
Modularizing Variabilities with CaesarJ Collaboration Interfaces

Carlos Eduardo Pontual Rodrigo Bonifácio Henrique Reb̂elo
Márcio Ribeiro Paulo Borba

Informatics Center, Federal University of Pernambuco Recife, Brazil

{ceplc, rba2, hemr, mmr3, phmb}@cin.ufpe.br

1. Introduction
Software product lines (SPLs) aim at reducing the time
to marketing of applications in a common domain [5]. To
achieve that, products are generated by means ofweaving
common behavior, shared by all members of a SPL, with
variant behavior that, in fact, implements the variabilityof
each SPL member.

Although several techniques have been used to imple-
ment variability in SPLs, an extended notion of interfaces
for decoupling common and variant behavior during devel-
opment is still a challenge. For instance, annotative style[3]
for SPL development does not provide a clear separation be-
tween common and variant assets—thus, it is not possible,
using such a style, to develop both concerns in an indepen-
dent way.

Besides that, even compositional approaches, such as
aspect-oriented [4] and feature-oriented [2] programming
(FOP), which separate common and variant behavior, do not
enable the parallel development of common and variant fea-
tures. This occurs because, in order to modularize a variant
behavior as an aspect, developers have to be aware of the
details about how the SPL common behavior was imple-
mented. Additionally, to the best of our knowledge, current
implementations of FOP do not provide means to specify
proper interfaces between common and variant assets. Actu-
ally, here we claim for a particular notion of interface, where
we should be able to:

1. Clearly state the obligations of different teams, enabling
the parallel development of common and variant code.

2. Specify design rules using language constructs, in such a
way they could be statically checked by a compiler.

In this paper we investigate the use of Collaboration Inter-
faces (CI), a particular type of interface supported by Cae-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ACOM ’09 26th October 2009, Orlando.
Copyright c© 2009 ACM [to be supplied]. . . $10.00

sarJ [1], to modularize a recurrent and challenging type of
variability, where there exists a mutual dependency between
the common and variant behavior. We proceed our investiga-
tion by assessing different alternatives for implementingone
feature present in a Tetris Game Product Line (Section 2).
The results we obtained show that, although we had im-
proved modularity using a CI, open issues remain in investi-
gation.

2. Motivating Example
Consider a simple SPL example of Tetris1 games. On this

SPL, among other variants, we can generate products (i) with
normal difficulty, which shows only the next piece that will
appear, and (ii) with easy difficulty, showing the next two
pieces, as illustrated in Figure 1.

Figure 1. Tetris game. One piece (left), two pieces (right)

In order to implement these variations, two versions of
the following methods ofNextPiece class must be cre-
ated: (a)paintBox, which is called by other methods of
NextPiece to paint the box that shows the next piece and
(b) updatePiece, which is called by other classes of the
program (e.g., main class) to define what would be the next
piece. It is important to note that, when painting the box
contents, thepaintBox method have to access non-variant
members ofNextPiece. A possible implementation of such
a variation is by using the Template Method design pattern,
which is described in Listing 1.

However, on this solution we have a tangling of design
and implementation (problem labeled P1.1). The variation
part (abstract methods) can only be implemented after the
implementation of the base code. It is not possible to split

1 JSE version of the JME game present on
http://kiang.org/jordan/software/tetrismidlet/

the development between the team, one responsible for the
base part and the other responsible for the variation part.
An enhancement to this solution would be the specification
of an interface in top of theNextPiece class, defining the
signature of all the four methods. Although separating the
design from the implementation (solving P1.1), this solution
brings two problems: (P2.1) it is not possible to explicitly
specify in the interface which methods are from the base
part and which are from the variation part; and (P2.2) the
variation code can not be compiled independently of the base
code, because variations extends the class used for the base
implementation (see Figure 2(a)).

Listing 1. Template Method
a b s t r a c t c l a s s Nex tP iece {

void p a i n t () { . . .
pa in tBox () ; . . . }

void drawPiece () { . . . }
a b s t r a c t vo id s e t u p P i e c e () ;
a b s t r a c t vo id pa in tBox () ;

}
c l a s s Var1 ex tends Nex tP iece {

void s e t u p P i e c e (){ . . . }
void pa in tBox () { . . . }

}
/ / S i m m i l a r f o r Var2

Listing 2. CaesarJ CI
c c l a s s NextP ieceCI {

c c l a s s Nex tP iece {
void u p d a t e P i e c e () ;
/ / V a r i a t i o n
void s e t u p P i e c e () ;
/ / V a r i a t i o n
void pa in tBox () ;
void drawPiece () ;

}

}

A possible interface to mitigate these problems using
CaesarJ is shown in Listing 22. On this solution, we define a
design-rule (collaboration interface) namedNextPieceCI,
which defines that the caesar class (cclass) NextPiece

must exists and that this class must have at least the four
methods described. With this interface defined, we can split
the development between both teams. In that way, each
team provides a partial implementation of theNextPiece
cclass, and them both implementations are composed us-
ing mixins composition. For instance, the team responsible
for the implementation of the base part provides a partial
implementation of theNextPiece cclass with the meth-
odssetupPiece anddrawPiece, while the team responsi-
ble for the variations provides two partial implementations,
each one with different versions of the methodspaintBox

andupdatePiece. The selection of which variation will be
used together with the base implementation ofNextPiece

is made during the mixin composition, as illustrated on Fig-
ure 2(b).

Note that we only have thecclass NextPiece on the in-
terface because our variation problem only affect this class.
However, we can specify multiplecclasses in our inter-
face, depending on the context of our problem.

3. Discussion and Final Remarks
The interface introduced on Listing 2 enables both teams
to implement and compile their code independently of each
other. Base and variation only depend on the interface now,

2 Consider all four methods and thecclass, as theNextPiece, declared
as abstract. The keyword was omitted due to lack of space.

(a) Template method design. (b) CaesarJ mixin design.

Figure 2. Template Method and Mixin designs.

contrasting with the Template Method solution, where vari-
ations depended on the base implementation (see Figure 23).

Despite improving parallel development (solving P2.2),
this solution still has some drawbacks. For instance, problem
P2.1 remains open, it is not possible to explicitly specify on
the interface which are the roles of each team. We put the
”//Variation” comment before the methods of the variation
facet, but the compiler is not able to statically check if both
teams are implementing the methods assigned to them. The
compiler can only verify if all the methods described on the
interface are present on the mixin composition, no error will
be given ifpaintBox, a method of the base, is implemented
on the variation class.

We are currently working on some extensions to the CI
concept in order to solve this and other problems that were
not covered on this paper. Also, since there is no difference
between classes and aspects in CaesarJ, we are trying to use
the CIs to write Design-Rules that enables a more modular
design between classes and aspects, with focus on the paral-
lel development.

Acknowledgments
We would like to thank the National Institute on SE (INES),
funded by CNPq and FACEPE, grants 573964/2008-4, APQ-
1037-1.03/08, for partially supporting this work.

References
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An

overview of CaesarJ.LNCS, 3880:135, 2006.

[2] D. Batory. Feature-oriented programming and the ahead tool
suite. InICSE ’04, pages 702–703, 2004.

[3] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. InICSE ’08, pages 311–320. ACM, 2008.

[4] G. Kiczales et al. Aspect-oriented programming. In
ECOOP’97, pages 220–242, 1997.

[5] K. Pohl, G. B̈ockle, and F. J. van der Linden.Software Product
Line Engineering : Foundations, Principles and Techniques.
Springer, 2005.

3 Due to the lack of space only one variation was shown in the figure 2(b).

