends its execution normally, without raising errors (invariant
violation).

e The control is again transferred to the CE asgteckCEAspect , which now
attempts to verify the preconditions of the methmash using the CE advice
checkPre .

e Control returns to the normal code, which resumes the exetof the method
push .

e After executing the methog@ush, the control is transferred to the CE aspect
StackCEAspect , which attempts to check the postconditions of the method
push using the CE adviceheckPost

e The control is again transferred to the CE aspect, whichrgite to re-check the
invariants conditions of clasStack , imposed on the methgoush , using the
CE advicecheckinv



:CIientStack‘ ‘ Stack ‘ 4:StackCEAspect}

push()

return normal
result

execute ce advice
to check inv -~

(@)

resume normal activity|

.< .............................

execute ce advice

execute normal

:l code

execute ce advice

resume normal activity|

execute ce advice
to check inv -

resume normal activity|

.< .............................

H Legend
check
:’__l [ ] Object
@ Aspect
check o Join point

check
post

<

check
inv

<

Figure 4. A scenario where no contract violation occurs.

Scenario Il - Raising a precondition error, which is illustrated in Figure 5, presents the
pattern behavior when the asp&fEAspect detects a precondition violation:

e A client object calls the methgaush using an instance of cla&ack .

Before executing the methqaush , the control is transferred to the contract en-

forcement (CE) aspe&tackCEAspect , which attempts to verify the invariant
conditions of clas$tack , imposed on the methgaush , using the CE advice

checklnv

violation).

The CE advice ends its execution normally, without raising errors (invariant

The control is again transferred to the CE asg&eckCEAspect , which now

attempts to verify the preconditions of methpdsh by using the CE advice

checkPre .
e CE advicecheckPre

raises a precondition error.

e Error pre is signaled to the instance &tack , re-signaled by the latter, and

finally received by the

client object.

The Scenario Il illustrated in Figure 5 can also be consdi¢oedescribe the behavior
when the aspe®@EAspect detects an invariant violation before method’s executhms..
an invariant can be thought as an implicit pre- and post¢mmdof a method, the same
flow of the sequence diagram presented in Figure 5 can be dssdnilar behavior is
provided if we have an invariant violation after method’sextion. In this case, the
violation only occurs after the execution of the constrdinesthod.

Consequences

The Contract Enforcement Aspect pattern exhibits the fahg benefits:



:ClientStack :Stack < :StackCEAspect ™

™ push() »L execute ce advice ' check i

to check inv i
O === om e = [ ] Object
resume normal activity| :l
E T @ Aspect

execute ce advice

check o Join point

(@)

I raise error pre
signal error pre signal error pre

T W s

1 r
M .

Figure 5. A scenario where a precondition violation occurs.

e Improved Separation of Concern$he contract concern is entirely modularized
in the aspects. The basic classes do not implement any cobehavior and do
not need to be changed (changes in the conventional coetnémtcement strat-
egy is required). The aspect-oriented constructs supperse¢parate definition
of contract behavior that affect several units of the systérhis separation of
concerns allows better modularity, avoiding tangled cattescattered code over
those units.

Reusability The basic contract code is modularized in a generic cargrgorce-
ment aspect, which can be reused by concrete aspects.

Reduced Number of Advice The idea to modularize and check contracts
with aspects is not new. However, existing approaches §oi2004,
Briand et al. 2005, Rebélo et al. 2008b] do not use a geneped which
severely reduces the number of advice responsible fortingeihe contract en-
forcement behavior at the join points. The generic advideices the number of
advice because tharound advice declared to check pre- and postconditions
is reused for each method of a particular type. On the othedhthe other
approaches [Diotalevi 2004, Briand et al. 2005, Rebéld. 2Q08b] that do not
consider a generic aspect (with a generic advice) must neledst to write an
around advice per method to check pre- and postcondition.

Reduction of duplicated contract enforcement collee pattern supports the iso-
lation of the contract enforcement as aspects, minimizimegdode replication.
Class invariants are an example of code duplication thataggrear into sev-
eral units (Figure 1 illustrates an example of duplicatedieccaused by invariant
checks). The use of aspects to modularize contracts natthat problem.

Ease of EvolutionContract Enforcement (CE) developers need only to augment
the existing pointcuts to include new join points. Additadly, whether neces-
sary, the contract methods (e.gheckPre ) can also be augmented to support
new contract checks related to the new join points. The wedlkn problem of
pointcut fragility can be a concern by a CE aspect only in teeavhere a rename
refactoring does not take into account the renamed jointpAohding or removing

a particular join point is not a problem because the impaghlg in the invariant



checking level. Since, an invariant checking is a globapprty for a particular
type, it does not matter if we add or remove a join point.

e Maintainability. The improved separation of concerns provided by the contra
pattern also contributes to increase system maintaityaldince contract code is
localized, a developer does not have to search through ae pragram to change
a certain contract checking code.

e Pluggability. A Contract enforcement (CE) aspect can be easily replagehb
other CE aspect implementing different contract verifmattrategies. This fea-
ture makes it easy to reuse the normal code of an applicatiparb of it across
different systems. Moreover, since the DbC technique ismeonly used during
the development phase, it can be easily dropped in the ptiodwznde due to the
plug-and-play capability added by the use of aspects.

However, this pattern solution has the following drawbacks

e Increased Size and Complexity in Contract Checking Methbd¢ess the meth-
ods that check invariants (i.eheckinv ), the others (e.ggheckPre ) have a
significant increase in their sizes when there are severttiods with pre- and
postconditions to be enforced (checked). This is due to éimegc nature of such
methods. For example, the contract checking metinatkPre is used to verify
the preconditions of all methods. The more methods withgrditions, the more
lines of code the methocheckPre will have. In addition, the contract check-
ing method such asheckPre can have severdl statements do handle various
join points that a class can have. Hence, the more methotispneconditions,
the moreif statements the method will have. In the implementation@ecive
illustrate these drawbacks with source code samples.

e No Integration with Constrained EnvironmentEhere are other patterns related
to the Contract Enforcement Aspect pattern, for instanabfo et al. 2008b]
(refer to Related Patterns section). The main differentleasthe work reported
in [Rebélo et al. 2008b] provides the use of Aspect conitrompliant to both
Java SE and Java ME applications. Since our pattern depersisecial variables
of AspectJ [Kiczales et al. 2001, Laddad 2003], suclhésloinPoint , we
cannot apply it in constrained environments like Java MEs Thdue to the need
for using reflection, which is not supported by Java ME foias reasons (e.g.,
performance degradation).

e The Aspect dependenclhe use and knowledge of aspects are mandatory to ap-
ply the contract enforcement pattern. Aspects providesenioms than that
covered by a traditional OO language. Such idioms are resplenfor pro-
viding a clean well-modularized implementations of creg8og concerns (con-
tract enforcement in our case). We recommend that prograsmread the As-
pectJ [Kiczales et al. 2001, Laddad 2003] tutorials and gtesnavailable in the
literature before deciding to adopt AspectJ and consetyuiiet CE aspect pattern
into a project. The use of AspectJ [Kiczales et al. 2001, ead2D03] is required
since the proposed pattern is used to modularize the critisgrcontract enforce-
ment concern of the Java applications. However, we claimttie@solution is
general enough (independent of AspectJ) and can be adaptddetr languages
that also have corresponding aspect-oriented extensions.



public  void meth() throws ArbitraryException {
try{

int r = -10;
constrainedMethodCall(r); /1 throws a precondition error
}
finally{
t hrow new ArbitraryException(); /'l masks the previous precondition error thrown

}
}

Figure 6. An overridden assertion violation by exception handling code.

e Limited Integration with Error Handling CodeA subtle interaction between error
handling code and contract checker can cause the latterl i feeport errors.
This problem is due to the well-known capability of finallyaakes to implicitly
override exceptions. Another problem is when a catch bloagkdha thrown con-
tract error. Besides the pattern we describe in this wodselproblems also occur
in other approaches that use or not aspect-orientationetckatontracts.

Figure 6 illustrates the forth drawback discussed (limitedgration with error handling

code). Let us assume that the mettlodstrainedMethodCall has a precondition
which states that its argument must be greater than zeroce;levhen we execute the
methodmeth and it calls the methodonstrainedMethodCall passing10 as ar-

gument, we have a precondition violation. However, sineelibdy of thefinally

clause is always executed, we have the precondition vamlaiverridden by other ex-
ception. This happens due to the exception throdrbifraryException ) in the
body of thefinally clause. Thus, Figure 6 depicts a classical example where con
tract enforcement can fail to report violations in the preseof exception handling code.
For a complete discussion about the interaction between leandling code and contract
checking, please refer to [Huisman 2009].

Implementation

In what follows we describe some guidelines for implememthre Contract Enforcement
Aspect pattern. We give AspectJ [Laddad 2003] code fragsnenillustrate a possible
implementation of the pattern, describing details of trecEEexample.



©CoOo~NOOr~rWNERE

public abstract aspect GenericCEAspect {

public interface TargetType {}
decl are parents : TargetType i mpl enent s java.io.Serializable;

protected abstract pointcut withinType();

protected abstract pointcut targetinvariantPC();

protected abstract pointcut targetPC();

private pointcut invariantPC() : targetinvariantPC() && withinType();

protected abstract void checkinv(Object thisObject);

protected abstract void checkPre(Object thisObject, String sig, Object] ar gs);
protected abstract void checkPost(Object oldThisObject, Object thisObject, Stri ng sig,
Object]] ar gs, Object returnValue);

bef or e():invariantPC(){
checkinv( t hi sJoi nPoi nt .getTarget());
}

Object ar ound():targetPC() && withinType(){
Object result = nul | ;
checkPre( t hi sJoi nPoi nt .getTarget(), ...);
Object oldThisObject = DeepCopy.copy( t hi sJoi nPoi nt .getTarget());
result =  proceed();
checkPost(oldThisObject, ...);
return result;

}

after() returning(Object result):invariantPC(){
checkinv( t hi sJoi nPoi nt .getTarget());
}

Figure 7. The abstract aspect Gener i cCEAspect .

Step 1: How to define a Contract Enforcement aspect?

— The Contract Enforcement (CE) aspect (Figure 7) is declaseabstract (line 1) since
it needs to be redefined in different subaspects. Some abptmtcuts and methods are
declared in the CE aspect to be implemented by its subasestsistance:

e withinType() pointcut (line5) — is used to define the specific type which is

affected by the generic aspect;

e targetinvariantPC() pointcut (line6) — is used to define the set of join
points (of a specific type denoted by the abstract poimatitinType ) that the
invariant conditions are enforced;

e targetPC()  pointcut (line7) — identifies the set of join points (of the type
denoted by the abstract pointauithinType ) that contain pre- and/or postcon-
ditions to be enforced,

e checkinv() method (linel0) — is used to define the invariant checking
code to be executed in the set of join points defined by theratispointcut
targetinvariantPC ;

e checkPre() method (linell) — is used to define the precondition checking

code to be executed in the set of join points defined by theratispointcut
targetPC ;

e checkPost() method (linel2) — is used to define the postcondition check-

ing code to be executed in the set of join points defined by bis¢ract pointcut
targetPC



The Contract aspect uses tdarker InterfacgHanenberg and Unland 2003] AspectJ id-
iom in its implementation (lin). This idiom is used to define a generic interface to be
attached to a type (e.g., class or interface) (denotet@aogetType in Figure 7). The
main advantage of usingMarker Interfaces that no internal knowledge is required ex-
cept the name of thlarker interface(TargetType ). Thus, this idiom is useful when,
for example, everything in the pointcut is defined exceptdlasses where such cross-
cutting contract enforcement occurs. In addition, to Merker Interface the contract
aspect successfully applies tAbstract PointcutComposite PointcytandTemplate Ad-
vice TheAbstract Pointcuidiom (lines6 and7) increases the reusability of pointcuts
to other aspects, which are not restricted to a certain tgpe,TargetType ). This
happens because the whole pointcut definition is moved tadierete aspect. The
Composite Pointcutédiom (line 8) is used to compose a complete pointcut in terms
of other component pointcuts which are independent ancaldeis This alows one to
modify a single component pointcut without knowing the cdsbg (composite) point-
cut. Finally, theTemplate Advicélines10 to 30) idiom is very similar to thefemplate
Method[Gamma et al. 1995]. By usingemplate Advicene should only implement the
abstract methods (linel) to 12) inherited from the abstract superaspect. This is useful
to specify variabilities (which are implemented by the aate methods in subaspects)
invoked inside a template advice. Such an advice is definduinihe abstract aspect
(GenericCEAspect ) and is inherited by subaspects with no need to re-define it.

In DbC languages (e.g., JML [Leavens 2006]) and approadrescan refer to old ex-
pressions in postconditions. An old expression refers texgmession before method’s
execution (known as pre-state). In order to allow postdomak to refer to expressions
evaluated on the entry of a method (pre-state), we use améualvice (linesl8 to 25)

to properly refer to old values. Hence, The methodeckPre andcheckPost are
used within the around advice. The pre-state constitueegéginning of the around ad-
vice just as before the call to the methpwceed (line 22). Such a call denotes the
call to the original method. In turn, the post-state compnels any point after the call
to the methodgoroceed (lines23 and24). As a consequence, we keep a copy of the
object’s states in the variabtddThisObject (line 21). As noticed, this variable is
assigned in the pre-state. Once the pre-state values ae, se& can refer to them in the
post-state. In this case, we pass the variatdd hisObject as an argument to the
method postconditiorcheckPost ). Note that all the advice defined within the generic
abstract aspect do not need to be implemented by the corsrbéspects. Hence, we
gain in reusability[]

Step 2: How to define a specific Contract Enforcement aspect?

— Contract subaspects define specific implementations of tmér&ct Enforcement as-
pect. We can specify a different contract subaspect to equeh (tlass or interface) in
type system. The subaspects must implement the abstrattpts and methods of the
Contract aspect. To exemplify, in the stack examples thieseests are implemented in
the StackAsArrayCEAspect  (Figure 8) aspect, as follows:

e withinType() pointcut (line4) — defines the typ&tackAsArray  that is
intercepted,;

e targetinvariantPC() pointcut (line5) — defines the interception of all non-
static methods of the clag&tackAsArray , as possible execution points where



1
2
3
4
5
6
7
8

public privileged aspect StackAsArrayCEAspect ext ends GenericCEAspect {
decl are parents : StackAsArray i mpl enent's TargetType;

protected pointcut withinType() : wi t hi n(StackAsArray);

protected pointcut targetinvariantPC() : execution(! static * StackAsArray. *(.));
private pointcut ConstructorExec() : execution(public StackAsArray.new( int));
private pointcut pushExec() : execution(public void StackAsArray.push(Object));
private pointcut popExec() : execution(public void StackAsArray.pop());

private pointcut topExec() : execution(public Object StackAsArray.top());

private pointcut isEmptyExec() : execution(public bool ean StackAsArray.isSEmpty());
private pointcut lengthExec() : execution(public int StackAsArray.length());

protected pointcut targetPC() : ConstructorExec() || pushExec() || popExec()
|| topExec() || isEmptyExec() || lengthExec();

protected voi d checkinv(Object thisObject){
bool ean inv = true;
StackAsArray stack = (StackAsArray) thisObject;

assert (0 <= index)&& (index < array.length);

protected voi d checkPre(Object thisObject, String sig, Object[] args){
bool ean pre = true;

assert (pre);

}
protected voi d checkPost(Object oldThisObject, Object thisObject, ...) {
bool ean post = true;

assert (post);

}

Invariant checking code

Figure 8. The concrete aspect St ackAsAr r ayCEAspect .

the invariants are enforced,

e targetPC()  pointcut (linel3) — defines the interception of the specific meth-
ods (lines6 to 11) push, pop, top , isEmpty , length , and the constructor
StackAsArray , as possible execution points where the pre- and/or poditcon
tions are enforced,

e checkinv() method (lines16 to 23) — defines the implementation of
the invariant checking code for the join points specified e tpointcut
targetinvariantPC ;

e checkPre() method (line24 to 30) — defines the implementation of the pre-
condition checking code for the join points specified in tbenfcuttargetPC

e checkPost() method (lines1 to37)—defines the implementation of the post-
condition checking code for the join points specified in tbenputtargetPC

The Contract Enforcement subaspects must also specifyhviyapes implement the in-
terfaceTargetType (step 1). The aspe@tackAsArrayCEAspect  defines that
the classStackAsArray implements the interfac@argetType . It specifies a
declare parents AspectJ construction as presented in Figure 8 @ine

Note that the lin€l9 of Figure 8 represents the code which enforces the invaciamt
ditions in the join points specified by the pointdargetinvariantPC . All that
duplicated, scattered, and tangled invariant checking dagstrated by Figure 1 is now
modularized in a single place of the methdteckinv  (line 19). O



Known Uses

Lipert and Lopes [Lippert and Lopes 2000] were the first warkhe literature to show
that this pattern can be used to modularize contracts. Ehargh their work focus on
exception detection and handling, they also discussed HO® Was used to handle pre-
and postconditions that are interwined and scattered imeectional way (using OOP).
The authors conducted a study that restructured a Java-bagect-oriented framework
for interactive business applications, called JWAM [Bieg et al. 2000]. According to
the authors, such a framework uses contracts (pre- andgmastions) to ensure that
callers do not misuse the methods, and that the methodseimmgaitations preserve some
of their basic specifications. Due to the crosscutting matdiisuch contracts, the authors
successfully extracted the contract code from classessegparate aspects. As a result,
the authors decreased the 2120 preconditions (withouttspd the JWAM framework
to 620 preconditions (with aspects).

Kiczales [Kiczales et al. 2001] discusses and demonsthatedo implement this pattern

in a modular form. Brianeét al. [Briand et al. 2005] and Diotalevi [Diotalevi 2004] show
how to use the Design by Contract Aspect Pattern. The automsdered the modular-

ization of pre-, postconditions and invariants into aspethe solution allows one to write

contracts of the application separately (untangled) fro®business logic. They also
discuss how the use of aspects provides transparency; tettability, and flexibility.

Leavenset al. [Leavens 2006] conceived a DbC language known as Java Mgdedn-
guage (JML). JML constructs are written in a special notatike Java comments. As
JML is a superset of Java with DbC capability, it provides aenexpressive way (e.g.,
behavioral subtyping [Liskov and Wing 1994]) to write caut enforcement concern of
Java applications than by using simple Jagaert statements. The use of JML, as
a DbC tool, minimizes the symptoms of code tangling and sdaty of Java applica-
tions. However, since the nature of JML specifications atédl crosscutting, the use of
the contract aspect pattern provides a better solutiorp@arate the contract concern from
the base code, and therefore gaining in attributes such agammability. Moreover, as
AspectJ, a programmer must present knowledge in how to wséatiguage and tools
in order to specify DbC properties (e.g., preconditions}fmJava code. In this sense,
the adoption of AspectJ is more straightforward since tlog@mmers can use a plugin
that can be added in the well-know Eclipse IDE. JML still lagdupport to a common
environment that can be used to apply all the JML tools.

Rebéloet al. used this pattern to implement the JML features [Leave@$Ph a
new JML compiler, known as ajmic [Rebélo et al. 2008b, Relegal. 2008a]. Such
a compiler generates aspects that are suitable to enfoecerpditions, postconditions,
and invariants. Also, the ajmlc compiler generates, uniiiee standard JML compiler
(jmic) [Cheon and Leavens 2002], an instrumented bytecadeptant with both Java
SE and Java ME applications. The authors also empiricabyyaed the impact of the
pattern in some applications.

!Programming with assertionshttp://java.sun.com/j2se/1.4.2/docs/guide/lang/
assert.html



Related Patterns

The Contract Enforcement Aspect pattern is strongly rdladethe Design by Contract
(DbC) pattern, proposed by Rebébal. [Rebélo et al. 2008b, Rebélo et al. 2008a]. The
main difference between DbC and Contract Enforcement Aspelat, in the latter, the
use of an abstract generic aspect reduces significantlyutider of advice used to check
the contracts.

The Contract Introduction pattern [Laddad 2003] uses dsp@ented programming to
introduce implementations of contract methods (e.g., kiRex) in a transparent way to
the base code of the system. The Contract Introduction usesdct Enforcement Aspect
to combine the introduced contract methods with advice ¢tviefer to these contract
methods) in order to intercept the well points in the progtantheck contracts in a
modular form.

Several authors [Lippert and Lopes 2000, Filho et al. 2006¢Fet al. 2007] propose the
use of AOP to modularize exception handling into aspects.irfsance, the Error Han-
dling Aspect pattern [Filho et al. 2007] aims at using AOPdeparating exception han-
dling code from the business (core) code. This pattern carsbd in combination with
Contract Enforcement Aspect. As a result, both error diete@nd error handling code
become localized within aspects. The resulting code (oafiication of both patterns)
is not tangled by error detection (part of the contract camcand error handling concern.
Such an Error Handling Aspect pattern can define a uniquet pairhandling contract
violations raised during the execution of a system. Oncendract is violated the result
is unpredictable and thefore can not guaranteed. Hench, aspattern can be used to
handle all the situations when a contract is violated.

The AspectJ [Laddad 2003] implementation of the ContradbEement Aspect pattern
uses advanced AspectJ idioms, suctMasker Interface Abstract PointcutComposite
Pointcut Template AdvicgHanenberg and Unland 2003]. Such idioms facilitate the sep
arate definition of the base system and aspects. The way aghwkpect-oriented features
are applied has a direct impact on how these idioms are rieugabther object-oriented
programs. In the context of Contract Enforcement Asped,used idioms make the
pattern successfully reusable in other object-orientednams.

Acknowledgements

We would like to give special thanks to Tiago Massoni, ourp$teed, for his comments,
helping us to improve our pattern.This work has been pértgalpported by CNPqg un-
der grant No. 314539/2009-3 for Ricardo Lima. Henrique ételS also supported by
FACEPE under grant No. IBPG-1664-1.03/08. The work is algapsrted by FINEP and
Cenpes/Petrobras.

References

Breitling, H., Lilienthal, C., Lippert, M., and Zullighan, H. (2000). The JWAM Frame-
work: Inspired by research, reality-tested by commerdiéization. In OOPSLA 2000
Workshop: Methods and Tools for Object-Oriented Framevidekelopment and Spe-
cialization



Briand, L. C., Dzidek, W. J., and Labiche, Y. (2005). Instenting Contracts with
Aspect-Oriented Programming to Increase Observability Support Debugging. In
ICSM '05: Proceedings of the 21st IEEE International Coefere on Software Main-
tenance (ICSM’05)pages 687—-690, Washington, DC, USA. IEEE Computer Society

Chavez, C. and Lucena, C. (2001). Design-level support $peet-oriented software
development. IDOPSLA 2001 Workshop: Proc. of the Workshop on Advanced Sepa
ration of Concerns at OOPSLA'2001

Cheon, Y. and Leavens, G. T. (2002). A runtime assertionkardor the Java Modeling
Language (JML). In Arabnia, H. R. and Mun, Y., editoB¥pceedings of the Inter-
national Conference on Software Engineering Research aactiee (SERP '02), Las
Vegas, Nevada, USA, June 24-27, 2Qtyes 322—-328. CSREA Press.

Constantinides, C. and Skotiniotis, T. (2002). Reasonibgut a Classification of
Cross-cutting Concerns in Object-Oriented SystemsSdoond Workshop on Aspect-
Oriented Software Development (Workshop Aspektorigati@rftwareentwicklung der
Gl-Fachgruppe 2.1.9 Objektorientierte Software-Entwioky), Bonn, Germany.

Diotalevi, F. (2004). Contract enforcement with AOP: Applpesign
by Contract to Java software development with Aspectd. iAol at
http://www.ibm.com/developerworks/library/j-ceaop.

Filho, F. C., Cacho, N., Figueiredo, E., Maranh ao, R., Gar&i, and Rubira, C. M. F.
(2006). Exceptions and aspects: the devil is in the dettlSIGSOFT '06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international symposin Foundations of
software engineeringpages 152-162, New York, NY, USA. ACM.

Filho, F. C., Garcia, A., and Rubira, C. M. F. (2007). The ehrandling aspect pattern.
In SugarLoafPLop '10: Proceedings of the 6th Latin Americamfécence on Pattern
Languages of Programming (SugarLoafPLop’li§ages 22—45.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (199B}sign patterns: elements
of reusable object-oriented softwarAddison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Hanenberg, S. and Unland, R. (2003). Aspectj idioms for espeented software con-
struction. InProc. of the 8th European Conference on Pattern LanguagPsagfram-
ming and Computing (EuroPlop’03)

Hoare, C. A. R. (1969). An axiomatic basis for computer pangming. Commun. ACM
12(10):576-580.

Huisman, M. (2009). On the interplay between the semanfigava’s finally clauses
and the jml run-time checker. IRroceedings of the 11th International Workshop on
Formal Techniques for Java-like PrograptsTfJP '09, pages 8:1-8:6, New York, NY,
USA. ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palmand Griswold, W. (2001).
Getting Started with AspectCommun. ACM44(10):59-65.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lofes)ean-MarcLoingtier, and
Irwin, J. (1997). Aspect-oriented programming. Earopean Conference on Object-



Oriented Programming (ECOOP) , Jyvskyl, Finlamdimber 1241 in Lecture Notes in
Computer Science, pages 220-242. Springer-Verlag.

Laddad, R. (2003)Aspectd in Action: Practical Aspect-Oriented Programmiiignning
Publications Co., Greenwich, CT, USA.

Leavens, G. T. (2006). JML's rich, inherited specificatidoisbehavioral subtypes. In
Liu, Z. and Jifeng, H., editordrormal Methods and Software Engineering: 8th In-
ternational Conference on Formal Engineering Methods @B, volume 4260 of
Lecture Notes in Computer Scienpages 2—34, New York, NY. Springer-Verlag.

Lippert, M. and Lopes, C. V. (2000). A study on exception déta and handling using
aspect-oriented programming. IE6SE '00: Proceedings of the 22nd international
conference on Software engineeripages 418-427, New York, NY, USA. ACM.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion ofb$yping. ACM Trans.
Program. Lang. Syst16:1811-1841.

Marin, M. (2006). Formalizing typical crosscutting conterCoRR abs/cs/0606125.

Marin, M., Moonen, L., and van Deursen, A. (2005). A clasatiien of crosscutting
concerns. INCSM '05: Proceedings of the 21st IEEE International Coafere on
Software Maintenangg@ages 673—676, Washington, DC, USA. IEEE Computer Soci-
ety.

Meyer, B. (1992). Applying “design by contractComputey 25(10):40-51.

Rebélo, H., Soares, S., Lima, R., Borba, P., and Corn&liq2008a). JML and aspects:
The beneifts of instrumenting JML features with AspectJ.Skventh International
Workshop on Specification and Verification of Componene8&ystems (SAVCBS
2008) number CS-TR-08-07 in Technical Report, pages 11-18, @&fral Florida
Blvd., Orlando, Florida, 32816-2362. School of EECS, UCF.

Rebélo, H., Soares, S., Lima, R., Ferreira, L., and Cavn#l. (2008b). Implementing
java modeling language contracts with aspectjSAC '08: Proceedings of the 2008
ACM symposium on Applied computjpgges 228—-233, New York, NY, USA. ACM.

Appendix A — Aspect Terminology

In this appendix, we provide a brief overview of the termow} associated with aspect-
oriented programming. We draw on the terminology descrilyeldaddad [Laddad 2003].
Such a terminology is adopted by many aspect-oriented @anogring languages, such as
Aspect] [Kiczales et al. 2001, Laddad 2003], a general pa&rpspect-oriented extension
to Java.

Aspects. Aspects are modular units responsible for modularizingsratting concerns.
An aspect can affect one or more types (classes and intsjfand/or objects in distinct
manners.

Join Points and Pointcuts. Join points are well-defined points in the execution of a
program (e.g., method calls and method executions).

Advice. Advice are related to dynamic crosscutting mechanism ofe8sp An aspect
can specify aradvicethat is used to add behavior when a join point is reached. &uch
behavior is provided by extra code defined by the advice. &hee different kinds of



advice: (i) before advice executes whenever a specific joimt|is reached and before the
original computation proceeds; (ii) after advice execwtbgnever a specific join point
is reached and after the original finishes; (iii) around a€vun whenever a specific join
point is reached, and this advice has total control undeintieecepted join point.

Inter-Type Declarations. Inter-type declarations are a static crosscutting meshani
that allows one to introduce new methods and fields to aniegistass, convert checked
exceptions into unchecked exceptions, and changes tretssrchy.

Weaving. Weaving is a process responsible for composing classesspedta. It can be
performed either in compile-time or in runtime.

Appendix B — Online Appendix

We invite researchers to replicate our example used in #psp Source code of the Stack
example with and without the pattern and the generic ConEaforcement Aspect code
are available at:

http://www.cin.ufpe.br/ ~hemr/sugarloafplop10



