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ABSTRACT
The Java Modeling Language (JML) is a behavioral inter-
face specification language (BISL) designed for Java. It was
developed to improve functional software correctness of Java
applications. However, the JML compiler explores the re-
flection technique and data structures not supported by Java
ME applications. In order to eliminate such a problem, this
paper proposes the use of AspectJ to implement a new JML
compiler, which generates an instrumented bytecode com-
pliant with both Java SE and Java ME applications. The
paper includes a comparative study to demonstrate the qual-
ity of the final code generated by our compiler. The size of
the code is compared against the code generated by an ex-
istent JML compiler. Moreover, we evaluate the amount of
additional code required to implement the JML assertions
in Java applications. Results indicate that the overhead in
the code size produced by our approach is very small, which
is essential for Java ME applications.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming ; D.3.2 [Programming Languages]: Lan-
guages Classifications—JML

General Terms
Languages, Experimentation

Keywords
Design by contract, JML language, JML compiler, aspect-
oriented programming, AspectJ

1. INTRODUCTION
Several specification languages have been designed to be

annotated directly in the source code [6, 1, 11]. Most of
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these languages adopt the Design by Contract (DBC) [12]
technique. This is the case of Java Modeling Language
(JML) [11]. The JML compiler (jmlc) reads a Java program
annotated with JML specification and produces an instru-
mented bytecode. Such additional code checks the correct-
ness of the program against restrictions imposed by the JML
specification.

Java ME [14] is intended for devices with limited resources
such as handheld mobile devices. Many existing Java Stan-
dard Edition (Java SE) applications can be used in Java
ME applications, but this code usually is not scaled down
to fit limited hardware. Additionally, the Java ME API is
a subset of the Java SE API geared toward handheld de-
vices. Moreover, the implementation of the JML compiler
explores reflection technology [13] to look inside Java objects
at runtime. The lack of support for reflection represents an
additional limitation for using JML with Java ME applica-
tions.

In order to overcome this limitation, this paper proposes
an approach to implement a new JML compiler with support
for Java ME applications. The strategy explores AspectJ [9]
to implement JML’s contracts (assertions). In fact, the ap-
proach leads to an instrumented bytecode compliant with
both Java SE and Java ME applications.

To the best of our knowledge, this is the first JML com-
piler with support for Java ME, which adopts aspect-oriented
programming with AspectJ to implement JML’s contracts.

Jose [7] tool provides another specification language for
applying DBC technique for Java. It also instruments their
contracts through AspectJ. Moreover, in contrast with our
work, Pipa [15] is a specification language that extends JML
language to specify AspectJ classes and interfaces.

The contributions of this paper are:

• A novel JML compiler compliant with Java ME and
Java SE applications;

• The usage of aspect-oriented programming in a differ-
ent context than software development;

• An alternative JML compiler for applications in gen-
eral (not only Java ME);

• A case study to investigate the proposed approach
against the JML compiler proposed by Cheon [3].

This paper is structured as follows. Section 2 discusses the
Java Modeling Language. Section 3 presents a novel JML



compiler based on AspectJ. Some results of a comparative
study between our and original JML approach are discussed
in Section 4. Finally, Section 5 presents related work, and
Section 6 contains the conclusions and future work.

2. JAVA MODELING LANGUAGE
The Java Modeling Language (JML) [11] is a behavioral

interface specification language designed to Java. JML adopts
design by contract (DBC) [12] and Hoare style [8]. JML
specifications are composed of (pre-) postconditions and in-
variant assertions annotated in Java code in the form of
comments.

JML compiler (jmlc) translates the annotated Java code
into instrumented bytecode to check if the system respect
the specification.

runtime assertion 
       checker

JML
compiler

annotated
source code

 result
instrumented
   bytecode

 programmer

Figure 1: An overview of the JML environment

Figure 1 depicts an overview of the JML environment.
Java comments are interpreted as JML annotations when
they begin with an @ sign. That is, comments of the form:
//@ <JML specification> or /*@ <JML specification> @*/.
Figure 2 presents a JML specification, where the keywords
requires, ensures and signals are respectively used to
specify the precondition, the (normal) postcondition and the
exceptional postcondition of the method. Moreover, the key-
word invariant denotes a predicates that will always keep
its truth value at the beginning and at the ending of every
methods and the ending of constructor’s execution. JML
supports both instance and static invariants.

public class foo {
//@ invariant S;
/*@ requires P;
@ ensures Q;
@ signals (FooException) R;
@*/
public void foo() throws FooException {...}

}

Figure 2: Example of JML specification

2.1 The JML compiler
The JML compiler (jmlc) [3] was developed at Iowa State

University. It is an assertion checker compiler, which con-
verts JML annotations into runtime assertions.

Jmlc is built on top of the MultiJava compiler [4]. It
reuses the front-end of existent JML tools [2] to verify the
syntax and semantics of the JML annotations and produces
a typechecked abstract syntax tree (AST). The compiler in-
troduces two new compilation pass: the “runtime assertion
checker (RAC) code generation”; and the “runtime asser-
tion checker (RAC) code printing”. The RAC code gener-
ation creates the assertion checker code from the AST. It

may mutate the abstract syntax tree to add nodes for the
generated checking code. Eventually, the RAC code printing
writes the new abstract syntax tree to a temporary file.

For each Java method three assertion methods are gener-
ated into a temporary Java source file: one for precondition
checking, and two for postcondition checking (for normal
and exceptional termination). Finally, instrumented byte-
code are produced by compiling the temporary Java source
file through the MultiJava compiler.

The instrumented bytecode produced contains assertions
methods code embedded to check JML’s contracts at run-
time.

3. A NOVEL JML COMPILER BASED ON
ASPECTJ

This section describes a new approach for the implemen-
tation of the jmlc compiler based on AspectJ. The Cheon’s
approach [3] to implement JML has the following limitation
to be employed for small devices:

• It adopts Java’s reflection [13] to support specification
inheritance and separate compilation. Java ME does
not support reflection;

• It employs data structures, such as HashSet and Map,
both from the java.util package, which are not sup-
ported by Java ME.

In the remaining of the section we present modifications
in the JML compiler to overcome these limitations.

3.1 AspectJ Overview
AspectJ[9] is a general purpose aspect-oriented extension

to Java. The main language construct is an aspect. Each
aspect defines a functionality that crosscuts others (crosscut-
ting concerns) in a system. An aspect can declare attributes
and methods, and can extend another aspect by defining
concrete behavior for some abstract declarations. An aspect
can be used to affect both static and dynamic structure of
Java programs by using AspectJ’s static/dynamic crosscut-
ting mechanism. The static crosscutting mechanism allows
one to introduce new methods and fields to an existing class,
convert checked exceptions into unchecked exceptions, and
change the class hierarchy. On the other hand, dynamic
crosscutting mechanism changes the way a program exe-
cutes. It intercepts specific points of the program execu-
tion flow, called join points, adding behavior before, after,
or around the join point.

3.2 The implementation strategy
Similar to Cheon [3], we reuse the front-end of the JML

Type Checker [2]. We traverse the typechecked AST gener-
ating Aspect Assertion Methods (AAM) for each Java method.
This version of the compiler considers precondition check-
ing, normal postcondition checking and invariants. Then,
the AAM are compiled through the AspectJ compiler (ajc),
which weaves the AAM with the Java code. The result is
an instrumented bytecode, compliant to both Java SE and
Java ME applications.

3.3 Mapping contracts to Aspects
In this section, we present a mapping of JML into as-

pects [9]. We concentrate on precondition, normal postcon-



dition and invariant. For the mapping rules, consider the
following JML sample annotation:

public class C extends B{
//@ invariant θ;
/*@ also
@ requires α;
@ ensures γ;
@*/
public void m(){...}

}

This sample provides a class C that inherits class B with
an overridden method m that has the precondition α, post-
condition γ, invariant θ and possible inherited specifications
indicated by JML keyword also.

3.3.1 Precondition Mapping
In JML preconditions must be satisfied before any code

of the method is executed, otherwise an exception must be
thrown informing the precondition violation. The AspectJ
code that checks the precondition of the method m is:

1: before() :
2: execution(void m())) && within(C) {
3: if(!α){
4: throw new JMLInternalPreconditionError();
5: }
6: }

This piece of code declares a before advice (line 1) that is
responsible to insert (instrument) an extra behavior (lines 3,
4 and 5) before some specified points in the Java program.
In this example, the affected points are defined through
the AspectJ designators execution and within (line 2).
The former specifies which methods executions will be af-
fected, in this case, executions of a void method m with-
out parameters in a class C. The latter constrains the ex-
ecution points to methods of a specified class (C), which
avoids executions in subclasses of it. The behavior added by
this advice is to check the precondition (line 3) and throws
JMLInternalPreconditionError (line 4) if it is violated.
Assertion violations in the JML semantics are instances of
java.lang.Error [3].

However, this mapping in the previous code ignores any
inherited contract. In JML, subclasses inherit not only fields
and methods from their superclasses, but also specifications
(specification inheritance model). To achieve this, the JML
keyword also, performs specification inheritance (see the
use of also at the JML specification example in the begin-
ning of Section 3). Thus, specifications can be added to an
overridden method. The semantics of “also” is stated by
Leavens (Definition 1) in [10]. According to this definition,
the result of precondition inheritance is its disjunction in
the form (pre′ || pre), where pre′ is the method precondition
defined by the subclass and pre is the method superclass
precondition defined by the superclass.

In order to achieve the effect of precondition inheritance,
a static crosscutting mechanism of AspectJ also known as
inter type declaration is used to insert a new method into
class C1 as follows:

1: public boolean C.checkPre$m(){
2: return α || super.checkPre$m();
3: }

1If the method has formal parameters, their declaration is
useful to distinguish from overloaded methods.

this code inserts a method into class C (the C. prefix tells
AspectJ where to insert the method definition). This in-
serted method checks its precondition in conjunction with
the proper inherited precondition (super.checkPre$m()), if
any, as defined by the precondition inheritance definition [10].

The AspectJ’s advice becomes:

1: before(C current) :
2: execution(void m())) && within(C) && this(current){
3: if(!current.checkPre$m()){
4: throw new JMLInternalPreconditionError();
5: }
6: }

In this code, the advice parameter current (line 1) indi-
cates that we want to expose some information about the
execution context. The designator this (line 2) exposes the
currently executing object, which is the object executing the
method m.

3.3.2 Normal Postcondition Mapping
Postconditions are properties in JML that must be true af-

ter method execution. In a specification inheritance model,
The semantics of “also” given by Leavens [10] (Definition 1)
states that postconditions as a conjunction of implications
in the form (�old(pre′)==>post′) && (�old(pre)==>post). Ex-
pressing that when one of the preconditions holds (at begin-
ning of method execution), then the corresponding postcon-
dition must hold. The expression (�old(pre′)) corresponds
in JML to the evaluation of the precondition before to the
method execution.

In JML, there are two kinds of postconditions: normal
and exceptional postcondition. Here, we cover only normal
postcondition. Exceptional postcondition will be treated in
a future work.

The method inserted to verify the normal postcondition
is the following:

1: public boolean C.checkPost$m$C(){
2: return !α || γ;
3: }

The returned expression by postcondition checking method
(line 2) is the Java code equivalent to the JML notation
(�old(α) ==> γ). Thus, the expression !α (line 2) is evalu-
ated with values of beginning method execution, according
to JML’s old expression semantics (pre-state).

The AspectJ’s advice that implements this is the follow-
ing:

1: void around(C current) :
2: execution(void C.m()) && this(current){
3: ...// saving all old values
4: proceed();
5: if(!current.checkPost$m$C()){
6: throw new JMLInternalNormalPostconditionError();
7: }
8: }

In the above code, the method name that tests the postcon-
dition (line 5) contains the class name, because normal post-
conditions methods in subclasses preserve the postcondition
of corresponding methods of their superclasses. This is ex-
pressed by the absence of within(C) that makes the advice
to affect executions of m in subtypes of C. It uses conjunc-
tion of normal postcondition testing all the inherited post-
conditions. We use the around advice in order to have total
control over the computation [9]. In this way, we can manip-
ulate data before and after executing the proceed method.



The constructor proceed (line 4) represents the call to the
original method from within the advice. The around ad-
vice is necessary to treat JML old expressions by saving all
state variables (attributes used in old expressions) (line 3)
before the method executes. Consequently, we evaluate the
postcondition checking method in a proper context allowing
references to state values (attributes) in their pre-state (val-
ues before method execution). One way to achieve this is to
use inter type declaration to insert attributes to retain the
values of attributes present in class before method execution
(line 3). Thus, we can use attributes appropriately in the
expression !α (see line 2 of postcondition checking method
defined previously).

3.3.3 Invariant Mapping
Class invariants express global properties of a class that

must be preserved by all class routines. Moreover, like post-
conditions, class invariants are conjoined in the specification
inheritance model. Leavens (Definition 2) [10] states that in-
herited specifications, such as invariants, can be explained
by constructing an extended specification. The Leavens’
definition is as follows:

ext invT =
∧
{ added invU | U ∈ supers(T )}

This definition states that an extended invariant of T is
the conjunction of all added invariants in T and its proper
supertypes. Moreover, this leads to an instrumentation sim-
ilar to preconditions. Thus, for each class C whose invariant
assertion is θ, in order to obey the definition of invariant
extended specification, the following method is inserted into
C:

1: public boolean C.checkInv$instance(){
2: return θ && super.checkInv$instance();
3: }

In this code, the returned expression (line 2) is the conjunc-
tion of invariants (from the subtype and their supertypes).

In the JML compiler (jmlc) [3], the following steps are
performed to invoke a method: (1) invariant test in the
beginning of invoked method (pre-state); (2) precondition
test; (3) postcondition test; (4) invariant test in the end of
invoked method (post-state). If one current step is violated,
a proper assertion error is thrown. In order to instrument
these steps, we used before and the two kinds of after ad-
vice: after returning and after throwing advice. The
after returning advice is applied when the method returns
normally, without throwing any exception. On the other
hand, when the executing method terminates by throwing
an exception, the after throwing advice is applied to add
behavior after it.

1: before(C current) :
2: execution(!static * C.*(..)) && within(C) &&
3: this(current){
4: if (!current.checkInv$Instance()){
5: throw new JMLInvariantError("<@pre>");
6: }
7: }

8: after(C current)returning(Object o) :
9: execution(!static * C.*(..)) && within(C) &&
10: this(current){
11: if (!current.checkInv$Instance()){
12: throw new JMLInvariantError("<@post>");
13: }
14: }

15: after(C current)throwing(Throwable throwable) :
16: execution(!static * C.*(..)) && within(C) &&
17: this(current){
18: if(throwable instanceof σ){
19: throw(σ)throwable;
20: }
21: if(throwable instanceof π){
22: if (!current.checkInv$Instance()){
23: throw new JMLInvariantError("<@post>");
24: }
25: else{
26: throw(π)throwable;
27: }
28: }
29: }

If no assertion violations occur by any steps discussed above,
the after returning advice is executed. It checks the in-
variants (line 11) and if it detects any invariant violation
then it throws a JMLInvariantError (line 12), otherwise re-
turns normally. if an assertion violation occurs, the after

throwing advice is properly executed. This advice verifies
which kind of exception was threw, and if any kind of JML
assertion violations is thrown (represented by the letter σ)
(line 21), the advice re-throws it. However, if the threw ex-
ception is a Java exception (represented by the letter π) (line
21), the advice checks the invariants (line 22) and if they are
satisfied, re-throws the Java exception (line 26), otherwise
throws a JMLInvariantError (line 23).

The presented invariants instrumentation only checks in-
stance invariants of all non-static methods of the class C

(lines 2, 9 and 16), because static methods are not allowed
to access instance fields. However, in JML, static invariants
are also allowed and the mechanism used to instrument it
is very similar to the one presented here. However, some
modifications are needed: (1) insert a proper method defi-
nition that tests static invariants (checkInv$Static()); (2)
change the !static clause (lines 2, 10 and 18) to static; (3)
call within the advices the proper method that tests static
invariants (checkInv$Static()); (4) insert the same advices
presented without the parameter current (lines 1, 8 and 15)
to check static blocks that the class C may contain and to
use the designator staticinitialization(C) instead using
the designators execution, within and this.

4. COMPARATIVE STUDY
To evaluate the impact of our approach using aspects in

constrained environment devices, we have used the same ap-
plication, a Java ME floating point calculator2(MiDlet ap-
plication [14]), in three different ways: using our approach
with the AspectJ language (CalcAspSol); using the original
approach [3] (CalcJmlSol); and a pure one, with no bytecode
instrumentation (CalcPureSol). We compared the three ap-
proaches by analyzing the metrics: MiDlet class size; byte-
code size; library API size.

The Java ME floating point calculator application presents
a calculator screen where the operands and operation are re-
quested and the result shown. It was annotated with JML
constructions presented here to ensure two implementation
properties: it yields only positive results; it prevents division
by zero operation.

We compile the CalcJmlSol version by using the JML
compiler (jmlc) setting the class path to the Java ME API [14].

2An open source Java ME application available at
https://meapplicationdevelopers.dev.java.net/demo box.html



Table 1: Java ME calculator application metrics
sizes results

MidLet class JAR Lib JAR
size (KB) size (KB) size (KB)

CalcAspSol 21.1 11.8 4.6
CalcJmlSol 39.5 278.0 261.0
CalcPureSol 4.9 2.7 —

However, the bytecodes we obtain do not pass the analysis
of the Java ME preverifier tool that checks bytecode com-
patibility to run in the Java ME environment. The reason
for this failure is that Java ME does not support all features
present in Java SE. Despite the incompatibility, we use the
code in the comparative study.

Considering the three versions of the calculator applica-
tion, we analyze the mentioned metrics with the same an-
notated input source file. Table 1 presents the result of
the analysis. Concerning bytecode size, we observe that,
CalcAspSol is 77.2% bigger than CalcPureSol, but 95.8%
smaller than CalcJmlSol. Considering library API size, Cal-
cAspSol showed to be 98.3% smaller than CalcJmlSol. This
happens because CalcAspSol requires far less code than the
original JML runtime to execute instrumented bytecode. In
the case of the MiDlet class size, CalcAspSol is 76.8% bigger
than CalcPureSol and 46.6% smaller than CalcJmlSol.

Such results provide strong indication that our approach
requires less memory space than the original JML compiler.
Moreover, the overhead in the size of the bytecode to check
JML assertions at runtime is acceptable. In order to validate
our JML compiler, we executed the calculator application in
a real mobile phone.

5. RELATED WORK
In [7], Feldman presents a DBC tool for Java, called Jose.

The tool adopts a proprietary DBC language. Similar to
our approach, Jose adopts AspectJ to implement contracts.

The semantics of postconditions and invariants in Jose are
distinct from JML. Jose defines that postconditions are sim-
ply conjoined without taking into account the correspond-
ing precondition present. Moreover, it stablishes that pri-
vate methods are can modify invariant assertions. In JML’s
semantics, if a private method violates an invariant, an ex-
ception must be thrown. Moreover, in order to preserve
the JML semantics (see Section 3.3.3), our approach checks
invariants at end of every method invoked. We use after re-
turning and after throwing advices, while the Jose tool
only employs after advice.

Pipa[15] is a behavioral interface specification language
(BISL) tailored to AspectJ. It extends JML language to
specify AspectJ classes and interfaces. The goal is to facil-
itate the use of existing JML-based tools to verify AspectJ
programs. Different from Pipa, our work uses AspectJ to
implement JML assertions in Java programs.

6. CONCLUSION AND FUTURE WORK
This paper presents the implementation of a new JML

compiler based on AspectJ. The compiler translates JML
contracts annotated in the Java source file into AspectJ as-
pects. The result is an instrumented bytecode with embed-
ded aspect checking methods that verify the program against
JML specification. The paper explained how to use aspect

programming technique to implement JML assertions. For
the best of our knowledge, this is the first work to use As-
pectJ with this purpose.

The main contribution of our work is to extend the use
of JML to Java ME applications. The comparative study
conducted here indicated that our JML compiler produces
a code of better quality than the jmlc [3], when we analyze
the size of the code generated for both compilers. Such a re-
sult is essential when considering the Java ME environment.
Moreover, the overhead in the size of bytecode to check the
JML assertions at runtime is fairly acceptable. We executed
the calculator application produced by our JML compiler in
a real mobile phone.

We plan to conduct experiments using the AspectJ which
implements optimization techniques for AspectJ advices [5].

The JML implementation presented here was based on
JML-5.4 version3. This first version focused on the main
JML constructors. The compiler supports precondition, nor-
mal postcondition and invariants. We are working to imple-
ment the remaining constructors, such as exceptional post-
condition.
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