Towards Client-Aware Interface Specifications

Henrique Rebélo

Federal University of Pernambuco, Recife, PE, Brazil
hemr@cin.ufpe.br

Abstract

Runtime assertion checking (RAC) is a well-establishetinegpie
for runtime verification of object-oriented (OO) progran@on-
temporary RACs use specifications from the receiver's dyoam
type when checking method calls. This implies that in presen
of subtyping and dynamic dispatch features of object-oeigipro-
gramming, these specifications differ from the ones useddtics
verification tools, which rely on the specifications asswtiavith
the static type of the receiver. Besides the heterogenedtylgm,
this also hinders the benefits of modular reasoning achiéyed
the notion of supertype abstraction. In this context, weppse a
more precise runtime assertion checking for OO progranitta
ter matches the semantics used in static verification todtsle we
describe our approach, we discuss how it can be used to dwid t
heterogenous semantics problem and among others.

Categories and Subject Descriptors D.2.4 [Software/Program
Verificatior]: Programming by contract, Assertion checkers; F.3.1
[Specifying and Verifying and Reasoning about Progiadsser-
tions, Pre and postconditions, Specification techniques

General Terms Design, Languages, Verification

Keywords Modular Reasoning, Runtime Verification, Client-
Aware Interface Specifications

1. Introduction

Object-oriented programming (OOP) has been presenteddaym
virtues, of which we can emphasize subtyping and dynamic dis
patch. Both are useful and problematic in relation to thegdaral

In this context, Leavens and Weihl [7] proposed a strategy fo
modular reasoning, which they caditipertype abstractidnSuch a
strategy is modular in that it does not depend on receivgrisuhic
type. For instance, What specification should one use tmreas
about a call, such as.m(), given that the static type af is T?.
Based on the supertype abstraction technique, one shoelthes
specification associated with the static typeodfT in this case)
to reason about the correctness of a method call. As supertyp
abstraction does no depend on @ dynamic type, the method
m does not need to be re-specified or re-verified when the egisti
subtypes ofT are changed or when new subtypes are added to a
program.

The benefits of the supertype abstraction idea are relatéto
Liskov's invited talk at OOPSLA 1987 [9]. Liskov stated arsig
remembered test for subtyping, also called Liskov Suliatiility
Principle (LSP), (p. 25): “if for each objectL of type Sthere is an
objecto2 of type T such that for all programB defined in terms of
T, the behavior oP is unchanged wheot is substituted fob2 then
Sis a subtype of T".

Problems. Although supertype abstraction is a helpful tech-
nique to reason about object-oriented programs, curraritne
assertion checkers use specifications from the receivgnardic
type when checking client method calls. As a consequenaeato
son about the method callm(), one need to perform a case anal-
ysis with all possible dynamic types of receiverThis approach
hinders modular reasoning and raises other problems. UKiriite,
consider the code in Figure 1 from the canonical figure edikor
ample [6, 10]. We use JML [8] as our formal interface specifica
tion language for concreteness, but the problems and golute
present can also be exploited to other interface speciitdén-

approach that OOP replaces. They are useful because on&-can a guages (e.g. Spec# [2]). In JML, annotation comments sittam

stract away details in the specifications of subtypes usiegtper-
type ones. This allows variations in data structures andrihgns

to be handled uniformly with subtype polymorphism. They are
problematic for reasoning about object-oriented (OO) mants,
because dynamic dispatch selects different methods diygead

the exact runtime type of an object. For example, a dynalyical
dispatched method call such asn() requires a case analysis to
deal with all possible dynamic types @ value. Hence, we need
to re-specify or re-verify the methad whenever new subtypes are
added to the program. However, such an approach is not nrpdula
because it requires re-specifying or re-verifying exgtiode when
the program is extended.

Copyright is held by the author/owner(s).

SPLASH’11 Companion, October 22—-27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

at-sign @) and specification cases for methods start with a visibil-
ity modifier andnormal_behavior, both appear before the method’s
header. Preconditions are introduced by keywetglires and post-
conditions byensures

Figure 1 gives protected specifications for clasBesmt and
ScreenPointln the classoint, the methodetXs precondition states
that the argument must be greater than or equal to zero. The
postcondition ensures that the coordin&ent.x (the field x of
Point class) is equal to the value of the argumeniThe Point's
subclassScreenPointoverrides the inheritedetXx method and pro-
vides an additional JML specification case that describesthe
method behaves for arguments that do not satisfy the précond
tion of the inherited protected specification case (in JMg kky-
word also means that the specification ebint.setXis inherited
to ScreenPoint .sefX Hence, when the argumexis less than zero
(precondition) the inherited coordinal@int.xmust be zero (post-
condition).

Heterogeneous Semantics ProbleniThe first problem with
runtime verification of specified OO programs is that the Bpec
cations used to check the correctness of a method call isl lwase
its dynamic type, thus hindering modular reasoning (syperab-



1 package p; 12 package p; 23 package p; // protected client
2 class Fig {} 13 class ScreenPointextends Point{ 24 class clientClass1{
3 class Point extends Fig { 14 /@ also 25 void clientMethl (Point p){
4 protected int x, y; 15 @ protected normal_behavior 26 p.setX(—1);
5 /+@ protected normal_behavior 16 @ requires x < 0; 27
6 @ requires x >= 0; 17 @ ensures this.x == 0; @«/ 28 }
7 @ ensures this.x == x; @«/ 18 public void setX (int x) { 29 package q; // public client
8 public void setX (int x) { 19 if (x >=0) this.x = x; 30 class clientClass2{
9 this.x = x; 20 else x = 0; 31 void clientMeth2 (Point p){
10 } 21} 32 p.setX(-1);
11 } 22 } 33

34 }

Figure 1. Behavioral contracts for the figure editor [6, 10] using J\8L. [

1 package p; 8 package p; 16 package p; // protected client
2 class Point extends Fig { 9 // Behavioral Interface Specification 17 class clientClass1 {
3 protected int x, y; 10 class Point extends Fig { 18 void clientMethl (Point p){
4 public void setX (int x) { 11 /x@ protected normal_behavior 19 /@ assert —1 >= 0;
5 this.x = x; 12 @ requires x >= 0; 20 p.setX(-1);
6 } 13 @ ensures this.x == x; @«/ 21 //@ assume this.x == —1;
7} 14 public void setX (int x); 22 }
15 } 23}

Figure 2. Formulation of Client-Aware Interface Specifications.

straction) and resulting in a heterogenous semantics itrasirto
some verification tools, which are static type reasoninggtd4].
For example, consider the call to methaaiX on line26 (Figure 1).
The technique of supertype abstraction [7] uses the spatidicof
the static type of the receiver to reason about such a caticéle
sincep’s static type isPoint, supertype abstraction tell us to rea-
son about the capl.setX(-1) using the specification given on lines
5-7. As a result such a call violates the precondition (bhehen
passing-1 as argument to methatX.

However, by using the classical JML runtime assertion caeck
(RAC) [4], we got no precondition violation when the receiye
represents the dynamic tyfsereePoint This happens because the
effective precondition used is the specifications givenioesls—7
is joined with the specification on linag—17 (this give us the ef-
fective preconditior{x >=0) || (x < 0)). In other words, this prob-
lem happens because the instrumentation technique is doakyl
at the method declaration site. For instance, the JML RAC-com
piler (jmic) uses an approach calledapper approach4]. This
approach translates pre- and postcondition specificaliosep-
arateassertion checking methodaich wraps the original method
implementation with such assertion checking methods. ;Talls
client calls now go to the wrapper method. In addition, thepper
approach is responsible for calling corresponding assedeck-
ing methods of supertypes if any. Because of that, the methlbd
p.setX(1) includes the specifications of tyfgereePointwhen the
receiverp matches it (thus, going against supertype abstraction).

son about the correctness of such a call. Poat's specification
has a protected specification case for the meteod Thus, only
privileged clients (i.e. subclasses or code in the samegu)kare
required to obey such specifications. Since the method ndihe

32is originated from a public client (the call is located in &et-

ent package), the effective precondition on such a callufisféo
true [6, Rule 2].

However, the instrumented code generated by current RACs ig
nore visibility modifiers in specifications (our second pevb).
Hence, by using the jmic [4] on the same method call (32g
results in no contract violation, but the effective predtind (as-
suming that the dynamic type of the receipds ScreenPoint that
is checked is the disjunction of the precondition on kneith the
one in line16 ((x >=0) || (x < 0)), instead of the default one ex-
plained. Due to the server side instrumentation approaoptad
by RACs, all specifications (with different visibility lels) are
checked without respecting the information hiding rulek [6is
important to note that none of existing tools [4] check vilgip
rules properly in interface specification languages. Adtay to
Leavens and Miiller [6], the practical enforcement of suishibil-
ity rules is future work.

Library Checking Problem. Nowadays we have a large-scale
reuse of components. This is due to the standardizationrgé la
libraries and frameworks in popular programming languageh
as C++, Java, and C#. Such a standardization and heavy use of
libraries keep module specification important and usefolvelver

On the other hand, If we use the static checker ESC/Java2 [4] source code of libraries is not available for proprietabydries [5].

on the same method (call on ligéin Figure 1), we can now detect
the expected precondition violation based on the spediitaiof
classPoint (lines5-7). Therefore, this causes another fundamental
problem for program verification; the existing tools [4] wséet-
erogeneous semantics for program verification. For instatie
static checker is based on static type reasoning, whereasiith
time assertion checker is based on dynamic type reasoning.
Visibility Rules Checking Problem. Leavens and Miller [6]
present rules for information hiding in specifications favalike
languages. Their rules restrict proof obligations on methalls
to only satisfy visible specifications. Consider the metluadl
p.setX(1) on line 32 (Figure 1). According to the supertype ab-
straction technique, theoints specification must be used to rea-

This issue poses our third problem with runtime verificatd®O
programs. Since the contemporary RACs (e.g. jmic [4]) néed t
source code in order to generate the runtime checks, we iene
specify nor verify programs during runtime when source cizde
not available.

2. Client-Aware Interface Specifications

To solve the three afore-mentioned problems, we proposadhe
tion of client-aware interface specificationsr CAIS. We call our
approach client-aware because all clients must be awahe dbt-
mal specifications contained in a special interface. We payial



interface in the sense that specifications do not necegsarilvrit-
ten in the source code.

Formulation of Client-Aware Interface Specifications. Fig-
ure 2 illustrate the formulation of client-aware interfageecifica-
tions. For simplicity, we just consider the typint (lines 1-7),
its specifications (line8—15), and a client (line26-23). In a pro-
gram logic, CAIS are embodied by the proof rule for methodiscal
which allows us to derivg P} p.m() {Q} only from a specifica-
tion (preL,, postL,) associated with the static typ#® for the re-
ceiverp. Usually, an automated verifier uses weakest precondition
semantics and achieves modularity by replacing grcatll() by the
sequence ofdssertpre’, [@/ f]; assumepost’ [@/ f]” [1]. We use
the notatior(@/ f] to denote the substitution of the formal parame-
ters by the actual ones. Since we are concerned with rungmifé-v
cation, all theassumestatements are checked like thesertones.
The instrumentation in the call site can be observed on lieg1
(Figure 2). Therefore we use a call site instrumentatiomegugh in
contrast to existing works [4, 11]. Another important cqutagf our
CAIS is about abstraction. According to Liskov, we shoulddfy
the behavior, but keep it separated from implementatioailddg®].
This is an important concept when considering librarieciioa-
tion and runtime verification.

Usefulness of Our Approach Since our instrumentation mech-
anism is based on the static type of the receiver of a paaticul
method call, we can again exploit all the benefits achievel su-
pertype abstraction (i.e. modular reasoning) during roetverifi-
cation. Moreover, since we adopt a static type reasoningteck-
ing method calls, we can get similar results when using dties
like a static checkertéckling our first problem ). As our approach
is a call site driven, once our clients are known, we can umsént
them according their interface specifications respectiegvtsibil-
ity rules tackling our second problem). Finally, with client-aware
interface specifications (as observed in Figure 2), one edaild
specify and check during runtime the behavior of class liesa
even if their source code are not available. The runtimeficari
tion is possible since our CAIS uses a client side instruatent.
Hence, we neither need the source code nor modify propyietar
bytecode APIstackling our third problem ).

Tool. We built these ideas on the Aspect-JML RAC compiler
(ajmlc) [11] which is available online atttp://www.cin.ufpe.
br/~hemr/JMLAOP/ajmlc.htm (itS current release is 3.0).

Evaluation. We intend to conduct experiments with real sys-
tems and compare the traditional runtime assertion checkih

our new approach proposed here and embedded in ajmlc [11]. So

we are looking for bugs that the contemporary runtime assert
checkers do not catch. Additionally, we want to analyze hog+ p
cise is the error reporting including the visibility speciftions.
This is intended to blame different kinds of clients (e.ddasses).
We also intend to evaluate the impact of our approach inioglat
to the classical ones in terms of source code and bytecotte-ins
mentation sizes. Eventually, we are also interested tojaeahe
runtime performance of each approach.

Limitation. Since our approach is based on clients, the more
new clients we have, more instrumentation code will be geeer
On the other hand, in the classical approach the instruriients
achieved only once at the declaration side which the metheithg
called are physically declared.

Future Work. We hope to increase expressiveness of the client-
aware interface specifications to enable specificationsooémom-
plex design rules which are already found in JML [8]. We ne®d t
adapt our approach to use model program specificationsTh2k,
this allows us to go beyond the traditional black box appnd&g.
We also intend to investigate how to improve the separatidheo
design by contract concern in a separated interface. Rnelitas
results can be found in [10].

Summary. Our hypothesis is that by using the client-aware in-
terface specifications developers can achieve a more pragis
time verification of constrained OO programs. Our Benefits in
clude: (i) modular reasoning by the use of supertype akgtrac
without drawbacks caused by runtime verification; (ii) theice to
switch from a static checker to a runtime assertion checliowt
surprises while getting error reporting; (iii) applyingntime ver-
ification including visibility levels achieved by informian hiding
principles, and (iv) precise specification and runtimefieation of
class libraries even if the source code is not available.

Acknowledgments

I would like to thank Professors Ricardo Lima and Gary T. lezes/
(my supervisors) for the fruitful discussions we had abbatitieas
of my PhD thesis proposal.

References

[1] M. Barnett and K. R. M. Leino. Weakest-precondition oftmctured
programs. SIGSOFT Softw. Eng. Note31:82—-87, September 2005.
ISSN 0163-5948. doi: http://doi.acm.org/10.1145/11@BI608813.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pesgming
system: an overview. In G. Barthe, L. Burdy, M. Huisman, Jl-dnet,
and T. Muntean, editors?ost Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoper&phart
devices, Marseillevolume 3362 oL NCS Springer-Verlag, 2005.

[3] M. Buchi and W. Weck. The greybox approach: When blackbox
specifications hide too much. Technical report, 1999.

[4] L. Burdy et al. An overview of JML tools and applicationst. Jour-
nal on Soft. Tools for Tech. Transfer (STTA(3):212-232, June 2005.
URL http://dx.doi.org/10.1007/s10009-004-0167-4.

[5] G. T. Leavens. The future of library specification. Rroceed-
ings of the FSE/SDP workshop on Future of software engingeg-
search FOSER '10, pages 211-216, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0427-6. doi: http://doi.acm.org/10.3/1882362.
1882407.

[6] G. T. Leavens and P. Muiller. Information hiding and kisty in
interface specifications. linternational Conference on Software
Engineering (ICSE)pages 385-395. IEEE, May 2007. URkLtp:
//dx.doi.org/10.1109/ICSE.2007.44.

[7] G. T. Leavens and W. E. Weihl. Specification and verifimatiof
object-oriented programs using supertype abstractidxcta Infor-
matica 32(8):705-778, Nov. 1995. doi: http://dx.doi.org/1MI0
BF01178658.

[8] G.T. Leavens et al. Preliminary design of JML: A behawmianterface
specification language for JavdCM SIGSOFT Software Engineering
Notes 31(3):1-38, Mar. 2006.

B. Liskov. Keynote address - data abstraction and hibwar In Ad-
dendum to the proceedings on Object-oriented programmjetems,
languages and applications (Addendurm@OPSLA '87, pages 17—
34, New York, NY, USA, 1987. ACM. ISBN 0-89791-266-7. doi:
http://doi.acm.org/10.1145/62138.62141.

10] H. Rebélo, R. Lima, and G. T. Leavens. Modular consagth proce-
dures, annotations, pointcuts and adviceSBLP '11: Proceedings of
the 2011 Brazilian Symposium on Programming LanguaBeazilian
Computer Society, 2011. to appear.

H. Rebélo et al. Implementing java modeling languaget@acts with
aspectj. InProceedings of the 2008 ACM symposium on Applied
computing SAC '08, pages 228-233, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-753-7. doi: http://doi.acm.org/1045/
1363686.1363745.

[12] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modul&figation
of higher-order methods with mandatory calls specified bydeho
programs. IrProceedings of the 22nd OOPSL@OPSLA '07, pages
351-368, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786
5. doi: http://doi.acm.org/10.1145/1297027.1297053.

[9

—

[11]



