
Calling hell from heaven and heaven from hell

Sigbjorn Finne
University of Glasgow
sofOdcs, gla. ac .uk

Daan Leijen
University of Utrecht

daanOcs.uu.nl

Simon Peyton Jones
Microsoft Research Cambridge

simonpj @microsoft. com

Erik Meijer
University of Utrecht

erikOcs, uu. nl

A b s t r a c t

The increasing popular i ty of component-based programming
tools offer a big oppor tuni ty to designers of advanced pro-
gramming languages, such as Haskell. If we can package our
programs as software components, then it is easy to inte-
grate them into applications writ ten in other languages.

In earlier work we described a preliminary integration of
Haskell with Microsoft 's Component Object Model (COM),
focusing on how Haskell can create and invoke COM ob-
jects. This paper develops tha t work, concentrating on the
mechanisms tha t support externally-callable Haskell func-
tions, and the encapsulation of Haskell programs as COM
objects.

1 I n t r o d u c t i o n

"Component-based programming" is all the rage. I t has
come to mean an approach to software construction in which
a program is an assembly of software components, per-
haps writ ten in different languages, glued together by some
common substrate [16]. The most widely used substrates
are Microsoft 's Component Object Model (COM), and the
Common Object Request Broker Architecture (CORBA).
The language-neutral nature of these architectures offers a
tremendous new oppor tuni ty to those interested in exotic
languages such as Haskell (our own interest): if we can
present our programs in COM or CORBA clothing, then the
client programs will neither know nor care tha t the program
is wri t ten in Haskell. Our Haskell programs can thereby
inter-operate with a huge variety of other software, and a
would-be user of Haskell is not faced with an all-or-nothing
choice.

In an earlier paper we described how to instant iate and in-
voke COM objects from a Haskell program [11]. In tha t
paper we implied tha t it would be but a short step to be
able to seal up a Haskell program inside a COM object,
thus completing the picture. In practice, this abili ty proved
more subtle than we had supposed. This paper tells the
story.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ICFP '99 9•99 Paris, France
© 1999 ACM 1-58113-111-919910009_. $ 5.00

The main contribution is the overall design of our Haskell
COM server. More specifically:

Our design is carefully factored, so tha t it can easily
work with a variety of Haskell implementations, in-
cluding interpreters (the la t ter is trickier than it may
at first appear) . Most of the required functionality is
encapsulated in Our separate H/Direc t tool, or in li-
brary modules wri t ten in Haskell. This "arms-length"
design does not come at the price of convenience; it is
still extremely easy to create COM components, and to
implement a COM component in Haskell. Many other
COM interfaces have a tighter, and hence less portable,
integration with the compiler (Visual Java, for exam-
pie).

The only facility required from the Haskell implemen-
tat ion is a foreign language interface tha t (a) supports
the import and export of Haskell functions, and (b)
provides hooks for managing pointers from Haskell to
the external world, and back again. Our earlier paper
described : foreign import and : fore ign expor t , exten-
sions to Haskell that allow it to call, and be called by,
an external program. It turned out that to support
callbacks and COM objects we need a more dynamic
form of these primitives, : foreign import dynamic and
: foreign expor t dynamic. We motivate ~md describe
these primitives (Section 3).

Even though COM does not support parametr ic poly-
morphism, we show how polymorphism can be used
to: encode the (interface) inheritance structure of in-
terface pointers; connect interface pointers with their
globally-unique identifiers (GUIDs); and ensure tha t
object vector tables are only paired with appropria te
object states (Section 5).

COM is very general, but it requires quite a bit of
C + + code to build a COM object, usually suppor ted
by "wizards" of some sort. We are instead able to pro-
vide a l ibrary of higher-order functions tha t make it
easy to construct COM objects without wizardly sup-
port (Section 6).

Overall, we give an elegant and easy-to-use design for using
building and using COM objects in Haskell. In some ways
there is nothing really difficult about it, but it has neverthe-
less taken us over a year to evolve, so it is certainly a more
subtle task than we initially appreciated.

114

Figure 1: A COM component in Haskell

2 O v e r v i e w

We begin by giving an overview of our architecture (Fig-
ure 1). A Haskell program (grey box) tha t implements a
COM component consists of three parts:

• The application code, writ ten in Haskell by the pro-
grammer (labelled "user" in Figure 1).

• A collection of automatical ly-generated Haskell "boil-
erplate modules", one per COM class. Each of these
modules is generated by our H/Direct tool from an In-
terface Definition Language (IDL) specification of the
classJ These modules deal with the "impedance mis-
match" between Haskell and COM.

• A Haskell l ibrary module, Com, which exports all the
functions needed to support COM objects in Haskell
(labelled "library"); and a C l ibrary module that pro-
vides some run-t ime support .

Our earlier paper discusses the pros and cons of using a sep-
arate interface definition language, IDL, to define the inter-
face between COM components, and we do not repeat tha t
discussion here [2]. Notice, however, that we use IDL and
H/Direct both when invoking a COM object from a Haskell
program, and when implementing a COM object in Haskell.
In each case da ta flows across the border in both directions,
so there are clear similarities.

Notice tha t H/Direct generates only Haskell modules; it does
not also generate C code. This design choice minimise the

1Optional ly, the bo i le rp la te code can be pu t inside one module .

number of files and tools tha t the programmer h a s t o deal
with.

3 T h e fore ign f u n c t i o n in ter face

H/Direct generates Haskell code tha t marshalls values be-
tween Haskell and the foreign language. But in the end, it
must generate a real call to the foreign procedure, passing
parameters. This foreign call can only be expressed using
some extension to the Haskell language. The same is true if
we want a foreign procedure to call a Haskell function. In
this section we describe a set of language extensions tha t
address this need.

We have carefully minimised what is required from the lan-
guage implementation, while maximising the work done by
H/Direct . In this way, any Haskell tha t implements our ex-
tensions can interface with COM, using the implementat ion-
independent H/Direct to do most of the work.

3.1 Fore ign s ta t i c i m p o r t and e x p o r t

Earlier versions of GHC (the Glasgow Haskell Compiler)
provided c c a l l (or even casm) to invoke a C procedure [12].
However, while this facility is (fairly) easy to support in a
compiler tha t uses C as an intermediate language, it is a
bit more difficult when using a native code generator, and
well-nigh impossible when using an interpreter such as Hugs.
Furthermore, it says nothing about how to allow C to call
Haskell, or how to inter-operate with procedures with non-C
calling conventions.

Our new foreign function interface is much simpler. Here is
an example of how to import a foreign procedure:

foreign import "hash32" hash :: Int -> IO Int

This f o r e i g n declaration is modeled directly on the
p r i m i t i v e declaration tha t Hugs has supported for some
time. The declaration defines the Haskell If} action hash
which, when invoked, will call the external procedure
hash32. The implementat ion of hash also takes care of con-
verting between the Haskell representation of an I n t and
the corresponding external representation.

The result of hash has type I0 I n t rather than simply In t ,
to signal that hash might perform some inpu t /ou tpu t or
have some other side effect. We give a short summary of
the If} monad in the Appendix.

The range of types tha t can be passed to and from a foreign-
imported procedure is deliberately restr icted to the (small)
set of primitive types. By a "primitive type" we mean one
that cannot be defined in Haskell, such as In t , F l o a t , Char.
Only the language implementat ion knows the representation
of primitive types, and so only the language implementat ion
can marshall them. For all other types, such as lists or Boo1,
H/Direct is used to generate marshalling code. The same
restriction applies to the other variants of f o r e i g n tha t we
discuss later, for the same reasons.

3.2 Var ia t ions on t h e t h e m e

We support several variants of the basic foreign declara-
tion:

115

• The name of the external procedure can be omitted,
in which case it defaults to the same as the Haskell
procedure.

foreign import hash :: Int -> I0 Int

• If the programmer is sure that the foreign procedure is
really a function - - that is, it has no side effects - - he
can write the type as a non-I0 type:

foreign unsafe import "sin"
sin :: Double-> Double

The "unsafe" keyword highlights the fact that the pro-
grammer undertakes a proof obligation, namely that
the function really is a function. We use this conven-
tion uniformly (also e.g. in unsafePerformIO), so that
a programmer can find all his proof obligations by say-
ing grep unsafe.

• By default, f o r e i g n import uses the C calling con-
vention, but the convention can instead be specified
explicitly:

foreign unsafe import ccall "sin"
sin :: Double-> Double

We also support the standard calling convention
(s t d c a l l) used in Win32 environments.

* In many systems it is necessary to specify the library
or DLL" in which the external procedure can be found.

foreign unsafe import "MathLib" "sin"
sin :: Double-> Double

A similar declaration allows the programmer to expose a
Haskell function to the outside world:

foreign export "put_char" putChar :: Char -> IO ()

This exports a C-callable procedure put_char that in turn
invokes the Haskell function putChar, marshalling the pa-
rameter appropriately. The calling convention can be spec-
ified, just as with f o r e i g n import, and a pure (non-I/O)
Haskell function can be exported just as easily (no need for
"unsafe" here):

foreign export fibonacci :: Int -> Int

Similar to the foreign import case, when the external name
of the exposed function is ommited, it defaults to the same
name as the Haskell function.

3.3 S t a b l e p o i n t e r s a n d fo re ign objects

It is often necessary to pass a Haskell value (pointer) to an
external procedure. This raises two difficulties: first, the
Haskell garbage collector cannot tell when the Haskell value
is no longer required; and second, the value may be moved
by the (copying) garbage collector. We solve both these
problems by registering the Haskell value as a stable pointer.
This registration (a) returns a stable value (a small integer)
that names the value, and will not change during garbage
collection, and (b) tells the garbage collector to retain the

2Dynamically Linked Library

value until told otherwise. Subsequently, the stable pointer
can be dereferenced to recover the original Haskell value.

An exactly dual problem arises when we want to pass to a
Haskell program a pointer to an external object (e.g. a file
handle, mal loc 'd block, or COM interface pointer). Often,
we would like to be able to call f c lose , or f ree , on the
external reference when the Haskell garbage collector finds
that it is no longer required. Such "run this when the object
dies" behaviour is called finalization.
We have defined extensions to Haskell to support both stable
pointers and finalisation. They are described in detail in a
companion paper [10], so we do not discuss them further
here.

3.4 D y n a m i c i m p o r t

The f o r e i g n import primitive is fine if we know the name of
the C function we want to invoke. But sometimes we don't .
Notably, when invoking a COM object, we start from an
interface pointer, which points to a location that points to a
vector table of methods (we discuss this more in Section 4).
To invoke the method, we must fetch the address of the
method from the vector table, and call it. f o r e i g n import
simply doesn't do the job; it works fine for link-time or load-
time binding, but not at all for run-t ime binding.

To address this deficiency, we first need a new primitive
Haskell data type, Addr, that represents a machine address.
(We could have used In t , but that seems unsavory.) Next,
we extend f o r e i g n import with a dynamic attribute:

foreign import dynamic
hashMethod :: Addr-> (Int -> IO Int)

This defines a Haskell function hashMethod, whose type is
as specified. Function hashMethod takes the address of the
foreign procedure, which must be of type Addr, and returns a
fully-fledged Haskell function that, when applied, will invoke
the foreign procedure. Consider the following example:

do{ h <- ...get addr of hash procedure...

-- h has type Addr

; let hash = hashMethod h

; rl <- hash 34

; r2 <- hash 39

)

h is the address of a suitable C procedure; hashMethod turns
h into a Haskell function of type I n t -> I0 In t , which is
then invoked twice. Of course, if h is bound to a bogus
address then terrible things will happen.

It is rather simple to implement f o r e i g n import dynamic.
The only difference from the static version is that the call
takes place to a supplied argument, rather than to a static
label. This contrasts sharply with its dual, dynamic export,
which we study next.

3.5 D y n a m i c e x p o r t

Just as f o r e i g n import is inadequate in general, so is
f o r e i gn export , for two reasons. First, f o r e i g n export
only makes sense in a compiled setting, since its effect is to
generate a code label that is externally visible; an interpreter
cannot reasonably implement f o r e i g n export .

116

Second, f o r e i g n export works on top-level functions. But
we might want to export arbitrary functions. For example,
external library procedures quite often take a callback pa-
rameter; that is, a pointer to ~ procedure that the external
procedure will itself call. For example, the Win32 API pro-
vides a function that allows you to iterate over the current
list of open windows:

typedef BOOL (*WNDENUMPROC) (HWND, LPARAM) ;
BOOL EnumWindows(WNDENUMPROC enumFunc

, LPARAM iParam
);

The system call takes a pointer to a callback procedure to
invoke for each open window, together with a value iparam
that we'll ignore for now. The callback procedure returns a
boolean value to indicate whether we should stop iterating
over the windows or not.

The system call itself can easily enough he imported into
Haskell 3

type BOOL = Int
type LPARAM = Int
type WNDENUMPROC = Addr

foreign import "EnumWindows"
enumWindows :: WNDENUMPKOC -> LPARAM -> IO BOOL

But what to do with the callback? We want to implement
it in Haskell, so the callback will have to be dressed up to
appear like a C function pointer. One way would be to
use f o r e i g n export to export a Haskell procedure as a C
procedure, and add some mechanism to give Haskell access
to the address of that C procedure, to pass to enumWindous.

But there is a much more elegant solution. We provide a
dynamic form of f o r e i g n export , thus:

type HWND = Addr
foreign export dynamic

mkWndEnumProc :: (HWND -> LPARAM -> I0 B00L)
-> IO WNDENUMPROC

This declaration defines a Haskell function mkWndEnumProc,
with the type specified. Function rakWndEnumProc takes an
arbitrary Haskell function value of the given type as its single
argument, and returns a C function pointer. This C function
expects to find two arguments on the C stack; it marshalls
them into the Haskell world, and passes them to the Haskell
function that was passed to mkWndEnumProc. Here is an ex-
ample of its use4:

windowTitles :: IO [String]
windowTit les =

do{ ref <- newIORef []
; let getTitle :: HWND -> LPAKAM -> I0 BOOL

getTitle hwnd ip =
do{ t <- getWindowTitle hwnd

; ts <- readIORef ref
; writeIORef ref (t:ts)
; return (boolToInt True)
}

; cback <- mkWndEnumProc getTitle
; enumWindows cback (0: :Int)
; readIORef ref

SWe declare types BOOL, LPARAM, etc as Haskell type synonyms that
mimic the C header file definitions of these types. Such type declara-
tions are usually generated automatically by H/Direct.

4The Appendix introduces IOB.efs.

}

Here, g e t T i t l e is the callback procedure; it is called for each
window, passing the window handle and the LPAPAM value.
It in turn calls getWindowTitle (another foreign-imported
procedure) to get the window title, and puts it onto the front
of a list of window titles, kept in a Haskell mutable variable
ref.

The Haskell function g e t T i t l e is turned into a C-callable
procedure cback (of type Addr) by mkWndEnumProc, the func-
tion defined by the f o r e i g n export dynamic declaration.
Finally cback is passed to enumWindows.

Phew! We do not want to claim that this is beautiful pro-
gramming style. For example, it is rather gruesome to use
a mutable variable in g e t T i t l e . But the style is dictated
by the architecture of Windows system calls; we are stuck
with it. However, we are now ready to understand quite a
bit about f o r e i gn export dynamic:

• The callback function g e t T i t l e is a first class Haskell
value. It is not a top-level function, as must be the case
for a static f o r e i gn export. In this case, g e t T i t l e has
a free variable, ref , the mutable cell that it updates.

This capability is modeled in C by the LPARAM parame-
ter. The system call accepts LPAPAM as well as the call-
back procedure, and passes LPARAM each time it calls
the procedure. In effect, the (callback, LPARAM) pair
constitutes a closure, of code plus environment.

In this particular case, a C programmer would use
LPAB.AM to point to a location in which the list is ac-
cumulated, just like ref . If there were many free
variables, matters would be less simple. The Haskell
programmer does not need to bother with LPARAM - -
indeed, 1p is unused in the definition of g e t T i t l e .
mkWndEnumProc captures a first-class Haskell value, free
variables and all. Higher-order programming in C!

• m.kWndEnuroProc encapsulates a Haskell value as a C
function pointer. To do this, it first registers the
Haskell value as a stable pointer (Section 3.3), and then
embeds the stable pointer in the C function. The pro-
grammer can explicitly free the retained Haskell value
using:

freeHaskellFunctionPtr :: Addr -> IO ()

This operation cannot be done automatically, since it
depends on knowing that the exported function pointer
is no longer needed externally.

• As with the other f o r e i g n declaration variants, a
f o r e i gn export dynamic also allows you to specify
which calling convention the returned function pointer
should expect.

3.6 I m p l e m e n t i n g d y n a m i c export

Dynamic export is considerably harder to implement than
dynamic import, because we have to generate a C function
pointer that cannot be static, because it must somehow refer
to the Haskell function it encapsulates. This forces us to
perform a little bit of dynamic code generation.

Our implementation for the Glasgow Haskell Compiler
works by taking advantage of the static version of f o r e i g n

117

expor t . Here, for example, is how we implement
mkWndEnumProc. We repeat its declaration here:

foreign export dynamic
mkWndEnumProc :: (HWND -> LPARAM -> I0 BOOL)

-> I0 WNDENUMPROC

GHC first generates code exactly as if the programmer had
written:

foreign export
wndEnumProc : : HWND -> LPARAM

-> StablePtr (HWND->LPAPAM->I0 B00L)
-> If] Bf]f]L

wndEnumProc h i sp =
do{ f <- deRefStablePtr sp

; f h 1
}

wndEnumProc takes an extra argument, a stable pointer to
the function value (Section 3.3); it simply dereferences the
stable pointer, and calls the function it gets back. Now,
GHC generates code for mkWndEnumProc, which does three
things:

• registers the Haskell function as a stable pointer;

• dynamical ly generates a code fragment;

• returns the address of this dynamical ly generated code.

The dynamical ly-generated code consists of two or three in-
structions:

add-param <function pointer>
jump .ndEnumProc

The add-param "instruction" must be whatever machine
code is necessary to pass one ext ra parameter - - often
this is just a mat te r of pushing it on the stack (perhaps
also moving the re turn address). Once this is done, the
s ta t ical ly-exported vndEnumProc will do the rest. Clearly,
the dynamic-code-generation par t is highly architecture de-
pendent, but it is also very short, and is not hard in practice.

Unfortunately, this solution won't work at all for the Hugs
interpreter, because an interpreter can ' t support stat ic
: foreign expor t . Instead, the Hugs implementation of
mkWndEnumProc dynamical ly generates the following segment
of machine code:

push <:function pointer>
push <type descriptor>
jump GenericCaller

Here <type descriptor> is a (pointer to a C-format) string
tha t encodes the type signature of the function. The
<:function p o i n t e r > is a stable pointer to the Haskell func-
tion value, as before. Finally, G e n e r i c C a l l e r is a fixed piece
of code tha t (a) uses the type descriptor to marshall da ta
from C to Haskell, (b) calls the specified Haskell function,
(c) marshalls the Haskell result back, and (d) returns to the
C caller. G e n e r i c C a l l e r is highly machine dependent, since
it must know all about the caller 's calling conventions; but
at least it need only be wri t ten once.

3.7 R e l a t e d w o r k

Foreign function interfaces (FFIs) are clearly of great use,
but papers describing them are relatively thin on the ground.

Most functional programming systems provide a FFI , allow-
ing calls to external functions to embedded within functional
code. However, few provide equally good support for the
outside to call in. The e s h Scheme implementat ion [14] is a
notable exception; it was designed with the explicit goal of
making hybrid Scheme and C / C + + applications easier to
write. Another, more recent system is the Bigloo Scheme
compiler [15].

For ML-based languages, the Standard ML of New Jersey
compiler 's foreign function interface does also provide sup-
por t for call-ins [5]. Function closures can be dressed up
behind a C function pointer, which can then be passed out
to the outside world, making it similar in power to foreign
export dynamic.

A similar approach is provided by the Objective Caml F F I
[8], which requires exported functions to be registered by
giving them a name (an arbi t rary string) from within OCaml
code. The run-t ime system provides a C callable entry point
for looking up the OCaml function closure tha t hides be-
hind a name, and invoke through a class of invocation func-
tions. This scheme requires tha t the user makes up the
difference using C, writing a lit t le bit of s tub code that does
the lookup and invokes the function by marshall ing and un-
marshalling the arguments and results. Contrast this with
f o r e i g n expor t dynamic which makes the Haskell-nature
of the function pointers it re turns t ransparent to the user.

To our knowledge, the only other Haskell system tha t pro-
vides support for externally-callable Haskell functions is the
NHC 1.3 compiler [17], which provides a basic export mech-
anism similar to tha t of Objective Caml's.

4 H o w C O M w o r k s

Before we can describe how to encapsulate a Haskell pro-
gram as a COM component, we have to digress briefly to
explain how COM works. We concentrate exclusively on how
COM works, rather on why it works tha t way; the COM lit-
erature deals with the la t ter topic in detail [13]. This section
is closely based on our description in [11].

Here is how a client, wri t ten in C, might create and invoke
a COM object:

/* C r e a t e t h e o b j e c t * /
err_code = CoCreateInstance (cls_id

, iface_id
, &iptr
);

if (not SUCCEEDED(err_code)) {

• . .error recovery...
}

/* Invoke a method */
(* i p t r) [3] (i p t r , x, y , z) ;

The procedure CoCrea te Ins tance is best thought of as an
operat ing system procedure. (In real life, it takes more pa-
rameters than those given above, but they are un impor tan t
here.) Calling CoCrea te Ins t ance creates an instance of an
object whose class identifier, or CLSID, is held in c l s _ i d .
The class identifier is a 128-bit globally unique identifier, or
GUID. Here "globally unique" means tha t the GUID is a
name for the class tha t will not (ever) be re-used for any
other purpose anywhere on the planet. A s tandard uti l i ty

118

"Vtbl pointer"
(not shared)

Interface

pointer
/ '.

" Object "
state

"Virtual function table"
(shared by all instances)

Querylnterface

:! = AddRef

: = Release
I

other
I

: ~ methods

Figure 2: Interface pointers

allows an unlimited supply of fresh GUIDs to be generated
locally, based on the machine's IP address and the date and
time.

The code for the class is found indirectly via the system
registry, which is held in a fixed place in the file system.
This double indirection of CLSIDs and registry makes the
client code independent of the specific location of the code
for the class. Next, CoCreateInstance loads the class code
into the current process (unless it has already been loaded).
Alternatively, one can ask COM to create a new process
(either local or remote) to run the instance.

4.1 I n t e r f a c e s and m e t h o d i n v o c a t i o n

A COM object supports one or more interfaces, each
of which has its own globally-unique interface identifier
or IID. That is why CoCreateInstaace takes a second
parameter, i f ace_ id , the IID of the desired interface;
CoCreateInstance returns the interface pointer of this inter-
face in i p t r . There is no such thing as an "object pointer",
or "object identifier"; there are only interface pointers.

The IID of an interface uniquely identifies the complete sig-
nature of that interface; that is, what methods the interface
has (including what order they appear in), their calling con-
vention, what arguments they take, and what results they
return. If we want to change the signature of an interface,
we must give the new interface a different IID from the old
one. That way, when a client asks for an interface with a
particular IID, it knows exactly what that interface provides.

A COM interface pointer is (deep breath) a pointer to a
pointer to a table of method addresses (Figure 2). Notice
the double indirection, which allows the table of method ad-
dresses to be shared among all instances of the class. Data
specific to a particular instance of the class, notably the
object's state, can be stored at some fixed offset from the
"vtbl pointer" (Figure 2). The format of this information is
entirely up to the object's implementation; the client knows
nothing about it. Lastly, when a method is invoked, the in-
terface pointer must be passed as the first argument, so that
the method code can access the instance-specific state. Tak-
ing all these points together, we can now see why a method
invocation looks like this:

(* i p t r) [3] (i p t r , x, y, z) ;

None of this is language specific. That is, COM is a binary
interface standard. Provided the code that creates an ob-
ject instance returns an interface pointer that points to the
structures just described, the client will be happy. In theory,
the parameter passing conventions for each method can be
different (but fixed in advance). In practice, they match the
_ _ s t d c a l l convention used by C and C + + .

Interface pointers provide the sole way in which one can in-
teract with a COM object. This restriction makes it possible
to implement location transparency (a major COM war-cry),
whereby an object's client interacts with the object in the
same way regardless of whether or not the object is in the
same address space, or even in the same machine, as the
client. All that is necessary is to build a proxy interface
pointer, that does point into the client's address space, but
whose methods are stub procedures that marshal the data
to and from across the border to the remote object.

4.2 G e t t i n g o t h e r in ter faces

A single COM object can support more than one interface.
But as we have seen before CoCreateInstaace returns only
one interface pointer. So how do we get the others? Answer:
every interface supports the QueryIn te r face method, which
maps an IID to an interface pointer for the requested IID or
fails if the object does not support the requested interface.
So, from any interface pointer, i p t r , on an object we can
get to any other interface pointer, i p t r2 , which that object
implements. For example:

err_code = (*iptr)[0](iptr, lid2, &iptr2);

Why "[0]"? Because QueryInterface is at offset 0 in every
interface.

The COM specification requires that QueryInterface be-
haves consistently. The IUnknown interface on an object is
the identity of that object; queries for IUnknown from any
interface on an object should all return exactly the same
interface pointer. Queries for interfaces on the same ob-
ject should always fail or always succeed. Thus, the call
(* ip t r) [0] (i p t r , i i d2 ,&ip t r2) should not succeed at one
point, but fail at another. Finally, when viewed as a binary
relation over interfaces on a component, QueryIn te r face
should be an equivalence relation.

4.3 R e f e r e n c e c o u n t i n g

Each object keeps a reference count of all the interface point-
ers it has handed out. When a client discards an interface
pointer it should call the Release method via that inter-
face pointer; every interface supports the Release method.
Similarly, when it duplicates an interface pointer it holds,
the client should call the AddReg method via the interface
pointer; every interface also supports the AddRef method.
When an object's reference count drops to zero it can com-
mit suicide - - but. it is up to the object, not the client, to
cause this to happen. All the client does is make correct
calls to AddRef and Release.

Every interface supports the three methods
QueryInterface, AddKef, and Release. The three together
constitute the IUnknown interface, which every other inter-
face extends.

119

[object,
uuid(00000000-0000-0000-C000-000000000046),
pointer_default(unique)

]

interface IUnknown {
HRESULT QueryInterface([in] REFID iid,

[out] void **ppv);
ULONG AddrRef(void);
ULONG Release(void);

}

[object, uuid(...)]
interface ILookup : IUnknown {
HRESULT LookupByName ([in,string]char* name,

[out,string]char** number) ;
HRESULT LookupByNumber([in,string]char* number,

[o u t , s t r i n g] c h a r * * name) ;
}

[object, uuid(...)]
interface IInsert : IUnknown {
HKESULT Insert([in,string]char* name,

[in,string]char* number);
}

[uuid(...)]
coclass PBX {

[default] interface ILookup;
interface interface IInsert;

}

4.4 Describing interfaces

Since every IID uniquely identifies the signature of the in-
terface, it is useful to have a common language in which to
describe that signature. COM has such a language, called
IDL (Interface Definition Language), but IDL is not part of
the core COM standard. You do not have to describe an
interface using IDL, you can describe it in classical Greek
prose if you like. All COM says is that one IID must identify
one signature.

Describing an interface in IDL is useful, though, because it
is a language that all COM programmers understand. Fur-
thermore, there are tools that read IDL descriptions and
produce language-specific declarations and glue code. For
example, the Microsoft MIDL compiler can read IDL and
produce C + + class declarations that make COM objects
look exactly like C + + objects (or Java, or Visual Basic).

As a short example, Figure 4.4 gives the IDL description
Of the IUnknown interface, the interface that every other
extends. The 128 bit long constant is the GUID for the
IUnknown interface. Also presented are the class and inter-
face declarations for a simple telephone directory compo-
nent, PBX. The PBX class supports two interfaces, ILookup
and I I n s e r t . The former has two methods, in addition
to the standard IUnknown methods, while the latter has
one. (The class and interface GUIDs are elided to " . . . "
for brevity.)

5 P o l y m o r p h i s m exp re s se s s ing le inheritance

Our earlier paper showed how to create and invoke COM
components from Haskell. We found that we were able to
make compelling use of polymorphism to offer type secu-

rity right at the heart of our implementation. Here are the
types of the Haskell equivalents of CoCreateIns tance and
QueryInterface:

coCreateInstance :: CLSID -> IID iid -> I0 (IUnk lid)
queryInterface :: IID lid -> IUnk a -> I0 (IUnk iid)

• CLSID is the type of class GUIDs.

• IID i i d is the type of interface GUIDs, but parame-
terised by, i i d , the "interface type".

$ IOnk l i d 5 is the type of interface pointers, again pa-
rameterised by its interface type.

The polymorphism in coCreateInstance and query-
I n t e r f a c e elegantly ensures that the interface pointer re-
turned is statically checked to support the same methods as
the IID that was passed.

Whenever coCrea te Ins tance or q u e r y I n t e r f a c e obtains a
new interface pointer of type IUnk l i d from COM, it at-
taches a finaliser to it (Section 3.3), so that when the Haskell
program lets go of the interface pointer, the finaliser will
automatically call Release. In this way, managing COM
object reference counts is invisible to the programmer.

5.1 I n t e r f a c e t y p e s

What are these "interface types"? For every interface
(GUID) defined in the IDL for a component, H/Direct sim-
ply define a fresh Haskell type - - the interface type. There
is a one-to-one correspondence between interface IDs and in-
terface types, which is why we use " i id" for a type variable
that ranges over interface types.

Strangely, such an interface type is an abstract data type
with no operations, nor do we ever create a value of the type.
For example, consider the ILookup interface in Figure 4.4.
When fed this IDL, H/Direct will produce a Haskell module
containing the following declarations (among others):

da ta ILookupT a = ILookupT
-- The interface type

type ILookup a = IUnknown (ILookupT a)

iidlLookup :: lID (ILookupT O)
iidlLookup = newlld "...GUID for ILookup..."

The interface type for ILookup is called ILookupT. It is de-
clared as an algebraic da ta type with a single constructor 6
We will return shortly to the type parameter for ILookupT;
just ignore it for now. Next, there is a type synonym, that
defines ILookup a to be the type of interface pointers for in-
terfaces of type ILookup. Finally, a suitably-typed interface
ID for ILookup is defined.

H/Direct also generates client stub definitions for the meth-
ods of the interface:

lookupByName : : String -> ILookup a -> IO String
1ookupByNumber :: String -> ILookup a -> I0 String

Sin the real i m p l e m e n t a t i o n i t is ca l l ed "IIlnknown", b u t "IUnk"
m a d e o u r t y p e s e t t i n g easier!

6It wou ld b e b e t t e r to dec l a r e it as a t y p e w i t h no c o n s t r u c t o r s ,
s ince we neve r use t h e c o n s t r u c t o r , b u t Haske l l does n o t a l low t h a t .

120

Notice tha t these each take a typed interface pointer as their
argument. It is impossible for the Haskell application to ac-
cidentally call lookupByName passing it an interface pointer
to an I I n s e r t interface, say. And the only way the applica-
tion can construct an interface pointer of type ILookup a is
by calling coCreateInstance or queryInterface!

5.2 I n h e r i t a n c e

Why is ILookupT parameterised? Because it is possible to
define another interface that extends ILookup. The IDL
might look like this:

interface ISearch : ILookup { ... }

Given this, H/Direct will generate the following:

d a t a ISearchT a = ISearchT

type ISearch a = ILookup (ISearchT a)

i i d I S e a r c h : : IID (ISearchT ())
i i d I S e a r c h = . . .

Now, the b e a u t i f u l t h i n g i s t h i s : i f I have an interface pointer
o f type ISea rch t , then I can use lookupByName on it. Why?
Because

ISearch t = ILookup (ISearchT t)

(just by expanding the type synonym for ISearch). That
is, every interface pointer for ISearch is automatically an
interface pointer for ILookup, and indeed also an interface
pointer for IOnknown.

Now we can understand the type of i i d I S e a r c h as well:

iidISearch :: IID (ISearchT ())

i i d I S e a r c h is the interface ID for ISearch exactly, ex-
pressed by instantiat ing the type parameter to () .

In short, we have been able to use simple polymorphic in-
s tant iat ion to model (single, interface) inheritance, which
luckily is precisely what COM requires. In retrospect the
idea is quite obvious, and perhaps has been invented many
times before, but we have been unable to find a published
account.

6 E n c a p s u l a t i n g H a s k e l l as a C O M c o m p o n e n t

Next, we turn to our third main theme, the task of im-
plementing a specified COM component in Haskell. The
start ing point is an IDL specification for the interface(s) the
component must offer; as a running example we use the tele-
phone directory given in Figure 4.4. This is closely based
on the example used in [4] to introduce Component Pascal 's
support for interacting with COM.

We tackle the encapsulation in three clearly-separated "lay-
ers" (Figure 1):

• Code writ ten by the application programmer writes
(Section 6.1). There are two things to do here: pro-
vide an implementation of the component, and register
it with COM so that other components can invoke it.

• Code generated by H/Direct from the PBX IDL (Sec-
tion 6.2). This boilerplate code deals with marshalling

arguments between Haskell and the client; it also deals
with creating the component 's vector tables and inter-
face pointers in exactly the form expected by COM
clients.

• Fixed code that lives in the Corn l ibrary (Section 7).

6.1 T h e p r o g r a m m e r ' s e y e v i e w

Wha t does the Haskell programmer have to do to implement
PBX in Haskell? First he feeds the IDL to H/Direct , which
generates a Haskell module PBXProxy.hs (Figure 1). This
module imports a Haskell module PBX. lhs , which provides
the programmer 's implementation of the PBX functionality.
H/Direct optionally outputs a skeleton for this module, but
the programmer must complete it by providing:

• A type declaration for the state of the PBX object. This
type is given the same name as the class. For example:

type Name = String
type Number = String
type PBX = IORef [(Name,Number)]

Here the s t a t e PBX is held in a mutable IORef cell.
The advantage of using mutable references over a more
"functional" state-transformer style is tha t under the
former scheme, the Haskell signatures for using com-
ponents and for implementing components in Haskell
are uniform.

• An initialiser, initPBX, for the PBX state. For example:

initPBX :: I0 PBX
initPBX = newIORef []

• An implementation for each method. The Haskell type
of each method is derived from the corresponding IDL
type; this type translat ion is given in detail in [2]. For
example:

lookupByName :: String -> PBX -> I0 String
lookupByName want pbx =

do{ pairs <- readIORef phx
; maybe (lookup want pairs)

(coError E_Fail) (return)
}

The last parameter of each method is the state of
the object. The function coError raises an excep-
tion in the I0 monad, passing the E_Fai l return code,
which is marshalled into COM's E_FAIL return code by
H/Direct .

Finally, the programmer must make the new component
known to COM by supplying a main module, Main. lhs , as
follows:

module Main where

import Com(coRegister)
import PBXProxy(pbx)

main :: I0 ()
main = coKegister [pbx]

121

When the Haskell program is run, the call to coRegis ter
registers the component(s) defined in its argument list. This
step registers Haskell functions through which a client can
create instances of the component(s).

If a single Haskell program implements more than one COM
component, main would import several Proxy modules, and
would have several items in the list passed to coRegister .

And that is all the programmer has to do! Next, we look
behind the scenes, and study the PBXProxy and Com modules.

6.2 C r e a t i n g a c o m p o n e n t i n s t a n c e

H/Direct generates the module PBXProxy from the IDL for
PBX, which exports the single value pbx. This value pbx en-
capsulates the complete implementation of the component ~

pbx :: CoComponent

data CoComponent
= CoComponent

{ componentCLSID : : CLSID
, componentProgID :: String
, newInstance :: IID lid -> I0 (IUnk iid)
}

A CoComponent is a triple of: a class ID, the unique 128-
bit "name" of the class; a prog ID, a human friendly string
through which the class ID can be looked up in the registry;
and a function to create a new instance of the component.
The first two fields are easy to generate from the IDL. ~Ve
will focus on the last, newInstance.

To create an instance of a COM component we need to con-
struct an interface pointer that looks precisely as depicted in
Figure 2. We represent an interface pointer as a pointer to
a mal loc 'd pair of (a) a method vector table pointer and (b)
a (stable pointer to) the object's state s. All the interfaces
for a particular object share a common state. So there are
two things we must be able to do:

1. Create a method vector table. In the compiled imple-
mentat ion we could do this statically, but that is not
possible in Hugs, so we provide a function that dynam-
ically builds a vector table.

type CoVTable iid st = ...

newCoVTable :: [Addr] -> CoVTable iid st

Function newCoVTable uses malloc to allocate a fixed,
never-freed, vector table, returning its address as a
Haskell closure via unsafePerformI0. By reflecting
Haskell's underlying laziness and sharing in this way,
we get sharing and laziness of vector tables for free!

The CoVTable type is parameterised by the interface
type (l id) of the interface it implements, and object
state (s t) understood by the methods.

7The ac tua l d a t a t ype conta ins a few ex t r a fields - - for examp le a
s t r ing giving a shor t descr ip t ion of the c o m p o n e n t .

Sin principle , we could ins tead c rea te a fresh m e t h o d tab le for each
ins tance of the object ; the m e t h o d s could then have the ob jec t s t a t e as
a free var iable , jus t like g e t T i t l e did in Section 3.5. Bu t t h a t would
m e a n much m e t h o d - t a b l e dupl ica t ion , so ins tead we follow C O M ' s
hint , and use a fixed m e t h o d table , sha red a m o n g all ins tances .

2.

The method addresses passed to newCoVTable point to
procedures that can be called directly by other COM
objects. They can be generated using f o r e i g n export.
Function newCoVTable prefixes this list with three fur-
ther addresses, for the standard IUnkno~ra interface
methods QueryInter:face, hddRef, and Release. (A
variant of newCoVTable is provided for those who want
to write their own implementations of these methods -
see Section 7.2.)

Create an instance of the object. A COM object may
support several interfaces, so we must pass a list of
(IID,VTable) pairs for every interface the object im-
plements, each of type IfaceSpec:

data IfaceSpec st
= forall lid. IfaceSpec (IID lid)

(CoVTable iid st)

newCoInstance :: st -> [IfaceSpec st]

-> IID lid -> IO (IUnk lid)

Function newCoInstance takes an initial state, a list of
interfaces (each specified as a (IID,VTable) pair), and
an IID, and returns a suitable interface pointer to the
object.

The data type declaration for I:faceSpec uses an ex-
perimental extension of Haskell that provides existen-
tial data types 9. The data type has one constructor,
IfaceSpec, with type:

IfaceSpec :: IID lid -> CoVTable lid st
-> IfaceSpec st

The IID and CoVTable must have compatible l i d types,
but that type does not show up in the type of the con-
structed value. Hence, a list of IfaceSpecs may differ
in their i ids , but will all share the same state s t .

We are finally ready to give the code for the PBXProxy mod-
ule. Remember that its sole export is the component pbx.

module PBXProxy(pbx) where

import PBX(PBX, initPBX, lookupByName,
1ookupByNumber, insert)

import Com(CoComponent(..),
IfaceSpec(..),
newCoInstance, newCoVTable,
CoIPRep, getCoState)

pbx :: CoComponent
pbx = CoComponent {

¢omponentCLSID = "...",
componentName = "PBX",
newInstance = newPBX

}

newPBX :: IID iid -> I0 (IUnk iid)
newPBX = do{ init <- initPBX

; newCoInstance init pbxISpecs
}

pbxISpecs :: [IfaceSpec PBX]
pbxISpecs = [IfaceSpec iidIInsert vtInsert,

9This extension, first sugges ted b y L a u ~ r [7] , i s i m p l e m e n t e d by
several Haskell compi lers , lnclude G H C , hbc, and Hugs.

122

IfaceSpec iidlLookup vtLookup]

vtInsert :: VTable IInsertT PBX
vtInsert = newCoVTable [wrapInsert]

vtLookup :: VTable ILookupT PBX
vtLookup = newCoVTable

[wrapLookupByName, wrapLookupByNumber]

-- Definitions of IInsertT, iidIInsert etc as before

foreign export "LookupByName" wrapLookupByName
:: CoIPRep PBX -> Addr -> Addr -> I0 ()

wrapLookupByName ip p_name p_number =
do{ st <- getCoState ip

; name <- unmarshallString p_name
; number <- lookupByName name st
; writeString p_number number
}

-- Similar wrappers for lookupByNumber, and insert

All of this code is generated from the PBX IDL by H/Direct,
which is a good thing, because it is quite tiresome to write.

The definitions of pbx, newPBX and pbxISpecs axe straight-
forward. The vector tables, vtInsert and vtLookup, are
allocated on demand, by newCoVTable. The addresses in
the vector table are obtained using foreign export. The
function thus exported is a wrapper function (wrapInser t
is an example) that takes the raw "self" interface pointer as
an argument. The purpose of this interface pointer is to get
the object state, so we give it the type CoIPRep PBX, and
provide the operation:

getCoState :: ColPRep s t -> I0 s t

which extracts the state component from an interface
pointer. Now we can pass that state on to the user-written
method i n s e r t , imported from module PBX.

It may seem strange that in Section 5 we gave interface
pointers a type (IUnk) parameterised by an interface type,
while here we parameterise a different type (CoIPRep) by
the object state. How peculiar! However, even though both
ave represented by a single address, they play quite different
roles. A value of type IUnk l i d is a client-side interface
pointer for an object held elsewhere; its state is invisible, and
when it is finalised (Section 3.3) we must call its R e l e a s e
method. In contrast, a value of type CoIPRep s t is a server-
side interface pointer; its state is visible (because the 'this'
pointer is passed to the method implementation), and when
there are no further references we need only call f r e e to
return the store to malloc.

When H/Direct is generating code for Hugs, it can only
use foreign export dynamic, so the code for vtlnsert and
vtLookup is a little more indirect, but still straightforward.

7 T h e Corn l i b r a r y

The bottom layer of the encapsulation is the fixed, generic
Haskell library Com. lhs to support COM objects. We do not
have space to present detailed code; instead we summarise
what the implementation (completely written in Haskell)
'does.

7 . 1 A c t i v a t i o n

When a client calls CoCreate lns tance (see Section 4) to cre-
ate a COM object, COM looks in the registry to find which
DLL to activate. If the DLL has not already been loaded,
COM will load it and invoke its initialisation procedure. If
the DLL holds a Haskell program, this initialisation proce-
dure runs the Haskell programs function main. As indicated
in Section 6.1, main in turns calls coRegister , passing it a
list of all the components that this DLL serves:

coRegister :: [CoComponent] -> 10 O

Once CoCreateInstance has ensured that the DLL is
loaded, it calls a standard entry point Dl lGetClass0b jec t ,
passing the CLSID of the object to be instantiated. We ar-
range that this call is forwarded to a Haskell procedure cre-
ated (at initialisation time) by coRegis te r using f o r e i g n
export dynamic. This Haskell procedure simply searches
the list of components passed to coRegister , looking for
one with a matching CLSID, and creates an instance of that
component. (In reality, it creates a so-called class factory
object for the object, which in turn can be called to create
instances of the object, but the idea is the same.)

'7.2 T h e IUaknown in t e r f ace

In Section 6.2 we said that newCoVTable and newCoInstance
worked together to provide implementation of the IUnknown
methods, Querylnterface, AddRef, and Release. In this
section we outline how this is done.

The basic idea is simple enough. Recall that we represent
an interface pointer by a malloc'd pair of a pointer to the
method vector table, and (a stable pointer to) the Haskelt
state for the object. For COM objects that use the Cam
library support, the object state is a (Haskell) pair of two
values: the "user" state (PBX in the above example), and
the "system" state. The system state in turn is a pair of (a)
a reference count for the whole object, and (b) a mapping
from an IID to an interface pointer:

type CoState st =
(IORef Int
, FiniteMap (IID ()) (CoIPRep st)
)

type Irate st =(IID (), CoIPRep st)

With this object state in mind, we can provide standard
AddRef and Release methods. They simply adjust the ref-
erence count held in the CoState. When the reference count
drops to zero, Release simply frees the stable pointer that
keeps the object's state alive. That, in turn, may cause a
number of finalizers to get called, see Section 3.3.

The standard QueryInterface method uses the IID-to-
interface-pointer mapping to do its work. The typing of
the mapping looks strange, for two reasons. First, the
Haskell type system cannot express the idea of a mapping
in which the argument value determines the result type.
One needs dependent types for that. Second, the result of
QueryIn ter face is in any case returned immediately to the
external client, so little is gained by a sophisticated typing.

With this in mind, newCoVTable uses the even-more-
primitive newVTable to do its work:

123

newVTable : : [hddr] -> VTable lid st

-- Simply calls malloc

type CoVTable iid st = VTable iid (CoState st, st)
newtype VTable lid st = VTable Addr

The function newCoVTable prepends the s tandard imple-
mentat ions for Que ry In t e r f ace , hddRef, and Release, be-
fore calling newYTable.

Finally newCoInstance allocates an interface pointer for
each interface l°, builds the finite mapping from IIDs to in-
terface pointers, and then constructs the object state. Oh!
We need the object s ta te before we can construct the inter-
face pointer! So the whole thing has to be wrapped in a
f i x I 0 knot- tying combinator.

8 R e l a t e d w o r k

Haskell is not the only advanced programming language to
provide a mapping to COM. The Harlequin Dylan system [3]
provides a well-engineered COM component framework for
Dylan, let t ing the programmer both create and use COM
components. Equipped with such powers, Harlequin Dy-
lan also provides a framework for writing ActiveX controls,
something we have yet to tackle. Component Pascal [4] and
Microsoft 's implementat ion of Java [9] are two other exam-
ples of garbage collected languages which have been inte-
grated with COM.

Component integration is becoming more widespread for
functional languages too. Mercury has a CORBA interface
[6]. A few days before we submit ted this paper, Leroy re-
leased a version of Carol tha t supports COM components,
using an architecture similar to tha t described in this paper.
We unders tand tha t work is in progress on a COM interface
for S tandard ML of New Jersey.

9 Conclusions

The main burden of this paper has been to give the details
of an encapsulation of a Haskell program as a COM compo-
nent.

It is worth stressing tha t Joe Programmer need to know
little of this. All he need do is feed the IDL for the com-
ponent to H/Direct and write the application code. All
the details of component construction, reference counting,
interface querying, and simple finalisation (such as calling
Release on interface pointers held by the object), are han-
dled automatically.

Behind the scenes, though, there are many details to a t tend
to, and we have not even discussed them all. (For exam-
ple, we omit ted many details about object registration and
finalisation.) Still, we hope to have conveyed something of
the flavour.

We have made good use of Haskell 's type system to make
application code completely type secure, and H/Direct-
generated code largely so. We found some interesting uses
of polymorphism in so doing. However, we were not able to
make all the Corn l ibrary support code type-secure.

1°Incidentally, it is easy to do this lazily, getting the behaviour of
~ear-of~ interfaces for free [1].

Figure 3: Visual Basic PBX client

All tha t we describe is implemented in H/Direc t and GHC
(though some of the function names may differ). We look
forward to exploring the possibilities of writing COM com-
ponents in Haskell. As a tiny example of this, Figure 3 shows
a Visual Basic application using the PBX server given in this
paper. Real World - here we come!

A c k n o w l e d g e m e n t s

We would like to thank Phil Wadler for suugesting the tit le
of this paper, James Hook for proofreading the drafts, and
the ICFP referees for their detailed comments and construc-
tive remarks.

R e f e r e n c e s

[1] D. Box. Essential COM. Addison Wesley, 1998. ISBN:
0-201-63446-5.

[2] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones.
H/Direct : a binary foreign language interface for
Haskell. In Proc ACM Sigplan International Con-
ference on Functional Programming (ICFP'98), Balit-
more, pages 153-162. ACM, 1998.

[3] D. Gray, J. Hotchkiss, S. LaForge, A. Shalit, and
T. Weinberg. COM simplified: Modern Languages and
Microsoft 's Component Object Model. Communica-
tions of the ACM, May 1998.

[4] D. Gruntz and B. Heeb. Direct-To-COM Compiler
Provides Garbage Collection for COM Objects. In
Proceedings of the 2nd Component User's Confer-
ence (CUC), Munich, Germany, July 1997. Available
on-line from ht tp : / /www, oberon, c h / r e s o u r c e s / c o m /
dtc_cuc_paper/index, html.

[5] L. Huelsbergen. A Portable C Interface for S tandard
ML of New Jersey. AT&T Bell Laboratories, January
1996.

124

[6] D. Jeffery, T. Dowd, and Z. Somogyi. MCORBA: a
CORBA binding for Mercury. In Gupta; editor, Prac-
tical Applications of Declarative Languages, pages 211-
227. Springer Verlag LNCS 1551, 1999.

[7] K L~iufer and M Odersky. An extension of ML with
first-class abstract types. In Workshop on ML and its
Applications. 1992.

[8] X. Leroy. Interfacing C with Objective Carol. INRIA,
Rocquencourt, France. h t t p : / / c a n a l , i n r i a , f r / o c a m l /
htmlman/.

[9] Microsoft Corporation. Visual J + + . h t tp : / /www.
microsoft, com/j ava/.

[10] S. Peyton Jones, S. Marlow, and C. Elliott. Stretching
the storage manager: weak pointers and stable names
in Haskell. Technical report, Microsoft Research, 1999.

[11] S. Peyton Jones, E. Meijer, and D. Leijen. Scripting
COM components in Haskell. In Proc Fifth Interna-
tional Conference on Software Reuse, Victoria. IEEE,
1998.

[12] S. Peyton Jones and P. Wadler. Imperat ive functional
programming. In 20th A CM Symposium on Principles
of Programming Languages (POPL'93), Charleston,
pages 71-84. ACM, 1993.

[13] D. Rogerson. Inside COM: Microsoft's Component Ob-
ject Model. Microsoft Press, 1997.

[14] J. R. Rose and H. Muller. Integrating the Scheme and
C Languages. In Proc ACM 1992 Conference on Lisp
and Functional Programming, pages 247-259, 1992.

[15] M. Serrano. Bigloo User's Manual, 1999. h t t p : / /
kaolin, unice, fr/~serrano/bigloo/bigloo, html.

[16] C. Szyperski. Component Software. Addison Wesley,
1998.

[17] M. Wallace. Calling Haskell from C using
GreenCard. ht tp : / /www, cs . york . ac. u k / f p / n h c /
CcallingHaskell. html.

A p p e n d i x : I n p u t / o u t p u t in H a s k e l l

In Haskell, a function tha t has type I n t -> In t , say, is a
function from integers to integers, no more and no less. In
part icular it cannot perform any input /ou tput . Any func-
tion tha t can perform I / O has a result type of the form I0 r .
This so-called monadic I /O has become the s tandard way to
do inpu t /ou tpu t in purely functional languages [12]. An I /O
performing function can be used in a do expression, which
serves to sequence such computations. For example:

m a i n : : I0 ()
main =

do{ 1 <- getLine
; p u t S t r (r e v e r s e 1)
}

This program uses two s tandard functions:

ge tL ine : : I0 S t r i n g
p u t S t r : : S t r i n g -> I0 ()

When main is performed, the do arranges first to perform
getLine , binding the result, of type S t r i n g to 1. The it
performs p u t S t r (r e v e r s e 1), which displays the reverse
of 1.

Many of the programs in this paper use mutable cells, similar
to ML's r e f type.

n e w I O R e f : : a - > I0 (IORef a)
r e a d I O R e f : : I O R e f a - > I 0 a

w r i t e I O R e f : : I O R e f a - > a - > I 0 ()

A value of type IORef t is a reference to a mutable cell
holding a value of type t . The primitives to allocate, read,
and write the cell are all in the I0 monad. Here is a short
example, using Haskell's do notation:

s w a p : : IORef a - > IORef a -> I0 ()
- - S w a p t h e c o n t e n t s o f t h e t w o c e l l s

s w a p a r e f b r e f =

do{ a <- readIORef aref

; b <- readIORef bref

; writeIORef aref b

; writeIORef bref a
}

A primitive IO action is also provided for tying knots,

fixIO :: (a -> IO a) -> IO a

which is the fixpoint combinator at the level of IO actions.

125

