Does Aspect] Provide Modularity when Implementing Features with Flexible
Binding Times?

Maircio Ribeiro, Rodrigo Cardoso, Paulo Borba, Rodrigo Bonifacio, Henrique Rebélo
Informatics Center
Federal University of Pernambuco
Recife, Brazil
{mmr3, rcaa2, phmb, rba2, hemr}@cin.ufpe.br

Abstract—Dynamic configuration has been receiving in-
creased attention in the Software Product Lines community,
which means that features with different binding times are
becoming important and required. Although aspects have been
considered to implement product lines features, some study
must be done in order to evaluate whether aspects are also
suitable for implementing features with flexible binding times,
such as dynamic and static. Thus, this paper presents an
exploratory study that investigates whether the most popular
AOP language (Aspect]) provides modularity in the flexible
binding time context. The results suggest that it depends on
the features peculiarities like size and heterogeneity.

Keywords-Aspect], Binding times, Software Product Lines

I. INTRODUCTION

Dynamic configuration has been receiving increased at-
tention in the Software Product Lines community [1]. Gen-
erating products with different binding times is important
for several reasons. Products for devices with constrained
resources may use static binding time instead of dynamic
due to the performance overhead introduced by the latter.
Also, a company may want to construct products to deal
with client’s needs. For example, a thermometer of Brazilian
residences should use the Celsius scale. For American resi-
dences, the Fahrenheit scale should be used instead. In both
cases, the feature scale is selected earlier, e.g., statically.
There is no way to change it. However, such thermometer
should provide both scales for hotels because of the foreign
people supposed to use it. In this situation, the hotel guest
should be able to change the current scale at any time, e.g.,
dynamically.

Many computing environments provide mechanisms of
software and hardware to provide information to enable/dis-
able a feature dynamically. These mechanisms (called “feed-
ers” in this paper) vary from GUIs that ask the user if he/she
wants to enable/disable the feature to more complex ones
like sensors that decide by themselves.

In this context, maintaining many different features, bind-
ing times, and feeders may be a challenge task for the
product lines designers. Previous work [2], [3] showed that
aspects are useful for implementing product lines features,
but they still lack on analyzing if aspects are also suitable for

dealing with features with different binding times. Although
an aspect-based technique supposed to implement flexible
binding times in a modular and convenient way [4] was
introduced, we found some problems with respect to mod-
ularity, leading us to ask if aspects provide binding times
flexibility without compromising the features modularity.

In this way, this paper reports an exploratory study
that investigates whether the most popular AOP language
(Aspect]) provides modularity when implementing features
with flexible binding times. By modularity, we mean it is
easy to maintain products with different binding times and
feeders and there is no code duplication.

To assess the modularity provided by Aspect], we con-
ducted the study by implementing features with flexible
binding times in two product lines. For each implementation,
we discuss the advantages and disadvantages aiming to
answer the question of this paper. We started with a simple
product line. Some problems were found, but after refactor-
ing the code, they seemed to be solved. The same did not
happen for a real product line, so that our results suggest that
the answer depends on the features peculiarities, such as size
and heterogeneity. Answering the question represents the
contribution of the paper, being useful to guide developers
towards using Aspect] or not in the flexible binding time
context.

The rest of the paper is structured as follows. Section II
presents the toy product line used to initiate our study.
Because the binding time problems seemed to be solved
in the toy example, we decided to analyze the binding time
implementations in a real product line (Section III). Next,
Section IV presents the related work. Last but not least,
Section V tries to answer the question of the paper and
concludes it.

II. TOY EXAMPLE

We begin our work focusing on the question of this
paper: does Aspect] provide modularity when implementing
features with flexible binding times? In order to investigate
this, we have implemented features with different binding
times using Aspect] to assess their modularity. The first

feature was extracted from a toy example, a Tetris J2ME
game!.

The feature analyzed consists of a next piece box. Such
a box is responsible for showing the next piece that is
supposed to be dropped into the game. Because this feature
is optional, it is possible to generate games with/without the
box. However, since we are concerned about binding times,
it is important to note that we can generate three products:
(1) without the next piece box; (ii) with the next piece box
with no possibility to disable it; and (iii) with the next piece
box with the possibility to enable/disable it. Notice that the
binding time of (ii) is static, whereas (iii) is dynamic (see
Figures 1(a) and 1(b)).

(a) Static next piece box.

—
F

Submil
(b) Dynamic next piece box.
Figure 1. Two products of the Tetris game: specific binding times for the
feature.

After presenting the next piece box, we now explore two
implementations of this feature using Aspect]. Each imple-

1
2
3
4
5
6
7

8
9

mentation deals with the different binding times presented. :(1)
The first one is simple but has some problems. The second |,

one provides a more elegant design, solving the problems}3

of the first implementation.

A. Edicts

The next piece box feature consists of one class (Next- }S
PieceBox) and three code snippets within the TetrisCanvas?29
class. Thus, we extracted its code from the TetrisCanvasy,
class to edicts. Edicts is a technique to implement binding %Z

time flexibility of features in a modular and convenient
way [4]. Edicts make possible to choose between static

Uhttp://kiang.org/jordan/software/tetrismidlet/

and dynamic binding times by using design patterns and
aspects. Patterns® encapsulate the variation points whereas
edicts (aspects) set the binding times of the features.

Using this approach, one aspect is responsible for the
static binding time, whereas the other one implements the
dynamic binding time. Games without the next piece box
feature should not include neither the NextPieceBox class nor
any aspect. The dynamic aspect also implements the feeder.
In this paper, we consider a feeder as a mechanism (or a
set of mechanisms) responsible for providing information
whether the feature should be enabled or not at runtime.
Examples of feeders are screens plus user input, configu-
ration files, sensors, and so forth. In the tetris context, our
feeder is a screen plus the user input, because depending on
the user choice, the next piece box is displayed or not.

Listing 1 shows the DynamicNextPieceBox aspect. This
aspect implements not only the next piece box code (Lines
4 to 22), but also the feeder (Lines 24 to 30), which consists
of a screen displayed as soon as the game starts. The screen
asks the user if he/she wants to enable the next piece box
feature. If the answer is “Yes”, the next piece box code
within the aspect must be executed. Otherwise, it must not.

We found some problems with this implementation. The
first one is the if statements scattered throughout the aspect.
For this particular example, three if statements might not
be a problem. But when considering larger features with
many advices, this scattering starts to be harmful. Notice
that all advices must be encompassed by an if statement. If
not, problems may occur. For example, if we remove the if
statement of Lines 12 and 19 and the user does not enable
the feature, the nextPieceBox attribute (Line 2) will be null
and a NullPointerException would happen in the advices of
Lines 10 and 18.

Listing 1. Next piece box with the dynamic binding time

public privileged aspect DynamicNextPieceBox {
private NextPieceBox nextPieceBox;

after (TetrisCanvas canvas):
if (getUserChoice()) {
nextPieceBox = new NextPieceBox (...);
}
}

after (Graphics g, TetrisCanvas canvas):
infoBoxes (g, canvas) {
if (getUserChoice()) {
nextPieceBox.setPieceType (
canvas.game. getNextPieceType ());

nextPiece (canvas) {

}
}

after (Graphics g): paintOnce(g) {
if (getUserChoice()) {
nextPieceBox.paint(g);
}

}

before (Command command, TetrisMidlet midlet):

2Edicts work does not claim that patterns are sufficient or necessary to
implement all variation points in product lines. In this way, they claim that
it is not mandatory to use edicts with patterns.

Nele BN e R N S

commandAction (command, midlet) {

if (command submitUserChoice) {
userChoice = nextPieceList. getString (
nextPieceList.getSelectedIndex ()); .

}

private boolean getUserChoice () {
return userChoice.equals(”Yes”);

}
}

According to the Edicts technique, a new aspect Static-
NextPieceBox should be created for the static binding time.
As the feature is now statically defined, we removed the
feeder code as well as the if statements because they do
not make sense for the static binding time. Nevertheless,
the next piece box code is duplicated in both aspects,
DynamicNextPieceBox and StaticNextPieceBox, resulting in
a more serious problem since code maintenance becomes !
time consuming and error-prone. }

Such a duplication problem gets worse if we must gener-
ate products that use other feeders. For example, suppose
that a player is going to lose a game. Dynamically, the
system could identify this situation and activate the next
piece box feature aiming to help the player. This feeder looks
like a sensor and has a completely different implementation
when compared to the screen plus user input. Thus, another
aspect must be created for the dynamic binding time using
another feeder, duplicating even more the code.

B. Aspect Inheritance

Because the Edicts implementation did not result in a
good design, we started to reason about a programming
language construct able to provide us code reuse aiming
to remove the scattering/duplication aforementioned. In this
way, our second implementation relies on aspect inheritance
through the abstract pointcuts definition.

Listing 2 shows the NextPieceBox abstract aspect. This
aspect is responsible for implementing the next piece box
feature and defining the abstract pointcut feeder (Line 2).
The feeder pointcut is composed with the existing other
pointcuts (Lines 4, 7, and 10), so that they will only be
accomplished depending on the feeder pointcut. Again, we
have scattering, specially when the aspect has many other
pointcuts.

Listing 2. Abstract feeder and the next piece box feature

public privileged abstract aspect NextPieceBox {
abstract pointcut feeder();

pointcut nextPiece (TetrisCanvas canvas):
. && feeder ();

pointcut infoBoxes(Graphics g,
. && feeder ();

TetrisCanvas canvas):

pointcut paintOnce (Graphics g, TetrisCanvas canvas):

. && feeder ();

// The same three advices of Listing 1.
// However, there is no if statements here.

1
2
3
4
5
6
7
8
9
0
1

2

Now, we have to define the concrete feeders. Listing 3
shows two aspects responsible for this task. The Dynamic-
NextPieceBox aspect implements the feeder code (the same
screen of the Edicts implementation) and makes the feeder
pointcut concrete, which returns true if the user wants to
enable the feature. The StaticNextPieceBox aspect does not
need to implement any feeder. It just assigns the feeder to
be always true.

isfine 3 . . i ; .

public privileged aspect DynamicNextPieceBox
extends NextPiece {

pointcut feeder () if (userChoice.equals(”Yes”));
// Feeder code...

public privileged aspect StaticNextPieceBox
extends NextPiece {

pointcut feeder () if (true);

}

By analyzing this implementation, we concluded that the
most serious problem (code duplication) was solved: the next
piece box code is not duplicated. In addition, new feeders
just need to extend the NextPieceBox aspect and define the
concrete feeder. Nevertheless, the StaticNextPieceBox aspect
only exists to define something that makes no sense: the
static binding time does not need any feeder.

Although this implementation improved the flexible bind-
ing time design, we decided to go deeper in such analysis.
We believed that a small feature like the next piece box could
hide some problems likely to occur in real systems. Thus,
we extracted two features from a real system to aspects to
analyze if the binding time flexibility remains.

III. REAL EXAMPLE

In this section, we present two features we extracted from
a real system named Freemind [5]. Freemind is an open
source system used to construct mind maps. Mind maps
are diagrams used to organize, structure, and classify ideas,
being useful for brainstorm sections, making decisions,
studies etc. Figure 2 illustrates a mind map in Freemind.
It organizes the upcoming AOP events and their respective
location and deadline for submitting papers. As showed in
Figure 2, the map nodes may contain icons and clouds. For
example, we used a cloud in the LA-WASP 2009 deadline
to alert us it is coming up. Icons and clouds represent the
features we extracted in this work.

Both features are crosscutting and scattered throughout
the layers of the architecture. For example, when clicking
on the buttons highlighted in Figure 2, the system must
add/remove icons and clouds to/from the selected node in the
map. Moreover, the information about the icons and clouds
are saved in the file that represent the map. When loading
this file, the system displays the correct icons/clouds in the
correct nodes of the map. Besides these basic functionalities,
both features are related to other concerns like “Exporting

Upcoming AOP Conferences.mm - FreeMind - MindMap Mode

Yes!V Send a paper? ?

—~(AOP Conferences -

= [100% M| DmEd « £ DBIQ i b =¢" SansSeri
Venue: Fortaleza, Brazil ﬁr
) @Venue; Rennes and 5aint-Male, France
Deadline: July, 13th @ DLA-WASP 2009 o A0sD 2010 | @ Deadline: October, 9th

2 Send a paper? ? Maybe

Figure 2. Mind map constructed in Freemind.

icons to html”, being possible to export the map to HTML
gathering its icons.

Thereby, to modularize the feature using AOP, it seems
to be sound to create some aspects instead of only one.
For instance, one aspect may contain icons/clouds GUI
code whereas another is responsible for adding/remove them
to/from the map. In summary, each aspect would be respon-
sible for a concern of the features. For modularity reasons,
we used this approach instead of creating a huge aspect to
modularize the whole feature.

After studying the code of both features, we started to
extract them to aspects. Since the features are heterogeneous
and fine-grained, we found the same problems reported
in [6]. For example, 21 hook methods were created to expose
some join points and local variables, decreasing the design
of some classes. Further, the known fragile pointcuts [7]
problem has raised as well. Table I shows some numbers of
each feature. Together, they represent 5.7% of the Freemind
total LOC.

Icons Clouds
Hook methods 9 12
Affected classes 23 12
Classes 17 16
Aspects 8 6

Lines of Code (LOC) 2359 (3,1%) 2035 (2,6%)

Table I
SOME STATISTICS OF THE FREEMIND FEATURES.

As mentioned, we decided to implement both features
using more than one aspect. To implement them with binding
time flexibility, we decided to use the Aspect Inheritance
approach because of the code reuse provided. However, we
observed that this design does not scale. Because there is!

0NN W=

9
0

; o o 11
more than one aspect implementing icons/clouds, it is not

possible to use inheritance, since Aspect] does not pro-
vide multiple inheritance. Nevertheless, one may implement
the inheritance of Listings 2 and 3 for just one aspect.
In the dynamic subaspect, say Dynamiclcons, he/she may
implement the feeder and create a method getUserChoice,
which is called by the other aspects through the aspectOf

method to know if the feature should be executed in those
aspects. However, this solution is not suitable, because the
scattering problem arises again in those aspects - if (Dy-
namiclcons.aspectOf{).getUserChoice()), and feature’s code
are duplicated in both static (without the if statement) and
dynamic aspects, like in the Edicts design.

Therefore, we discarded this implementation and another
one was taken into consideration. This new implementation
relies on the adviceexecution pointcut (Listing 4). This
solution seems to be suitable because there is no code
duplication and the if statements are not scattered: the task
of verifying the feeder is localized in this aspect, which
matches all advices of aspects within the freemind.icons
package. This solution may work for small features that
use just before and after advices, but may not for bigger
ones. Because the features icons/clouds are implemented
using around advices that return not only void but also other
objects types, when the userChoice is different of “Yes”, this
advice returns null, causing a NullPointerException in those
icons/clouds advices. One may ask if we can use void instead
of Object to remove the return null statement. Unfortunately,
the around advices of icons/clouds do not compile because
some of them do not use void but rather other object types.
Problems related to the safety of the Aspect] type system
are discussed in more detail elsewhere [8].

Listi i . .
Object around (): adviceexecution ()

&& within (freemind.icons.x)

&& !within (AdvExecAspect){

if (userChoice.equals(”Yes”)) {
return proceed();

}

return null;

// Feeder code...

IV. RELATED WORK

Besides Edicts, we point out other related work. The first
one [9] considers conditional compilation as a technique to
implement flexible binding times in real systems such as
operating systems. Just like our work, the developer would

—_ =

— OO0 XTI N RN =

decide if the feature must be present in the product as well as
its binding time (see the example below). The work claims
that conditional compilation is not very elegant and for more
complex variation points, the situation becomes even worse.

//#if NEXT_PIECE_BOX
//#if STATIC

//# nextPieceBox = new NextPieceBox(...);
//#else
//# if (getUserChoice()) {
//# nextPieceBox = new NextPieceBox(...);
/7%)
//#endif

//#endif

Caesar] [10] provides a mechanism to deploy aspects
dynamically. If the aspect has the deployed reserved word in
its signature, the aspect is statically deployed. Otherwise, it
must be instantiated and deployed to starts working. There-
fore, for dynamic features, the aspect that implements the
feeder (DynamicNextPieceBox, Listing 5) should have the
deployed word whereas the aspect responsible for the feature
code (NextPieceBox) is deployed as long as the userChoice
is “Yes”. However, for products with static binding time, it
is necessary to put the deployed word in the NextPieceBox
aspect. For features that require many aspects, such task is
error-prone, so that we need an additional technique like
conditional compilation to insert/remove such a word.

Listing 5. Deployment mechanism of Caesar]

public cclass NextPieceBox {
}
public deployed cclass DynamicNextPieceBox {

if (userChoice.equals(”Yes”)) {
deploy new NextPieceBox ();

What the next related work [11] claims is that the actual
Aspect]-like languages do not provide a mechanism to con-
trol the aspects scope dynamically. In other words, restricting
the join points that an aspect should act is achieved not
elegantly: conditions to the pointcut definitions should be
introduced, sacrificing the reuse potential of aspects, as we
showed. Filtering some join points dynamically could be
useful because one may want to disable part of a feature (a
subfeature, for example), which means that only a part of
the aspect should execute. The work proposes a model for
restricting aspects scoping dynamically and we intend to use
it as future work.

V. CONCLUDING REMARKS

This paper presented a study to assess whether Aspect]
provides modularity when implementing features with flex-
ible binding times. According to our study, if Aspect] is
applied in small features with few heterogeneity so that
around advices are not required, the answer may be yes. For
features implemented using just the before and after advices,

the adviceexecution pointcut is useful for avoiding scattering
of the if statement. Besides, this approach does not produce
code duplication, even when adding new feeders.

However, if Aspect] should be used in big (requiring
many aspects) and fine-grained features with a high degree
of heterogeneity, our implementations lead us to answer
no. The Edicts implementation duplicates code, meaning
that it does not provide modularity at all. The Aspect
Inheritance approach does not work properly with more than
one aspect and the adviceexecution approach does not work
when around advices are used to implement the features
(and they really are, see Berkeley DB [6]). We believe
that the problems get worse when implementing different
features types like alternative (XOR) and OR and intertype
declarations of methods are necessary. In this case, the
developer must guarantee that calls to these methods (which
might be inside or outside the aspect) are encompassed by
the feeder to avoid runtime crashes.

In this paper, we provided some evidences supporting
the use of Aspect] and others not supporting it. We have
to analyze in deep other feature types and other Aspect]
idioms like intertypes and declare parents to improve our
assessment and consequently the answer to the paper’s
question. We intend to address these situations as future
work.

It is important to note that our focus in this paper was only
on Aspect]. Although another mechanisms like program
transformations could easily add the if statements of the
feeders, we did not address such implementations in this
paper. Comparing mechanisms for implementing features
with flexible binding times should be considered as more
future work.

ACKNOWLEDGMENT

We would like to thank CNPq, a Brazilian research fund-
ing agency, and National Institute of Science and Technology
for Software Engineering (INES), funded by CNPq and
FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, for
partially supporting this work. In addition, we thank SPG?
members for feedback and fruitful discussions about this

paper.

REFERENCES

[1] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, ‘“2nd
international workshop on dynamic software product lines
dspl 2008,” in Proceedings of the 2008 12th International
Software Product Line Conference (SPLC’08). Washington,
DC, USA: IEEE Computer Society, 2008, p. 381.

[2] M. Anastasopoulos and C. Gacek, “Implementing Product
Line Variabilities,” in Proceedings of the 2001 Symposium
on Software Reusability (SSR’01). New York, NY, USA:
ACM Press, 2001, pp. 109-117.

3http://www.cin.ufpe.br/spg

(3]

(4]

(5

—

[6

—_

[7

—

(8]

[9

—

(10]

(1]

M. Ribeiro and P. Borba, “Improving Guidance when Re-
structuring Variabilities in Software Product Lines,” in Pro-
ceedings of the 13th European Conference on Software Main-
tenance and Reengineering (CSMR’09). Washington, DC,
USA: IEEE Computer Society, March 2009, pp. 79-88.

V. Chakravarthy, J. Regehr, and E. Eide, “Edicts: Implement-
ing Features with Flexible Binding Times,” in Proceedings of
the 7th International Conference on Aspect-Oriented Software
Development (AOSD’08). New York, NY, USA: ACM, 2008,
pp. 108-119.

Freemind, “Free mind mapping software,” July 2009,
http://freemind.sourceforge.net/.

C. Kastner, S. Apel, and D. Batory, “A case study imple-
menting features using aspectj,” in Proceedings of the 11th
International Software Product Line Conference (SPLC’07).
Washington, DC, USA: IEEE Computer Society, 2007, pp.
223-232.

K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan, “Information Hiding Interfaces for
Aspect-Oriented Design,” in Proceedings of the 10th Euro-
pean Software Engineering Conference (ESEC’05/FSE’05).
New York, NY, USA: ACM Press, 2005, pp. 166-175.

B. D. Fraine, M. Siidholt, and V. Jonckers, “Strongaspect;:
flexible and safe pointcut/advice bindings,” in Proceedings of
the 7th international conference on Aspect-oriented software
development (AOSD’08). New York, NY, USA: ACM, 2008,
pp- 60-71.

E. Utrecht and E. Dolstra, “Timeline variability: The vari-
ability of binding time of variation points,” in Proceedings of
the Workshop on Software Variability Management (SVM’03),
2003, pp. 119-122.

I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
overview of caesarj,” Lecture Notes in Computer Science :
Transactions on Aspect-Oriented Software Development I, pp.
135-173, 2006.

Eric Tanter, “Expressive scoping of dynamically-deployed
aspects,” in Proceedings of the 7th International Conference
on Aspect-Oriented Software Development (AOSD’08). New
York, NY, USA: ACM, 2008, pp. 168-179.

