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Abstract. We introduce the design of Mondrian, a functional script-
ing language for glueing together components on the .NET platform.
Mondrian is monadic statement centric with pure expressions and non-
strict evaluation and explores the melding of the OO and the purely lazy
functional paradigms.

1 Introduction

This paper introduces Mondrian, a functional scripting language designed espe-
cially for the new Microsoft .NET platform. Mondrian is aimed at two different
audiences. One is existing functional programmers who would like to be able
to inter-work more closely with other languages that target the .NET Common
Language Runtime (CLR), the other is existing OO programmers who would like
to explore being able to write and access objects written in functional languages.

Mondrian inherits “just-in-time” (lazy) evaluation, higher order functions and
monadic commands from Haskell, and classes, threads, and exceptions from the
CLR (although influenced by Massey Hope+C [15] and Haskell [16]). The syntax
of Mondrian is a melding of C] [2] and Haskell.

The formal semantics and type rules of Mondrian are yet to be defined precisely,
and indeed as an experimental language are in a state of flux. Ultimately, Mon-
drian’s type system will depend on the availability of generics in the CLR [9].
Therefore this paper only presents a semi-formal description of the language.

The current implementation of Mondrian is highly experimental, its main goal
is to explore interoperability in the .NET space, often at the expense of raw
execution speed. We do however use the underlying CLR features where possible,
and “encode” only features such currying and lazy evaluation that the CLR does
not directly support.
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2 Mondrian

The semantics of Mondrian are based of those of lazy functional programming
with monadic I/O, with modifications and additions to suit an OO environment
and to inter-work well with other languages that target the CLR. We describe
Mondrian by highlighting the differences between it and a traditional functional
language.

2.1 History and context

We started to explore the possibility of a pure functional scripting language for
glueing together software components [5] in the original Mondrian paper [13].
Along the way however, we had to encountered several other interesting research
problems such as foreign function interfaces [12, 10, 14, 4, 3, 8] and type system
issues [18, 11] that needed to be solved before we could continue the actual
implementation on Mondrian. In the mean time, Microsoft announced its new
.NET platform, which made it much easier to build our experimental compiler as
we could leverage on the high-level services of the Common Language Runtime
(CLR) such as garbage collection, threading, language interoperability, etc.

The name Mondrian honors the Dutch painter Piet Mondrian (1872-1944) and
reflects the purity, minimalism, orthogonality and simplicity of the language
design.

The Mondrian compiler is available for download at the Mondrian web site
http://www.mondrian-script.org. The compiler also accepts GHC’s “Core”
intermediate language as input, hence it can serve as a portable back end for
Haskell as well.

2.2 Functions and Expressions

As a functional language, functions and pure expressions are central to the se-
mantics of Mondrian, in contrast to object oriented languages where objects and
methods are fundamental. Within Mondrian functions and expressions have a
pure and lazy semantics. When viewed from another language executing on the
.NET platform a Mondrian function appears as an object with a specific method
Apply as its entry point, which conforms to the object-oriented view of the world
(section 6).

Expression evaluation in Mondrian is lazy. Functions are defined using lambda
notation and to simplify the language no pattern matching on arguments is
provided. Function application is curried. Unusually the typical “\” used to
denote the start of a lambda expression is also omitted. Top level names are
bound by simple assignment syntax. For example, the addition function is defined
by:
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add = a -> b -> a + b;

Apart from the built-in operators, overloading (ad-hoc polymorphism) is not
supported.

2.3 Types

Mondrian provides the same primitive types as the .NET platform; such as
integers, floats and characters. Strings are also directly supported.

Parametric polymorphism is provided in the usual functional language manner.
For example a function to evaluate the length of a list (see below) is typed as:

length : forall a. List<a> -> Integer

The CLR (and C]) do not yet provide generics or parametric polymorphism
and function types [9]. Therefore when viewed from C] a polymorphic Mondrian
function appears as a function over Object (ie all type variables are erased and
replaced by Object), hence the signature of the function length appears in C]

as:

Integer length(List as);

This mapping clearly involves some static type information loss; while there can
be many distinct type variables in Mondrian there is only one Object in .NET.
Further work is required in this area to determine the most appropriate mapping
and division between static and dynamic type checking.

Functional languages typically provide type products, disjoint unions and para-
metric polymorphism. Object-oriented languages usually are based around type
products and subtype polymorphism. To bridge this gap Mondrian’s type system
provides products, subtypes, and parametric polymorphism.

Uses of disjoint unions in traditional functional languages are replaced by the
use of classes and subclasses in Mondrian. For example, the standard list type:

data List a = Nil | Cons a (List a)

is defined in Mondrian by defining an abstract base class List and two subclasses
Nil and Cons:

abstract class List<a> {};
class Nil<a> extends List<a> {};
class Cons<a> extends List<a> {
head : a;
tail : List<a>;

};
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To construct an instance of a List you call either new Nil {} to obtain an
empty list, or new Cons{ head = a; tail = as; } to cons an element a on
an existing list as. For convenience both the use of new and the empty field list
{} are optional.

2.4 Multi-choice Selection and Pattern Matching

For multi-choice selection and pattern matching a switch expression is provided.
The syntax is reminiscent of C] while the semantics comes from Haskell.

For primitive types, such as integers and characters, selection is based on the
value of the predicate. For class types the selection is based on the subtype of
the predicate and equates to the use is in C].

The following example, which implements the standard list map function, illus-
trates the switch expression on subtypes:

map : forall a,b . (a -> b) -> List<a> -> List<b>;
map = f -> as -> switch (as) {

case Nil :
Nil;

case Cons { a = head; as = tail; } :
Cons { head = f(a); tail = map(f)(as); };

};

2.5 Namespaces

Mondrian currently inherits the concept namespaces (and the syntax) of C],
however, the notion of namespace does not really exist in the CLR, which instead
is based on the notion of modules and assemblies. We are currently considering
changing Mondrian to reflect this more directly.

2.6 Commands

Mondrian inherits monadic I/O from Haskell [21], the syntax follows Haskell
except the do keyword is omitted in keeping with the minimal approach of Mon-
drian.

For example, a simple “hello world” program in Mondrian may be written as:

main : IO<()>;
main = {
Console.WriteLine("Please enter you name: ");
name <- Console.ReadLine();
Console.WriteLine("Hello " + name);

}
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Note: Strings in Mondrian have type String rather than the list of characters as
in Haskell. The operator “+” is also overloaded to represent string concatenation
as in C].

Commands are first class citizens in Mondrian, that means you can pass them as
arguments to and return them from functions, put them in list, etc. In combina-
tion with lazy evaluation, this allows you to define your own control structures.

For instance, the function forEver executes a command forever. You can easily
define forEver using the standard functions repeat : a -> List<a> that takes
an element a and generates an infinite list of copies of a, and the function
sequence : List<IO<a>> -> IO<()> that takes a list of commands and runs
them in sequence:

forEver : IO<a> -> IO<()>;
forEver = ma -> sequence_ (repeat (ma));

sequence_ : List<IO<a>> -> IO<()>;
sequence_ = mas -> switch (mas) {
case Nil:
{ return Nil; };

case Cons{ ma = head; mas = tail; }:
{ ma; sequence_ mas; };

}

repeat : a -> List<a>;
repeat = a -> new Cons{ head = a; tail= repeat a; };

3 Exceptions

The execution of I/O statements within the monadic system of Mondrian has
a well defined temporal order, in common with similar mechanisms in Hope+C
[15] and Haskell [19]. This execution model also has direct parallels with that of
the exception mechanism provided by the CLR.

3.1 Handling Exceptions

In the CLR, all exceptions are treated uniformly by replacing the current exe-
cution with the execution of an exception handler. We adopt this same model
within the Mondrian monadic I/O system, and borrow most of the syntax from
C] by adding a monadic “try/catch/finally” construct to Mondrian’s commands:

try{
...

} catch(e : Exception) {
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...
} finally {
...

}

For programmatically generated exceptions we also adopt the CLR model adding
a keyword throw of type:

throw : forall a. Exception -> a

By adopting the same exception model as .NET we also gain inter-language
exceptions. If .NET code invoked from Mondrian throws an exception then it
can be caught by Mondrian code, and vice-versa.

3.2 Example

The function readLinesFromURL attempts to open a URL and returns the re-
sponse as a list of Strings using the helper function readLines : Stream ->
IO<List<String>>. Any failure to do this is caught in a try-catch block, which
then returns an empty list of strings.

readLinesFromURL :: String -> IO<List<String>>;
readLinesFromURL = host -> {
try {
url <- WebRequest.Create(host);
resp <- HttpWebRequest.GetResponse() url;
str <- HttpWebRequest.GetResponseStream() resp;
readLines str;

} catch (e : Exception) {
result Nil;

};
};

4 Concurrency

Mondrian supports concurrent programming using threads. So it can inter-work
closely with other .NET languages it builds directly on the threads and synchro-
nization primitives of these environments. In particular:

– A Mondrian thread is a (subclass of a) .NET thread. This not only pro-
vides an obvious implementation solution but also trivially supports a mix
of Mondrian and .NET threads inter-working with each other.

– Mondrian monadic commands can be enclosed within a monitor (synchro-
nized block), and have access to the same synchronization primitives (wait,
notify/pulse).
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– Mondrian has access to the same IPC mechanisms as other .NET languages.
This includes monitors as above and also standard classes for pipes, object
streams, etc. Using these mechanisms IPC works seamlessly between Mon-
drian threads or between a Mondrian thread and one written in another
.NET language.

The first two points are supported by additions to Mondrian, the last is already
provided through the Mondrian to foreign language calling interface.

4.1 Threads in Mondrian

Mondrian provides its own MondrianThread class which parallels the one pro-
vided by the CLR. To match the function orientation of Mondrian the Thread
class provides a number of functions whose names and purpose follow those of
the CLR, but which take a MondrianThread object as argument:

CreateThread : forall a. IO<a> -> IO<MondrianThread<a>>

This creates a thread which executes the given Mondrian command and returns
a Mondrian thread object. The returned object is a subtype of the .NET Thread
and contains all the standard methods.

As in .NET once created a thread must be started using the function:

Start : Thread<a> -> IO<a>

Note this function takes a Thread and not a MondrianThread, so it can start
either a Mondrian or foreign language thread. Standard methods on threads such
as join and suspend are similarly provided.

The following simple example creates two threads that write an infinite stream
of "a" respectively "b"’s on the screen, and then runs them in parallel:

main = {
as <- CreateThread { forEver(Console.Write("a")); };
bs <- CreateThread { forEver(Console.Write("b")); };
Start(as); Start(bs);

}

4.2 Inter-Thread Synchronization and Communication

Mondrian provides a direct equivalent to C]’s synchronized blocks:

synchronized (e){ ...statements... }

with type:
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forall a, b. Lock -> IO<b> -> IO<b>

and the associated functions:

getLock : IO<Lock>
wait : Lock -> IO<()>
notify : Lock -> IO<()>
notifyAll : Lock -> IO<()>

To preserve Mondrian’s functional semantics, we cannot lock on an arbitrary
object, but have to obtain a lock explicitly via the monadic call getLock. The
execution of a synchronized statement first evaluates the expression e to WHNF
to obtain the object to lock and the statements are executed. On completion the
lock on the object is released. The semantics of the functions wait, notify and
notifyAll directly mirror their .NET counterparts.

4.3 Other IPC Methods

Mondrian also provides a library of constructs ranging from the low-level semaphore
through typed channels constructed over .NET pipes so that distributed systems
can easily be constructed. Even Haskell’s MVars [7] are provided. We stress
though that all these are simple constructions provided as a library and involve
no extensions to the Mondrian language or its primitive operations.

5 Implementation

Implementing a functional language such as Mondrian on the .NET platform
requires a number of issues to be tackled, the main ones being:

– How are values and parametric polymorphism represented?
– How are functions are represented?
– How is partial function application (currying) handled?
– How are “just in time” computations (thunks) represented?

All these issues are well understood and methods have been developed for ef-
ficient implementation on standard machine architectures. However the CLR
differs from traditional machines in a number of ways, including:

– It is a typed machine. The type system for any language implemented on
.NET has to map to the .NET type system.

– It is object-oriented, the key building blocks are objects with methods. Mon-
drian is function-oriented, it’s key building blocks are functions. Currently,
the CLR does not yet natively support closures.
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We choose to implement Mondrian by using features of the .NET platform wher-
ever possible and resorting to well-known techniques for implementing func-
tional languages, the Spineless Tagless G-Machine (STG)[6] or the so-called
PUSH/ENTER model, in case there is no direct support for a semantic fea-
ture in the CLR.

5.1 The Representation of Values and Functions

All values in Mondrian are first class and exist as long as required (referenced).
The standard method of implementing such values in any language is to use
a garbage collected heap. The object system of .NET is heap based and auto-
matically managed by the system. The obvious mapping is therefore taken, a
Mondrian value is represented as a .NET object.

Mondrian, in common with other functional languages, is built around functions.
Functions can be defined statically in the program; functions are first class val-
ues and can be passed as arguments, returned as results, and stored in data
structures; and functions can be created at runtime based on other dynamic
values.

In .NET an object possess all the properties of a function in Mondrian. We
therefore map a Mondrian function to a .NET object that implement the Code
interface that contains a method ENTER that is used to evaluate the function by
the Mondrian runtime:

interface Code {
public Object ENTER();

}

For example, given the Mondrian function definition:

Foo = x -> ...

is represented by the following .NET class1 Foo that implements the Code inter-
face:

class Foo : Code {
public Object ENTER() {
... code for body of Foo ...

}
}

To handle nested functions, we simply create an object with private fields to store
any values that are needed to construct the function (a closure), and compile
code for the method which performs the computation using these values. A

1 We show our target code in C] for readability
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closure also implements the Code interface and can be used just like a compile-
time defined function.

The design space of representing function closures in an object oriented frame-
work is a surprisingly large, and we describe only a tiny slice of that here, in
particular we will not discuss the duel EVAL/APPLY method that has been in-
vestigated by other functional languages that target the CLR such as ML.NET
[1]. We also are looking in representing closures using delegates.

5.2 Function Arguments and Partial Applications

A powerful feature of Mondrian, in common with many functional languages, is
the ability to “partially apply” (or curry) a function, that is call a function with
fewer arguments than it is defined to accept. If fewer arguments are supplied
the result is a partially applied function, which is just a dynamically generated
function with some argument values already wired in. These partial applications
can therefore be represented just like any other function.

However a method is needed to actually pass the arguments to a function in the
first place. As .NET is strongly typed simply missing out some of the arguments
and then calling the function will not work. In other words, the CLR does not
directly support curried functions, and hence we have to implement this semantic
feature ourselves. One possible solution is to create a separate stack object to
pass function arguments. A function call then becomes: place arguments on stack
using Mondrian.PUSH, call the ENTER method of the function’s object passing no
arguments (an obvious optimization is to have several overloaded ENTER methods
that serve as fast entry points when a known function is called with a known
number of arguments).

For example, adding more detail to the Foo function given above its definition
becomes:

class Foo : Code {
public Object ENTER() {
Object arg = Mondrian.POP();
... rest of body of Foo ...
}

}

A call to this function will be compiled to C] code which is equivalent to:

Foo f = new Foo();
Mondrian.PUSH(<argument>);
result = f.ENTER();
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5.3 “Just In Time” Computations

Mondrian is a lazy language and does not actually perform a computation until
its result is needed, it does computation “just in time”. This means any value
may in fact be either a real value or a computation which when performed will
produce the real value (a so called thunk). The essence of lazy evaluation is to
update thunks with their values after they have been evaluated for the first time.
Like currying, lazy evaluation is not a semantic feature that is directly supported
by the CLR, so we have to implement it explicitly.

Again, the design space for implementation thunks is surprisingly big. We have
experimented with various implementations, and have not yet decided which one
is best. The one sketched below using exceptions in an interesting way.

The standard STG implementation method solves this problem by wrapping
JIT computations using a helper function which pushes a special value on a
“mark stack” which encodes the current stack depth and a reference to the
thunk object being evaluated. Now on every entry to a function a check is made
on the number of arguments available and the value on top of the mark stack.
When either the argument stack is empty (computation complete), or there are
insufficient arguments (JIT computation has produced a partial application), the
value on the mark stack can be removed, the thunk updated to hold its value,
and then the process repeated on the new top of the mark stack.

All this may sound a bit complicated and indeed it is! However using the facilities
of .NET we developed a simple solution for lazy evaluation. Rather than wrap
a JIT computation in a small function which pushes a value onto a mark stack,
we use one which does a function call and starts up a new trampoline, thereby
effectively using the runtime stack instead of maintaining an explicit marker
stack. A trampoline is a small iterative loop, that makes repeated calls to a
function until the value returned indicates the computation has completed.

As explained the mark stack method iterates down the mark stack updating as
many thunks as needed and handles the case of partial applications. If it did
not then the trampoline would have to distinguish between three possible return
types; a simple value, a continuing computation, and a partial computation. This
is where we can now use the features of .NET to simplify the implementation. We
wrap the trampoline in an exception (try/catch) block and then on function entry
throw an exception, carrying a partial application value, if there are insufficient
arguments. The trampoline/exception block catches this and updates the JIT
object. The exception is then re-thrown, which has the same effect as the iterative
compare/update/pop cycle of the mark stack method.

The resultant code is a lot simpler than the mark stack method, and does not
require a special stack and the overhead of maintaining it.

A sketch of this code in C] is as follows, if a function does not find enough
arguments on the argument stack, it throws and partial application exception:

class Foo : Code {
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public Object ENTER()
{ if(!Mondrian.AVAILABLE(1)) throw PAP_Exception(this);

Object a = Mondrian.POP();
<body of Foo>

}
}

And the JIT trampoline follows the following schema:

try {
// Trampoline loop
while(f is Code) { f = f.ENTER(); }

} catch(PAP_exception e) { /
... update thunk with ...
... partial application f ...
throw e;

}

Thunks and Exceptions It is possible for the execution of I/O to cause the
evaluation of a thunk. If an exception occurs during the evaluation of the thunk
then the thunk must be left in a suitable state. This issue can be a thorny one
to deal with [17], however due to Mondrian being based on the CLR model
which does not support asynchronous exceptions the problem is easily handled.
Within the thunk evaluation code we catch any exception, update the thunk
with a closure which throws the same exception value, and then re-throw the
exception.

Thunks and Threads Once multiple evaluation threads are running there is
the possibility that two, or more, threads may attempt to evaluate a thunk. As
the evaluation of a thunk can take an arbitrarily large amount of time it is best
to avoid multiple evaluation. To handle this we make the evaluation method for a
thunk a synchronised one. The first thread to attempt to evaluate the thunk will
acquire the lock and undertake the work. Any subsequent threads will block until
the lock is released and then find the work done and use the already computed
result.

6 Interop

6.1 Calling C] from Mondrian

C], or any other .NET language, are invoked from Mondrian through the I/O
system to preserve Mondrian’s purely functional semantics. To call a constructor
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the create construct is used which returns a monadic function closure which
when executed invokes the foreign language constructor to create an object.

To enable the calling of a foreign method, the invoke (and invokeStatic)
construct is provided. This returns a monadic function closure which takes an
object along with any method arguments and calls the foreign method. This
style of method calling where the object is passed explicitly differs from the C]

model but is reminiscent of the Ada 95 OO model [20].

The function closures returned by create and invoke evaluate any argument
values to WHNF before invoking the foreign constructor/method. This is done
to bridge the gap between the lazy world of Mondrian and the strict world of
.NET. However should a structured value need to be passed then either it must be
fully evaluated before the inter-language call (using Mondrian’s strict function,
see below), or the foreign function must call back to Mondrian to evaluate any
suspensions it finds.

The following simple example demonstrates create and invoke:

main = {
gen <- create System.Random();
n <- invoke System.Random.Next(Int32) 10 gen;
putStrLn ("Random 1..10: " + show n);

}

Note that create and invoke take both the foreign constructor/method and
it’s argument type(s), if any. The Mondrian type system does not support over-
loading so these constructs use the argument types to uniquely identify the
constructor/method to be called.

Accessing the fields and properties of a foreign object is provided by the get and
set constructs in a similar manner as for constructors and methods.

6.2 Calling Mondrian From C] And Other .NET Languages

Programmers calling Mondrian from other .NET languages should not need to
know how Mondrian works under the hood. In particular, partial application is
not normally used by other .NET languages and when they need to call Mondrian
code to perform some algorithm, they will usually therefore supply a full set of
arguments to the Mondrian function. To handle this common scenario, we simply
add a Apply method with the full number of arguments to the function object,
which is then used by other .NET languages as the function’s entry point.

For example, our function Foo, with the method added for calling from other
.NET languages it now looks something like:

class Foo : Code {
// used by Mondrian runtime
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public Object ENTER() {
... as before ...

}

// used when called externally .NET languages
public Object Apply(Object x) {

Code f = this;
...evaluate f in Mondrian specific way...
return f;

}
}

And a call from C] becomes something like:

Foo foo = new Foo();
result = foo.Apply(4);

Note that Apply is not a static method on Foo as evaluating foo.Apply(3) may
trigger thunk updates. Indeed calling foo a subsequent time might return its
result faster than calling foo the first time.
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