JML and Aspects: The Benefits of Instrumenting
JML Features with AspectJ

Henrique Rebélo
Sérgio Soares

Department of Computing and
Systems
University of Pernambuco
Recife, Pernambuco, Brazil
{hemr,sergio}@dsc.upe.br

ABSTRACT

The Java Modeling Language (JML) is used to specify de-
signs of Java classes and interfaces. To this end, JML has a
rich set of features for specifying methods, including specifi-
cation inheritance. Thus, the most fundamental motivation
for employing JML is to improve functional software cor-
rectness of Java applications, and helps to reduce corrective
maintenance effort of those applications. Previously, we pre-
sented a new JML compiler (ajmlc) that generates aspects
(AspectJ) for contract enforcement. This paper describes
the main reasons to instrument JML features with AspectJ,
with particular emphasis on issues related to instrumenta-
tion code size — we also defined guidelines to use ajmlc
that always generate compact instrumented code than the
classical JML compiler (jmlc). In addition, we discuss the
analogy between JML and AspectJ, and how the ajmlc also
deals with Java ME applications, which is not possible with
jmlc. Moreover, we implemented other JML features such
as the new the new assertion semantics based on “strong
validity” presented elsewhere. The paper includes studies
to compare the final code generated by ajmlc with the one
produced by jmlc. Results indicate that the overhead in
code size produced by our compiler is very small when us-
ing the proposed guidelines, which is essential for Java ME
applications.

Categories and Subject Descriptors

D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming; D.3.2 [Programming Languages]: Lan-
guages Classifications—JML

General Terms

Languages, Experimentation

Keywords

Design by contract, JML language, JML compiler, JML new
assertion semantics, aspect-oriented programming, AspectJ,
Aspect]J weaving

1. INTRODUCTION

The Java Modeling Language (JML) [19] 18] is a formal
behavioral interface specification language for Java. The
JML compiler (jmlc) reads a Java program annotated with

Ricardo Lima

Paulo Borba

Informatics Center
Federal University of
Pernambuco
Recife, Pernambuco, Brazil
{rmfl,phmb}@cin.ufpe.br

Marcio Cornélio

Department of Computing and
Systems
University of Pernambuco
Recife, Pernambuco, Brazil
{marcio}@dsc.upe.br

JML specification and produces instrumented bytecodes. Such
additional code checks the correctness of the program against
restrictions imposed by the JML specifications.

In a previous work [24], we proposed a new JML compiler
known as ajmlc (Aspect]J JML compiler). The ajmlc em-
ploys AspectJ [14] [15] (generative programming) to imple-
ment JML features (specifications) without generics. The
AspectJ compiler translates such features into an instru-
mented bytecode, which performs a runtime checking of
those features. The ajmlc generates code compliant with
both Java SE and Java ME [23] applications. Similarly,
Jose [10] is a tool that uses AspectJ to instrument Java pro-
grams. Jose tool adopts a different specification language
to specify Java programs. Thus, its semantics is different
from that of JML. However, the instrumentation provided
by the Jose tool is not complaint with Java ME applications,
whereas ajmlc does. Moreover, the language JCML [9] is a
subset of the JML language targeting Java Card applica-
tions. Different from ajmlc, the JCML compiler does not
use Aspect Oriented Programming. As with the original
JML compiler, it instruments JML features using standard
Java code with a few restrictions imposed by the Java Card
platform.

Based on our previous results and the new results ad-
dressed by this paper, we try to answer properly the follow-
ing research questions:

e Does AOP represent the JML features (specifications)
conveniently?

e When is it beneficial to aspectize JML features in re-
lation to both source and bytecode instrumentation?
When it is not?

e How to check JML features during runtime?

e How to modify properly the code generation of the
JML compiler for generating aspects that support run-
time assertion checking of JML features in Java ME
applications (in a constrained environment)?

e What is the relationship between the generated as-
pects?
What is the order of aspects generation to provide an
effect like the wrapper approach present in the classical
JML compiler (jmlc)?



The main contributions of this paper are: (1) answering
the above research questions throughout the paper; (2) de-
scribing the analogy between JML and aspects (AspectJ);
(3) extending ajmlc to support the new assertion semantics;
(4) generating instrumented bytecode to verify constrained
methods during class initialization (this feature is not sup-
ported by jmlc); (5) generating instrumented bytecode when
necessary (this feature is also not supported by jmlc); (6)
Conducting study between ajmlc with two different AspectJ
weavers and the original JML compiler to investigate the
overhead in the code size.

This paper is organized as follows. The next section 2
presents the background of Java Modeling Language (JML).
Section 3 describes the ajmlc compiler as well as its new
issues addressed. Some results of conducted studies between
our and original JML compiler are discussed in Section 4.
Section 5 discusses related work. The last section contains
the conclusions and points directions for future work.

2. JML: BACKGROUND

The Java Modeling Language (JML) [19] 18] is a specifi-
cation language to describe the expected behavior of Java
modules — Java modules are classes and interfaces. It com-
bines the Design By Contract (DBC) approach [2I] of Eif-
fel [22] and the model-based specification approach of the
Larch family [12] of interface specification languages, with
some elements of the refinement calculus. Hence, JML spec-
ifications contains pre-, postconditions, and invariant pred-
icates based on Hoare-style [13].

Java comments beginning with the symbol @, which are
interpreted as JML annotations (see example in Figure [I]).
One can use JML to specify the behavior of types (type spec-
ifications) or methods (method specifications). An invariant
clause is a type specification. For instance, the predicate I
denotes an invariant condition that must be true after the
execution of all constructors of the class Foo. Moreover, this
predicate is supposed to be true before and after the exe-
cution of all methods of the class Foo. On the other hand,
requires, ensures, and signals clauses represent method
specifications. Requires specify the method precondition,
whereas ensures and signals are respectively used to define
the normal and exceptional postconditions of the method
foo.

public class Foo {
//@ invariant I;
/*Q requires P;
@ ensures Q;
@ signals (FooException e) R(e);
@x/
public void foo () throws FooException

(..}

Figure 1: Example of JML specification.

2.1 JML assertion semantics

The current JML compiler implements the assertion se-
mantics based on “strong validity” proposed by Chalin’s
work [25]. Thus, instead of using the classical two-valued
logic in the older approach proposed by Cheon’s work [4],

the JML compiler uses now a three-valued logic semantics.
In this way all logical operators behave similarly in both
Java and JML. Using the new semantics, an assertion can
be satisfied (true), violated (false) or invalid (when evalu-
ation does not complete successfully). More details about
the new assertion semantics, refer to [25].

2.2 The JML compiler

The JML compiler (jmlc) [3] was developed at Iowa State
University. It is a runtime assertion checking compiler that
converts JML annotations into automatic runtime checks.
Design
Jmlc is built on top of the MultiJava compiler [6]. It reuses
the front-end of existenting JML tools [2] to verify the syn-
tax and semantics of the JML annotations and produces a
typechecked abstract syntax tree (AST). The compiler intro-
duces two new compilation passes: the “runtime assertion
checker (RAC) code generation”; and the “runtime asser-
tion checker (RAC) code printing”. The former modifies
the AST to add nodes for the generated checking code; the
latter writes the new AST to a temporary Java source file.

For each Java method three assertion methods are gen-
erated into a temporary Java source file: one for precon-
dition checking, and two for postcondition checking (for
normal and exceptional termination). They are invoked
before method call (precondition checking), after method
call (normal postcondition checking) and when an excep-
tion is thrown by the called method (exceptional termina-
tion checking). Finally, instrumented bytecode is produced
by compiling the temporary Java source file through the
MultiJava compiler. The instrumented bytecode produced
contains assertion methods code embedded to check JML
contracts at runtime.

Wrapper approach

The wrapper approach [3 4.1.3] is a strategy used by the
JML compiler to implement the assertion checking. Each
method is redeclared as private with a new name. Then,
a method known as wrapper method is generated with the
name of the original method. Its surrounds the original
method (now with a new name) with the assertion meth-
ods. Hence, client method calls the wrapper method, which
is responsible for calling the original method with appropri-
ate assertion checks (e.g., precondition checking). The JML
compiler is responsible for controlling the order of execution
of assertion methods.

Figure 2] depicts the wrapper approach strategy. If a
client calls the original method, the call goes to the wrap-
per method. In this way, the precondition assertion method
is the first assertion method called, and then only if the
precondition is satisfied, it calls the original method. Af-
ter calling the original method, if it terminates normally,
the normal postcondition assertion method is called; other-
wise, the exceptional postcondition assertion method will be
called.

3. AJMLC: A JML COMPILER TARGET-
ING ASPECTJ CODE

In this section we present the analogy of JML and AspectJ
aspects. We explain the reason to aspectize JML features.
The remaining reasons only will be understood in the Sec-



Precondition
method

Normal
postcondition
method

Wrapper Original
method method
X ’,
N Ve
\

Exceptional
postcondition
method

—P Normal termination

— P Abnormal termination

Figure 2: Wrapper approach strategy.

tion 4 with the studies results. Furthermore, we concentrate
on new assertion semantics verification recently provided by
the ajmlc, the reason that ajmlc can be used with Java ME
applications, and among other issues. Some implementation
details of our compiler will also be considered. A detailed
implementation mechanism has already been available in a
previous work [24].

3.1 Aspect] Overview

AspectJ [14], [T5] is a general purpose aspect-oriented ex-
tension to Java. The aspect-oriented constructs support the
separate definition of units of a program which affect (cross-
cut) other concerns. Such units are called crosscutting con-
cerns. These concerns often cannot be cleanly decomposed
from the rest of the system in both the design and implemen-
tation, and result in either scattering or tangling code, or
both. Thus, this separation of concerns allows better mod-
ularity, avoiding tangled code and code spread over several
units. Consequently, the system maintainability is also in-
creased. Programming with AspectJ explores both objects
and aspects concepts to separate concerns. Object-oriented
programming can be used when the concern are well mod-
eled as objects. If it is not the case, concerns that cross-
cut the objects are separated using units called aspects, and
those are composed with the objects of a system by a process
called weaving. By weaving AspectJ aspects with standard
Java code, we obtain a new AspectJ application.

The main construct of the AspectJ [14] [I5] language is
called aspect. Each aspect defines a functionality that cross-
cuts others (crosscutting concerns) in a system. An aspect
can declare attributes and methods, and can extend another
aspect by defining concrete behavior for some abstract dec-
larations. An aspect can affect both static and dynamic
structure of Java programs. The static structure might be
changed by introducing new methods and fields to an ex-
isting class, as well as converting checked exceptions into
unchecked exceptions, and changing the class hierarchy. The
dynamic structure is changed by intercepting specific points,
called join points, of the program execution flow and adding
behavior before, after, or around the join point.

3.2 Ajmic design

Similarly to Cheon [3], we reuse the front-end of the JML
compiler, known as JML Type Checker [2]. Then, we mod-

ify the code generation part of the original JML compilerﬂ
to introduce other two new compilation passes: the Aspect
RAC code generation; and the Aspect RAC code print-
ing. The former produces assertion checker code from the
typechecked AST, whereas the latter writes the assertion
checker code to a temporary Aspect source file. We traverse
the typechecked AST generating Aspect Assertion Methods
(AAM) for each Java method in a temporary Aspect source
file: one for precondition checking, and another for both
kinds of postconditions in JML (normal and exceptional).
Eventually (when necessary) we also generate AAM for both
kinds of invariants in JML (instance and static). These
AAM are compiled through the AspectJ compiler (ajc or
abc [1]), which weaves the AAM with the Java code. The
result, unlike jmlc, is an instrumented bytecode compliant
to both Java SE and Java ME applications.

3.3 Ajmlc runtime environment

The instrumented bytecode produced by the ajmlc con-
tains not only its normal content (usually generated by javac),
but also has embedded code (assertion methods) to checks
JML’s features during runtime.

In order to run and check those assertion methods of the
bytecode generated by ajmlc, we use part of the Aspect]
runtime environment library (answer to research question 3
discussed in Section [I). We need only part of the Aspect]
library, because only a few AspectJ constructs must be used
during runtime. This is due to compatibility needed by the
instrumented code to deal with Java ME applications. For
more information about ajmlc with Java ME applications
and its required AspectJ library refer to section 3.7 and 4.

3.4 The analogy between JML and Aspects

As pointed out by Filman and Friedman [I1], the Figure
[Bl is an example of quantification. Aspect-oriented program-
ming languages such as AspectJ [14] [I5] allow programmers
to define quantified programmatic assertions.

To this end, AspectJ provides property-based crosscutting
to affect from small to a large number of Java modules (e.g.,
classes, interfaces, and methods). To perform such property-
based crosscutting, by using AspectJ, one can use a feature
known as wildcarding () in pointcut designators. Consider
the following example:

execution(* T.*(..))

This AspectJ construct identifies executions to any method
(with any return and any parameters type) defined on type
T.

The invariants analogy

The behavior of quantification can be addressed similarly
by using JML invariants. For example the JML instance
invariants must be satisfied by all instance methods of the
current type and also subtypes (quantification). In Figure 3]
we have a behavior of instance invariant checking by using
aspects (note the use of wildcards). On the other hand, if
we use pure JML, the following clause replaces both before
and after AspectJ advices [14] [15] depicted in Figure [3

//@ instance invariant i == 10;

"Part of the code of the original JML compiler
that we wused to implement the ajmlc was based
on the JML 5.5 version available to download at
http://sourceforge.net/projects/jmlspecs.


http://sourceforge.net/projects/jmlspecs

As mentioned before, this JML clause defines a quantifi-
cation property (i == 10) that must hold by all instance
methods in type T and also in its subtypes (see Figure B)).

Behavioral subtyping analogy

Regarding specification inheritance in JML, instance meth-
ods with specification cases (e.g., pre- and postconditions)
must be satisfied by the current type and also subtypes.
For example, suppose a scenario with a JML precondition
declared in method m of type T and we have an subtype of T
(that extends it) called S that overrides the method m with
other specification cases. Thus, if we have an object of type
S, we must satisfy the current specification cases of method
m in combination with the inherited ones (from type T), re-
sulting in disjunction for preconditions and conjunction for
postconditions [I7]. Thus, we can also specify this behav-
ior know as behavioral subtyping using aspects — aspects
that checks conditions (assertions) defined in the specifica-
tion cases locally by the method m in combination with the
inherited conditions (from the type T).

Other analogies

We discussed two points in JML and AspectJ that their be-
havior work in the same way. We also showed and argued
that those points identified in JML are in fact quantification
points that can be implemented using AspectJ. However,
there are other quantification points in JML that certainly
can be expressed with AspectJ. Examples of such quantifi-
cation points [19] that can be found in JML not limited to:

e instance and static constraint specifications (is a JML
type specifications like invariants);

e refinement;
e model-programs;

e non-functional properties;

e so forth.
AspectJ and JML a perfect match
Based on the above argumentations, we showed that JML
has properties that cutting across several modules — the

concern know as contract enforcement present in JML which
is classified as a crosscutting concern [20 [7]. Since AspectJ
provide means to deal with crosscutting properties, we con-
clude that AspectJ can implement properly various JML
features (answer to research question 1 discussed in Sec-
tion [I).

Feldman’s work [I0] provides another evidence that As-
pectJ can be used to implement contract enforcement con-
cern [20] [7]. Section 5 presents the main points related to
such a work.

3.5 Expression evaluation with new assertion

semantics

Ajmlc was restructured to deal with the new assertion
semantics proposed by Chalin’s work [25] and implemented
by the current JML compiler. Considering this semantics,
a clause can be entirety executable or not. In this way, we
generate into aspects two try-catch blocks:

e one to handle non-executable exceptions discovered at
runtime;

public class T {
int i = 10;

public void m() {..
public void n() {...
public void o() {

e

}

privileged Aspect_T{
before (T current)
execution (!static * T.x(..)) &&
within (T+) &&
this (current){
if (!(current.i = 10)) {
throw new RuntimeException (7”);
}

}

after (T current)
execution (!static = T.x(..)) &&
within (T4) &&
this (current){
if (!(current.i = 10)) {
throw new RuntimeException (”77);
}

}

Figure 3: Example of AspectJ quantification.

public class T{
public int x, y;
//@ requires b && x < y;
public void m(boolean b)
}

Figure 4: Simple method with a precondition.

e another to handle all other exceptions, such as Null-
PointerException raised during assertion checking by
a method.

In order to see an example of this approach, consider a
method m declared in a type T with a simple precondition
(see Figure ).

An AspectJ before advice [14] is generated by the ajmlc
to instrument such a precondition. This before advice con-
tains the above mentioned two try-catch blocks. In Figure[5l
we can observe the resulting instrumentation code generated
by ajmlc. Note that the presence of the JMLEvaluationError,
which is a new JML assertion error [25] responsible for han-
dling invalid assertion evaluations.

3.6 Ordtering of advice executions into an as-
pec

One AspectJ aspect can have several advices (e.g., before)
to apply to a particular named or anonymous pointcut. As
the advices are declared into the same aspect, we should
take into account their order declaration. In this way, the
advice that appears first lexically inside the aspect executes



public boolean T.checkPre$m$T(boolean b){
return ((b) && (x < y));

before (T current, boolean b) :
execution (void T.m(boolean)) &&
within(T) &&
this (current) && args(b) {

boolean rac$b = true;

try {
rac$b = current .checkPre$m3$T(b);
if (!rac$b){

throw new
JMLInternalPreconditionError(””);

} catch (JMLNonExecutableException
rac$nonExec) {
rac$b = true;
} catch (Throwable rac$cause) {
if (rac$cause instanceof
JMLInternalPreconditionError) {
throw (JMLInternalPreconditionError)
rac$cause;

else {
throw new JMLEvaluationError(””);

}

Figure 5: Evaluation of precondition in the new as-
sertion semantics.

first. “The only way to control precedence between multiple
advice in an aspect is to arrange them lexically |I6].” Thus,
ajmlc generate AspectJ advices carefully in order to respect
the JML semantics (answer to research question 5 discussed
in Section[I)). The order of generation is as follow:

1. generate a before advice to check static invariants;
2. generate a before advice to check instance invariants;

3. generate before advice to check preconditions of ex-
isting methods (including constructors);

4. generate after returning advices and after throwing
advices or around advices (if we have old expressions)
to check postconditions (normal and exceptional post-
conditions) of existing methods (including construc-
tors);

5. generate a after returning and a after throwing ad-
vices to check instance invariants;

6. generate a after returning and a after throwing ad-
vices to check static invariants;

The above ordering to generate AspectJ code is extremely
important to keep the classical ordering of contract checking
posed by JML semantics. For example, a method to be
executed must obey some conditions in a certain order:

1. check invariants (static and instance invariants) before
method execution;

2. check preconditions before method execution;

3. check postconditions after method execution (normal
postconditions when the method terminates normally
and exceptional postconditions when the method ter-
minates abnormally);

4. check invariants (static and instance invariants) after
method execution.

These ordering is respected by generated aspects to check
JML features during runtime — such aspects ordering have
an analogy with the Cheon’s wrapper appraoch [4], because
they have the same effect during runtime checking (ordering
to call the assertion methods, such as precondition checking
method).

3.7 Ajmlc and Java ME applications

The main benefit in using ajmlc is that one can specify
and verify during runtime Java ME applications [23| with
JML. To this end our compiler only generates aspects that
avoids AspectJ constructs that are not supported by Java
ME, such as cflow pointcut [14] [16] (answer to research
question 4 discussed in Section [I]).

3.8 Ajmic optimizations

Concerning Java ME applications, we introduced several
optimizations in ajmlc in order to generate small instrumen-
tation code as much as possible due to constrained environ-
ments like Java ME platform.
Compiling empty classes

The jmlc compiler assumes a standard configuration for classes.
Thus, even if one defines an empty class, basic instrumen-
tation is generated [19] [I8] for:

1. class verification
e Static and non-static invariant/constraint check-
ing;
e Static and non-static constraint pre-state expres-
sions checking.

2. default constructor verification

e Assertion checking wrapper;
e Precondition checking;
e Normal postcondition checking;

e Exceptional postcondition checking.
3. other methods (e.g., for dynamic calls using reflection)

In this way, the jmlc compiler generates 11.0 KB (source
code instrumentation) and 5.93 KB (bytecode instrumenta-
tion) even for a empty class like:

public class Empty { }

In contrast to jmlc compiler, our compiler does not generate
code for empty classes.

Code instrumentation

Code size is an important issue for Java ME applications.
Our compiler avoids code generation as much as possible.
Table [[l compares the jmlc and ajmlc compilers when no
specification is provided.

Limitation of the jmlc compiler solved by the ajmic
compiler

The current implementation of the jmlc compiler has one
limitation:



JML clauses | jmlc generates | ajmlc generates
requires yes no
ensures yes no
signals yes no
invariant yes no

Table 1: Difference between jmlc and ajmlc during
the generation code.

public static x;
//@ static invariant x > 0;

public static void m() { x = =3; }

static{

m();
}

Figure 6: Example of non checked type invariant
when it is called.

1. When constrained methods are called into static blocks
during the class initialization, jmlc does not check the
constrains and the method is always executed even if
the condition is false.

Figure [6] shows an example where the method m is con-
strained with the invariant (x > 0) and a call (m()) that
violates the invariant is made inside a static block. As a
result, no assertion violation is raised. Cheon’s compiler [3]
does not generate instrumented bytecode properly to deal
with this limitation. However, the ajmlc always verifies con-
strained methods when called into static blocks. This benefit
is automatically gained just by using aspects to instrument
the JML features.

4. STUDY

In our previous work [24], we evaluated our compiler (ajmlc)
by using a Java ME application. This was fundamental to
investigate our proposed approach in a Java ME environ-
ment. In this section we evaluate our compiler employing
three Java applications. Such applications was extracted
from the JML literature, as described bellow.

Scenario
We have compiled three Java programs annotated with JML

using both ajmlc (our compiler), and the jmlc compiler (Cheon’s

compiler [3]). Such programs are described in three works:
(1) the hierarchy classes Animal, Person, and Patient [I7];

(2) the class IntMathOps [19], and (3) the class StackAsArray [3].

Moreover, we have used our ajmlc with two different weav-
ing processes: using the standard AspecJ compiler (ajc) [14];
and the abc compiler [I], which is a complete implementa-
tion of AspectJ with some optimizations.

As a important point for our study, we removed the JML
specifications from the class Person. This choice is to show
that our compile only generate instrumented code when nec-
essary.

Results

Considering the scenario described above, Table 2] Table [3]
and Table [ present the results of the compilation size that

we obtained by using both compilers. As can be seen, we
analyzed instrumented source code size, instrumented byte-
code size, and Jar size all in kbytes (KB). Considering our
compiler (ajmlc), we used the same Aspect] aspect code
(source) generated for both weaving processes (using ajc,
and abc compilers). We observed that the ajmlc compiler
using the ajc weaver introduces a big overhead in the in-
strumented bytecode size (see Table B]), whereas in relation
to instrumented source code size, ajmlc generates a smaller
code (see Table[2). On the other hand, our approach pro-
duces a far smaller instrumented bytecode and source code
when the abc weaver is employed (see Tables[Bland [2). Con-
cerning Jar size we observed that the final deployed appli-
cations for both ajmlc with ajc and abc weavers are smaller
to ones related to the jmlc. This happens because the lib
Jar size necessary to evaluate assertions during runtime for
our compiler is smaller than the lib Jar size for jmlc. It is
important to note that we take into account only the JML
features available by our compiler. Thus, we removed the
from the jmlc runtime library the part that is nor supported
yet by our compiler — this gives a more fair comparison.
Therefore, the user is free to choose the AspectJ weaver.
However, based on the results, we recommend the usage of
ajmlc with the abc weaver (for most cases). This choice is
particulary important for Java ME applications.

Guidelines

Based on the results presented in Tables 2l Bl and @ we
briefly present steps to use our ajmlc compiler (answer to
research question 2 discussed in Section[I]). These steps are
the guidelines for its usage:

1. If the application is not compiled in its entirety by the
JML compiler — if at least =~ 337, of the application is
free of the JML instrumentation effect (as occurs with
the Hierarchy application showed above), we recom-
mend to use ajmlc with both ajc or abc weavers. Even
if the application is a Java ME application. But, be
aware that by always using abc we got better results;

2. If the application is compiled in its entirety by the
JML compiler — we recommend only in the case of
Java ME applications to use ajmlc with abc weaver;

3. If the user always need to take maximum of the As-
pectJ optmization — we alwys recommend to use ajmlc
with abc weaver.

These guidelines is to provide a way to choose the best
AspectJ weaver to use. Although, our compiler always need
smaller memory space during deploying (because the dis-
crepancy of the size of the runtime libraries from ajmlc and
jmlc).

5. RELATED WORK

JMLC (Java Card Modeling Language) [9] is a is a subset
of the JML language. The JCML compiler (jemlc) gener-
ates bytecode compliant with Java Card applications. How-
ever, its instrumentation does not employ AspectJ to im-
plement the JML contracts. The jemlc translates only JML
lightweight specifications, whereas our compiler handles both
lightweight and heavyweight specifications. The jcmlc does
not support inheritance of specifications, which our compiler



Table 2: Instrumentation source code size results
ajmlc

jmlc | (ajc) | (abc)
(KB) | (KB) | (KB)

Animal 28.8 4.8 4.8
Person 27.4 0.5 0.5
Patient 26.2 9.6 9.6

IntMathOps 18.2 2.0 2.0
StackAsArray | 55.7 9.2 9.2

Table 3: Instrumentation bytecode size results

ajmlc
jmlc | (ajc) | (abc)
(KB) | (KB) | (KB)

Animal 13.3 17.0 5.5
Person 11.7 2.3 0.7
Patient 12.7 25.3 7.4

IntMathOps 9.39 5.4 2.3
StackAsArray | 21.7 23.2 6.2

does. On the other hand, the jemlc handles quantifiers such
as forall, which are not treated by our compiler.

Feldman et al. [10] presents a DBC tool for Java, known
as Jose. This tool adopts a private DBC language for ex-
pressing contracts. Similar to our approach, Jose adopts
AspectJ for implementing contracts. The semantics of post-
conditions and invariants in Jose are distinct from JML. Jose
states that postconditions are simply conjoined without tak-
ing into account the corresponding preconditions. Moreover,
it establishes that private methods can modify invariant as-
sertions. In the JML semantics, if a private method violates
an invariant, an exception must be thrown. Unlike our com-
piler, Jose generates bytecode not compliant with Java ME.

Pipa [20] is a behavioral interface specification language
(BISL) tailored to AspectJ. It uses the same approach (based
on annotations) of JML language to specify AspectJ classes
and interfaces, and extends JML with a few new constructs
in order to specify AspectJ programs. The Pipa language
also supports aspect specification inheritance and crosscut-
ting. Pipa specifies AspectJ programs with pre-, postcondi-
tions, and invariants. Moreover, Pipa also can specify aspect
invariants and the “decision” whether or not to call the pro-
ceed method within the around advice (using the proceed
extended annotation). The aim in designing Pipa based on
JML is to reuse the existing JML-based tools. In order to
make this possible the authors developed a tool (compiler)
to automatically transform an AspectJ program with Pipa
specifications into a standard Java program with JML spec-
ifications. To this end, the authors modified the AspectJ
compiler (ajc) to retain the comments during the weaving
process. After the weaving process, all JML-based tools can
be applied to Aspect] programs. Therefore, the main goal
of Pipa is to facilitate the use of JML language to verify
AspectJ programs. On the other hand, we use AspectJ to
implement JML features and verify Java programs.

6. CONCLUDING REMARKS

In this paper we discussed the benefits to use AOP to
instrument JML features. We also discussed the analogy

Table 4: Jar size results
ajmlc
jmlc | (ajc) | (abc)
(KB) | (KB) | (KB)
hierarchy classes | 33.6 18.7 10.7
IntMathOps 20.6 7.5 4.7
StackAsArray 25.2 11.7 6.6

between JML and AspectJ that justify the use of AspectJ
to instrument JML features (treated as crosscutting con-
cern). In this way the issues covered throughout the paper
provide means to answer the research questions pointed out
in Section 1.

Another major contribution of this paper is that, unlike
jmlc, our compiler (ajmlc) generates instrumented bytecode
to verify constrained methods within static blocks during
the class initialization. We also present three examples of
Java programs annotated with JML to investigate the over-
head in code size produced by two different AspectJ weavers.
Such results provide an evidence that our approach gener-
ates smaller code than the original JML compiler when using
the abc AspectJ weaver. Moreover, such results showed that
in relation to application Jar sizes, ajmlc with either ajc and
abc produces a smaller application size than jmlc. These re-
sults are essential when considering Java ME applications.
We also presented some guidelines useful to choose properly
which AspectJ weaver to employ.

We believe that the usage of aspects to implement a JML
compiler introduces a new level of modularity. In other
words, our approach is not invasive (the Java source code
is not tangled and scattered with the generated assertion
methods to check JML features during runtime). This gives
more flexibility to extend the compiler with other JML con-
structs and to optimize the current implementation (since
our source code instrumentation is less complexity resulting
in a smaller source code instrumentation). In addition, opti-
mizations in the weaven process are automatically inherited
by our compiler when using abc.

As a future work, we also plan to address a problem sug-
gested by Cheon [3]: to support assertion checking in a
concurrent environment (e.g., multi-threaded program). We
also intend to conduct more experiments using weavers that
implement optimization techniques for AspectJ, including
the work by Cordeiro [8]. Such a work provide some opti-
mizations in the AspectJ abc compiler, which can improve
the instrumented code generated by the ajmlc. As another
future work, we intend to perform quantitative studies to
compare the instrumented code generated by the classical
jmlc compiler and the ajmlc compiler. These quantitative
studies will respect to important software engineering at-
tributes [5], such as composability, coupling, cohesion, num-
ber of attributes and operations. Finally, in addition to
quantitative studies and code size conducted in this paper,
a performance comparison would also be an interesting fu-
ture work to investigate, especially in the Java ME context.

7. ACKNOWLEDGMENTS

We would like to thank Professor Gary Leavens for his
comments and stimulating discussions on earlier topics of
this paper. We would also like to thank Professor Patrice
Chalin, and Perry James for their several and helpful dis-



cussions about JML and its semantics. Special thanks to
Fernando Calheiros, he shared a substantial amount of do-
main knowledge related to Java ME with AspectJ.

This work was partially supported by CAPES and FINEP,
brazilian research agencies.

8.

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

REFERENCES

P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhotdk, O. Lhotdk, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible AspectJ compiler. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 87—98,
New York, NY, USA, 2005. ACM.

L. Burdy et al. An overview of JML tools and
applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212-232, June
2005.

Y. Cheon. A runtime assertion checker for the Java
Modeling Language. Technical report 03-09, Iowa State
University, Department of Computer Science, Ames,
TA, April 2003. The author’s Ph.D. dissertation.

Y. Cheon and G. T. Leavens. A contextual
interpretation of undefinedness for runtime assertion
checking. In AADEBUG’05: Proceedings of the sixth
international symposium on Automated
analysis-driven debugging, pages 149-158, New York,
NY, USA, 2005. ACM.

S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476-493, 1994.

C. Clifton et al. Multijava: modular open classes and
symmetric multiple dispatch for java. In OOPSLA ’00:
Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 130—-145, New York, NY, USA,
2000. ACM Press.

C. Constantinides and T. Skotiniotis. Reasoning about
a Classification of Cross-cutting Concerns in
Object-Oriented Systems. In Second Workshop on
Aspect-Oriented Software Development (Workshop
Aspektorientierte Softwareentwicklung der
GI-Fachgruppe 2.1.9 Objektorientierte

Software- Entwicklung), Bonn, Germany, February
21-22, 2002.

E. Cordeiro et al. Optimized compilation of around
advice for aspect oriented programs. Journal of
Universal Computer Science, 13(6):753-766, 2007.

U. Costa et al. Specification and Runtime Verification
of Java Card Programs. In Brazilian Symposium on
Formal Methods (SBMF), Oct. 2008.
Y. A. Feldman et al. Jose: Aspects for design by
contract80-89. sefm, 0:80-89, 2006.

R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness.
pages 21-35. Addison-Wesley, 2000.

J. V. Guttag and J. J. Horning, editors. Larch:
Languages and Tools for Formal Specification. Texts

(16]

(17]

(18]

(19]

(25]

(26]

and Monographs in Computer Science.
Springer-Verlag, 1993. With Stephen J. Garland,
Kevin D. Jones, Andrés Modet, and Jeannette M.
Wing.

C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576-580, 1969.
G. Kiczales et al. Getting Started with AspectJ.
Commun. ACM, 44(10):59-65, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP ’01: Proceedings of the 15th
European Conference on Object-Oriented
Programming, pages 327-353, London, UK, 2001.
Springer-Verlag.

R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, 2003.

G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors,
Formal Methods and Software Engineering: Sth
International Conference on Formal Engineering
Methods (ICFEM), volume 4260, pages 2-34, Nov.
2006.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1-38, 2006.

G. T. Leavens et al. Jml reference manual.
Department of Computer Science, lowa State
University. Available from url
http://www.jmlspecs.org, Apr. 2007.

M. Marin et al. A classification of crosscutting
concerns. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance,
pages 673—676, Washington, DC, USA, 2005. IEEE
Computer Society.

B. Meyer. Applying “design by contract”. Computer,
25(10):40-51, 1992.

B. Meyer. FEiffel: the language. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1992.

V. Piroumian. Wireless J2me Platform Programming.
Prentice Hall Professional Technical Reference, 2002.
Foreword By-Mike Clary and Foreword By-Bill Joy.
H. Rebélo et al. Implementing Java Modeling
Language Contracts with AspectJ. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pages 228-233, New York, NY, USA, 2008.
ACM.

F. Rioux and P. Chalin. Effective and Efficient
Runtime Assertion Checking for JML Through Strong
Validity. In Proceedings of the 9th Workshop on
Formal Techniques for Java-like Programs
(FTfJP’07), 2007.

J. Zhao and M. C. Rinard. Pipa: A behavioral
interface specification language for aspectj. In Proc.
Fundamental Approaches to Software Engineering
(FASE’2008) of ETAPS’2003, Lecture Notes in
Computer Science, Apr. 2003.



	Introduction
	JML: Background
	JML assertion semantics
	The JML compiler

	ajmlc: A JML Compiler Targeting AspectJ code
	AspectJ Overview
	Ajmlc design
	Ajmlc runtime environment
	The analogy between JML and Aspects
	Expression evaluation with new assertion semantics
	Ordering of advice executions into an aspect
	Ajmlc and Java ME applications
	Ajmlc optimizations

	Study
	Related Work
	Concluding Remarks
	Acknowledgments
	References

