
An Annotation-Based Approach for JCSP Concurrent
Programming: A Quantitative Study

José Elias Araújo1, Henrique Rebêlo1, Ricardo Lima1,
Alexandre Mota1, Uirá Kulesza2, Cláudio Sant’Anna3

1 Informatics Center, Federal University of Pernambuco
50740-540, Recife, PE, Brazil

2 Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte
59072-970, Natal, RN, Brazil

3 Departament of Computer Science, Federel University of Bahia
Salvador, Bahia, Brazil

{jeqca,hemr,rmfl,acm}@cin.ufpe.br, uira@dimap.ufrn.br, santanna@dcc.ufba.br

ABSTRACT
The construction of large scale parallel and concurrent ap-
plications is one of the greatest challenges faced by soft-
ware engineers nowadays. Modern programming models for
concurrency including libraries implementing high level ab-
stractions such as JCSP lead to tangled and scattered con-
currency code. As such, this paper outlines our initial effort
on the separate of concurrent (JCSP code) concern from the
sequential Java processes. We explore metadata annotations
to implement this separation of concerns. A compiler gener-
ates AspectJ code used to instrument the JCSP features un-
der the hood. We also present a case study that assesses the
benefits of the proposed approach through a metrics suite.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming ; D.3.2 [Programming Languages]: Lan-
guages Classifications—CSP

General Terms
Measurement, Design, Experimentation

Keywords
Concurrent programming, CSP language, metadata annota-
tions, aspect-oriented programming, AspectJ

1. INTRODUCTION
Java usually relies on thread based mechanisms to control

concurrency. This is too low level and requires much effort
from programmers with solid background on concurrent pro-
gramming to develop simple and small concurrent applica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MISS ’11 Porto de Galinhas, Pernambuco, Brazil
Copyright 2011 ACM 978-1-4503-0647-8/11/03 ...$10.00.

tions. Moreover, working on thread-level makes the program
difficult to debug and error prone. Based on these observa-
tions, Welch proposed the Java CSP (JCSP) [9] framework,
which adopts CSP constructs to create concurrent Java pro-
grams. JCSP’s programmers do not rely on threads or con-
currency patterns like future and oneway [3]. Welch claims
that JCSP loses some ultra-low process management over-
heads but wines the model for a mainstream programming
language. Unfortunately, concurrency features and sequen-
tial processes are still tangled in JCSP programs.

One might see the JCSP concurrency constructs that span
multiple sequential modules as a crosscutting concern. Ex-
ploring the methodology introduced by aspect-oriented pro-
gramming (AOP), we could introduce a new unit of modu-
larization by implementing the JCSP concurrency features
as an aspect from AOP. An aspect weaver, which is a compiler-
like entity, would automatically instrument the sequential
code with concurrency aspects to compose the final sys-
tem. In this paper, we explore these ideas to propose a new
concurrency programming style for Java programs, named
Aspect-Oriented JCSP - AJCSP. We essentially annotate se-
quential Java programs with concurrency specifications us-
ing a CSP-like syntax. We created a compiler to translate
such annotations into an AspectJ code, which is responsible
for instrument a sequential Java program with JCSP code.

This paper also presents quantitative assessments of three
systems implemented in three different versions: AJCSP,
JCSP, and Java threads. Our study was based on well-
known software engineering attributes such as separation of
concerns, coupling, and size. We have found that our aspect-
oriented solution with AJCSP improved the separation of
concurrency concern. In addition, we have observed that
the use of AJCSP: (i) decreased the coupling between the
concurrent and the sequential code; (ii) can help to decrease
code scattering, improving the modularity; (iii) is useful to
remove tangling of concurrency concern, enhancing program
readability, and (iv) reduced the number of attributes, op-
erations, and lines of code in a particular system due to the
“aspectization” of concurrency.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the existing framework to implement concur-
rency control. Section 3 presents our approach to implement
JCSP features using AOP. Section 4 presents a quantita-

Producer = |∼| data: {1..100} @ ch!data -> Producer
Consumer = ch?x -> print!x -> Consumer
Program = Producer || Consumer

Figure 1: Producer and consumer in CSP.

tively assessment of the impact of our AJCSP approach in
a case study involving two systems. Also, study results in
terms of separation of concerns, coupling, and size attributes
are presented. Finally, Section 5 includes some concluding
remarks and directions for future work.

2. JAVA CSP
JCSP [9] is a Java library developed by Professors Pe-

ter Welch and Paul Austin from the Univesity of Kent at
Canterbury. It is based on the formal specification lan-
guage CSP [7, 4] created by Tony Hoare in 1975 and up-
dated by Bill Roscoe in 1998, serving as an implementation
medium for this language. CSP basic elements are events,
processes and operators on events and processes. Processes
are behavioral units that exchange data using the message
passing model of communication instead of the more tradi-
tional shared memory model supported directly in Java as
discussed in Section 2.1.

Since JCSP is an object-oriented language, it encapsu-
lates the implementation details necessary to support the
elements of CSP, in terms of an API which provides concepts
as channels, processes and operators. Thus, the translation
from CSP to JCSP is almost direct except for the treat-
ment of recursion and some CSP capabilities not supported
by the library; for instance, multiway-rendezvous (multiple
synchronization).

A key factor of using the combination between CSP and
JCSP is that one can model a system using CSP, analyze its
main properties, such as deadlock, livelock and determinism
via the CSP model checker FDR [4], and after being satisfied
with the model, translate it in terms of JCSP. This allows an
almost guaranteed implementation in terms of the previous
checked properties.

In what follows, we provide a brief overview about JCSP
using a simple example written in CSP as well as in JCSP.
With this, we expect the reader can see that the translation
is almost direct.

The example shown in Figure 1 is a classical producer-
consumer program written in CSP. This example illustrates
a synchronized parallelism between two processes. The Pro-
ducer process is responsible for generating a random values
from 1 to 100 and then outputting this value through the
channel ch. The Consumer process waits for the random
value using an input communication via channel ch. After
receiving this value, the process sends it to its environment
via channel print.

Figure 2 presents the CSP (Figure 1) counterpart in JCSP.
As observed, JCSP processes are plain Java classes which
implement the interface org.jcsp.lang.CSProcess, where
the method run is mandatory. The channel field ch (line 3)
is used for outputting values (this is denoted by the keyword
ChannelOutput). The method produce captures the CSP
construct |∼| data: 1..100 @ as a function which returns a
random value from 1 to 100. As mentioned, the method
run is mandatory. It represents the concurrent behavior of a
particular class. In this case, it represents the CSP recursion

by an infinite loop, whose behavior is basically sending the
result of the method produce using the output channel ch.

Similarly to the Producer, the Consumer (lines 12 to 22)
class implements the interface org.jcsp.lang.CSProcess

and provides a method run to be implemented. The ch

attribute is used to input values. Thus, this process starting
reading a value available in the ch channel and store it in
another field named data. The method print captures the
CSP construct print!x which sends the value bound to x

to its environment via channel print. It also represents the
CSP recursion by an infinite loop, where its behavior is to
print values received from channel ch.

The final element of our JCSP version is the main be-
havior. It is also given by a Java class but now it does
not implement interface CSProcess. It captures the par-
allelism between processes Producer and Consumer. As
the class Program simply links the previous processes, we
use a channel typed One2OneChannel. After that, we cre-
ate instances of processes Producer and Consumer and use
these instances to create a group of independent (parallel)
processes. To execute the elements inside this group, the
method run is called [9]. The result of Program is an in-
finite sequence of random based communications between
Producer and Consumer.

3. ASPECT-ORIENTED JCSP - AJCSP
In this section we describe AJCSP programming style as

well as some important points connected to the compiler
implementation.

3.1 The AJCSP Programming Style
In AJCSP, the concurrency annotations are inserted in-

side Java comments. It uses a Java single line comment (//)
followed by the symbol @# to indicate that the line con-
tains AJCSP annotations. We call such annotations class

prefix. Since they are Java comments, AJCSP annotations
are ignored if the conventional Java compiler is used. In this
case, the compiler generates a sequential Java program.

AJCSP processes are Java classes. Such processes are
composed through AJCSP constructs to define a concurrent
Java program.

3.2 An Example: Producer-Consumer
In Section 2.2, we illustrated the implementation of a

producer-consumer concurrent problem using JCSP. This
section describes an AJSCP version of the same problem.

Classes Producer and Consumer in Figure 3 are pure Java
classes. No JCSP code is used to implement these classes.
The AJCSP annotations are employed to specify the con-
current behavior processes instantiated from such classes.
The reader may compare them with the classes in Figure 2.
Notice that the latter classes implements the JSCP inter-
face CSProcess. Moreover, CSP constructs are mixed with
the Java code used to implement the behavior of processes
Producer and Consumer.

In Figure 3 (line 2), the method produce is invoked and re-
turn a value of type Object, which is stored in variable data.
Afterwards, the process Producer writes the data value in
the channel ch. At this moment, Producer is blocked un-
til another process (Consumer) reads the value sent through
channel ch. Then, Producer is recursively invoked. On the
other hand, process Consumer reads the channel ch and waits
until another process (Producer) writes in the channel ch.

1 public class Producer

2 implements CSProcess {

3 private ChannelOutput ch;

4 public Object produce(){ ...}

5 public void run() {

6 while (true) {

7 Object data = produce();

8 ch.write(data);

9 }

10 }

11 }

12 public class Consumer

13 implements CSProcess {

14 private ChannelInput ch;

15 public void print(Object){ ...}

16 public void run() {

17 while (true) {

18 Object data = ch.read();

19 print(data);

20 }

21 }

22 }

23 public class Program {
24 public void main () {

25 One2OneChannel ch;

26 ch = Channel.one2one();

27 Producer prod;

28 prod = new Producer(ch.out());

29 Consumer cons;

30 cons = new Consumer(ch.in());

31 Parallel parallel = new Parallel();

32 parallel.addProcess(prod);

33 parallel.addProcess(cons);

34 parallel.run();

35 }
36 }

Figure 2: Producer and Consumer classes implemented with JCSP.

1 //@# var data

2 //@# data = produce() -> ch!data -> Producer

3 public class Producer {
4 public Object produce () { . . . }
5 }

6 //@# var data

7 //@# ch?data -> print(data) -> Consumer

8 public class Consumer {
9 public void p r in t (Object data) { . . . }
10 }

11 //@# Producer[||] Consumer

12 public class Program {
13 public static void main (S t r i ng [] args){

14 (new Program ()) . run() ;

15 }
16 }

Figure 3: The Producer/Consumer implementation
using AJCSP approach.

Consumer then prints that value and is recursively called.
The Program class (see line 12 in Figure 3) represents the

starting point of the Producer-Consumer application, we de-
fine the parallel composition of the Producer and Consumer

objects (processes) (see line 11 in Figure 3).

4. CASE STUDY
In this section, we present a case study conducted to eval-

uate the benefits and limitations of AJCSP when compared
against JCSP and Java threads.

4.1 Study Settings
In this subsection, we describe the configuration of our

case study. In particular, we discuss the goals and the re-
search questions we intend to investigate. Finally, we discuss
the metrics suite employed in our study as well as our as-
sessment procedures.

4.1.1 Goal
The main goal of the case study is to assess whether

AJCSP contributes to produce concurrent code of higher

quality, when compared against JCSP and Java threads. No-
tice that such assessment is based on modularity. Hence, we
are concerned about issues like: (i) scattering of concurrency
concern; (ii) tangling between the concurrency concern and
the sequential program.

4.1.2 Research Questions
We investigate seven research questions in the case study.

Which approach contributes to decrease: (RQ1) scattering
of the concurrency concern?; (RQ2) tangling between the
concurrency concern and the sequential (business) code?;
(RQ3) the number of components?; (RQ4) coupling between
components?; (RQ5) the lines of code in components?; (RQ6)
the lines of code in components?, and (RQ7) the number of
attributes and operations in components?

4.1.3 Metrics Suite
In order to answer the research questions, we selected a

metrics suite proposed in [8, 2, 6] to evaluate separation
of concerns, coupling, and code size. These metrics were
adapted form classic OO metrics [1] to be applied to the
AOP paradigm.

Lower values for a given metrics implies better results, for
instance the two versions of scattering metrics (DOSC and
DOSM) varies from 0 (completely localized) to 1 (completely
delocalized, present in all components). The degree of scat-
tering (DOS) metrics (DOSC and DOSM) metric created by
Eaddy, Aho, and Murphy [6] not only considers which ele-
ments are involved in the implementation of a concern, but
also how the code is distributed among those elements.

Separation of Concerns (SoC) metrics measure the degree
to which a single concern (concurrency control in our study)
affects the system. The coupling metric CBC indicates the
degree of dependency between components. Excessive cou-
pling is not desirable, since it is detrimental to modular de-
sign. Size metrics are important to evaluate the complexity
of the final system. For further details about SoC, CBC,
and size metrics, refer to [1, 8].

4.1.4 Assessment Procedures
We implemented three versions (using AJCSP, JCSP, and

Java threads) of three different applications: Producer and
Consumer (ProdCons), bingo game (Bingo), and Alarm-

Table 1: Separation of Concerns Metrics Results.
System Version CDC CDO LOCC DOSC DOSM DOTC

Threads 4 8 55 0.86 0.92 0.66

ProdCons JCSP 3 6 44 0.99 0.93 0.41

AJCSP 3 0 6 1 0 0.8

Threads 4 10 21 0.95 0.88 0.42

Bingo JCSP 3 7 50 0.97 0.85 0.61

AJCSP 3 0 6 0.97 0 0.21

Threads 4 5 36 0.85 0.83 0.59

AlarmClock JCSP 4 4 64 0.86 0.75 0.65

AJCSP 4 0 8 0.89 0 0.27

Clock [5]. We implemented the same functionalities for each
version of the applications. This is important to perform a
fair comparison.

In the measurement process, the data was partially gath-
ered by the AJATO measurement tool 1. It supports some
metrics: LOC, NOA, NOO. Additionally, we used the AOP
metrics tool 2 to collect CBC and VS. Eventually, we col-
lected the SoC metrics (CDC, CDO, LOCC, DOSC, DOSM,
and DOTC) [8, 6] manually.

4.2 Study Results
This subsection presents the results of the measurement

process. The data have been collected based on the set of
defined metrics. The presentation is organized in two parts.
First, we describe the results for the separation of concerns
metrics. Then, we present the results for the size and cou-
pling metrics.

4.2.1 Separation of Concerns Measures
Table 1 shows the results for the SoC metrics. The AJCSP

versions of the target systems performed better than the
other two versions. The application of the SoC metrics was
useful to quantify how effective was the separation of the
concurrency control concern in the target systems.

The DOSC metric is used to quantify exactly the degree
of how scattered the concurrency concern is in each version
of the target systems. After measurement, we realized that
the AJCSP version presented the worst results in imple-
menting the concurrency control by its components. This
is due to the annotative approach imposed by AJCSP. In
other words, by using AJCSP, we still have the scattering
effect of the crosscutting concern concurrency. Even though,
the AJCSP presents the worst results related to DOSC, we
can see that the other two versions presented similar high
degree of scattering across components (e.g., classes). As
discussed, to complement the DOSC metric, and to know in
how many components the concurrency concern is scattered,
we decided to also employ the CDC metric. This way, the
measure of CDC presented similar results for the three ana-
lyzed versions. By considering the VS metric from Table 2,
we can observe (using the CDC metric) that the concurrency
concern crosscuts almost the components of the target sys-
tems in all versions. Thus, we can conclude that none of
three versions of the target systems provides a total separa-
tion of concern regarding scattering across classes.

Since all versions (by using both DOSC and CDC met-
rics) demonstrated to be too scattered in relation to their
components, we decided to analyze the scattering in a more

1http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/
2http://aopmetrics.tigris.org/

fine grained way. Thus, we employed the DOSM metric to
measure the degree of how scattered the concurrency con-
cern is in relation to all operations in the target systems. We
observed that except our approach, the other two (threads
and JCSP) presented higher DOSM. However, since the two
counterparts still have similar DOSM, we also employed the
CDO metric to complement DOSM. Hence, we can observe
that the JCSP approach is better, against Java threads, due
to less operations to change in a eventual evolution scenario.
Therefore, we can conclude that AJCSP is a superior solu-
tion for both CDO and DOSM metrics. In fact, the AJCSP
implementation presents 0 for both CDO and DOSM. This
divergence is a direct consequence of the strategy we adopted
for annotating the concurrency behavior in classes. Since we
put all annotations before a class definition, we decouple the
methods (operations) from the concurrency concern code.
As a result, we have a more legible code which implements
only the business concern. By considering the four metrics
(mainly DOSM and CDO) for scattering measurement, the
AJCSP approach is the answer for the first research ques-
tion (RQ1). The fined grained scattering metrics (DOSM
and CDO) were essential to find the real benefits of AJCSP
in relation to its counterparts in JCSP and threads.

Code tangling is another symptom of non-modularization
of a particular concern. Code tangling is caused when a com-
ponent handles multiple concerns simultaneously. Hence,
to measure the degree of tangling of the concerns (concur-
rency and business) implemented by the three versions of
the target systems, we employed the DOTC metric. The
AJCSP approach showed to be less tangled when compared
to the other approaches (JCSP and threads) in the Bingo
and AlarmClock systems.

The measure of lines of code (LOC metric in Table 2) of
the ProdCons system is reduced in 70% in relation to the
other ones (which are 27% and 23% for Bingo and Alarm-
Clock, respectively). Since the tangling degree is inversely
proportional to a system size, and since the LOC of the
ProdCons was quite reduced; this justifies the higher tan-
gling of the AJCSP version presented in the ProdCons sys-
tem. Thus, the greater the lines of code of a system is, the
lower degree of tangling it is. Therefore, this answer the sec-
ond research question (RQ2). Proportionally, we can argue
that our approach is less tangling since the use of AJCSP
reduces too much the LOC of the application.

Finally, regarding LOCC (Lines of Concern Code) metric,
we can observe that since AJCSP concentrates the concur-
rency concern implementation into a single place, it requires
less lines of concern code to implement such a concern in
contrast to the other approaches. This properly answer the
third research question (RQ3).

Table 2: Size and Coupling Metrics Results.
System Version LOC NOA NOO VS CBC

Threads 74 4 11 4 5

ProdCons JCSP 52 2 9 3 7

AJCSP 22 0 5 3 0

Threads 190 10 26 5 7

Bingo JCSP 174 14 23 4 11

AJCSP 138 6 20 4 3

Threads 177 11 21 6 8

AlarmClock JCSP 200 16 24 6 15

AJCSP 154 9 22 4 3

4.2.2 Size and Coupling Measures
We have also analyzed how the AJCSP implementation

version has impacted positively or negatively on the size and
coupling measures in comparison with its counterparts in
Thread and JCSP. Table 2 presents the results for these met-
rics for both AJCSP and refactored system versions. The
use of the annotative approach of AJCSP led to a reduc-
tion of all size metrics (Table 2). For example, in the Bingo
system, the LOC metric for the AJCSP version showed to
be 27% and 20% lower than its counterparts in Thread and
JCSP. Moreover, AJCSP version of Bingo system showed
less NOA (40% and 57%, respectively) than Thread and
JCSP versions. Note that we had similar results for the
ProdCons and AlarmClock systems. (This answer the re-
search questions RQ5 to RQ7.)

The AJCSP solution in Bingo system was superior to its
counterpart solutions in terms of coupling. The coupling
(CBC) in the AJCSP implementation was 57% and 73%
lower than Thread and JCSP, respectively. The coupling
was too lower in AJCSP when compared to JCSP because
the code of later is completely dependent of the JCSP API.
Since we abstract the use of such API, we provided a signifi-
cant reduction in the coupling metric. This is one indicative
that our approach provides a more reusable code against
the standard manner. Similar results can be observed in
Table 2 for the ProdCons and AlarmClock systems. (This
answer the research question RQ4.)

5. CONCLUDING REMARKS
In this paper, we have presented a novel concurrency pro-

gramming style for Java programs, known as Aspect-Oriented
JCSP—AJCSP. This new style uses JCSP features to add
concurrency behavior. JCSP is a framework that imple-
ments CSP features in Java language. By using JCSP one
can abstract the use of Java threads, whereas the main rea-
son to use AJCSP is to abstract the use of JCSP framework
as a whole. With AJCSP, a programmer writes special anno-
tations in the sequential Java code. Such annotations are a
CSP-like syntax. We use a compiler that translates AJCSP
annotations into AspectJ aspects with JCSP code. Such as-
pects are responsible for adding the concurrency behavior in
a implicitly way.

As future work, we intend to use programming laws to for-
malize the translation strategy and to ensure the soundness
of our approach. Currently, we are also conducting more
case studies, with different sizes and complexity, to evaluate
qualitatively and quantitatively the AJCSP approach. Also,
with an in-depth study, we can investigate in more details
the drawbacks that our approach can have.

We believe that the usage of aspects to implement con-

currency concern with JCSP introduces a new level of mod-
ularity. In other words, our approach is not invasive (the
Java source code is not tangled and scattered with the JCSP
concurrency code). This gives more flexibility to maintain
the source code. To better explain the impacts of AJCSP
approach, we have conducted a case study on three Java pro-
grams. One of them extracted from an open source repos-
itory [5]. We implemented those systems in three different
ways: AJCSP, JCSP, and Java threads. We used metrics
such as separation of concern, coupling, and size to evaluate
our claims about modularity in concurrent JCSP programs.
The results provided evidences that AJCSP may improve
modularity of concurrent systems. Eventually, due to the
simplicity of our approach, we can argue that the mainte-
nance effort is minimized when using AJCSP approach.

6. REFERENCES
[1] S. R. Chidamber and C. F. Kemerer. A metrics suite

for object oriented design. IEEE Trans. Softw. Eng.,
20:476–493, June 1994.

[2] A. Garcia et al. Modularizing Design Patterns with
Aspects: A Quantitative Study. In Proceedings of the
4th AOSD (AOSD’05), March 2005.

[3] B. Goetz et al. Java Concurrency in Practice.
Addison-Wesley, Upper Saddle River, NJ, 2006.

[4] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[5] S. Khurshid et al. Software-artifact infrastructure
repository. http://sir.unl.edu/content/sir.html.

[6] M. E. others. Do crosscutting concerns cause defects?
IEEE TSE, 2008.

[7] A. W. Roscoe et al. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[8] C. Sant’anna et al. On the reuse and maintenance of
aspect-oriented software: An assessment framework. In
Proceedings XVII SBES.

[9] P. Welch. Jcsp: Communicating sequential processes for
java., February 2006.
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

A. Online Appendix
We invite researchers to replicate our study. Source code for
the subject programs and their implementation versions in
both JCSP and AJCSP, our AJCSP compiler, and our re-
sults are available at http://cin.ufpe.br/~jeqca/miss11.

