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A b s t r a c t  

The increasing popular i ty  of component-based programming 
tools offer a big oppor tuni ty  to designers of advanced pro- 
gramming languages, such as Haskell. If we can package our 
programs as software components,  then it is easy to inte- 
grate them into applications writ ten in other languages. 

In earlier work we described a preliminary integration of 
Haskell with Microsoft 's Component  Object  Model (COM), 
focusing on how Haskell can create and invoke COM ob- 
jects. This paper  develops tha t  work, concentrating on the 
mechanisms tha t  support  externally-callable Haskell func- 
tions, and the encapsulation of Haskell programs as COM 
objects. 

1 I n t r o d u c t i o n  

"Component-based programming" is all the rage. I t  has 
come to mean an approach to software construction in which 
a program is an assembly of software components,  per- 
haps writ ten in different languages, glued together by some 
common substrate  [16]. The most widely used substrates 
are Microsoft 's Component  Object  Model (COM), and the 
Common Object  Request Broker Architecture (CORBA). 
The language-neutral  nature of these architectures offers a 
tremendous new oppor tuni ty  to those interested in exotic 
languages such as Haskell (our own interest): if we can 
present our programs in COM or CORBA clothing, then the 
client programs will neither know nor care tha t  the program 
is wri t ten in Haskell. Our Haskell programs can thereby 
inter-operate with a huge variety of other software, and a 
would-be user of Haskell is not faced with an all-or-nothing 
choice. 

In an earlier paper  we described how to instant iate  and in- 
voke COM objects from a Haskell program [11]. In tha t  
paper  we implied tha t  it would be but  a short step to be 
able to seal up a Haskell program inside a COM object, 
thus completing the picture. In practice, this abili ty proved 
more subtle than  we had supposed. This paper  tells the 
story. 
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The main contribution is the overall design of our Haskell 
COM server. More specifically: 

Our design is carefully factored, so tha t  it can easily 
work with a variety of Haskell implementations,  in- 
cluding interpreters (the la t ter  is trickier than it may 
at first appear) .  Most of the required functionality is 
encapsulated in Our separate H/Direc t  tool, or in li- 
brary  modules wri t ten in Haskell. This "arms-length" 
design does not come at the price of convenience; it  is 
still extremely easy to create COM components,  and to 
implement a COM component in Haskell. Many other 
COM interfaces have a tighter,  and hence less portable,  
integration with the compiler (Visual Java, for exam- 
pie). 

The only facility required from the Haskell implemen- 
tat ion is a foreign language interface tha t  (a) supports  
the import  and export  of Haskell functions, and (b) 
provides hooks for managing pointers from Haskell to 
the external world, and back again. Our earlier paper  
described : foreign import  and : fore ign expor t ,  exten- 
sions to Haskell that  allow it to call, and be called by, 
an external program. It  turned out that  to support  
callbacks and COM objects we need a more dynamic 
form of these primitives, : foreign import  dynamic and 
: foreign expor t  dynamic. We motivate ~md describe 
these primitives (Section 3). 

Even though COM does not support  parametr ic  poly- 
morphism, we show how polymorphism can be used 
to: encode the (interface) inheritance structure of in- 
terface pointers; connect interface pointers with their 
globally-unique identifiers (GUIDs); and ensure tha t  
object vector tables are only paired with appropria te  
object states (Section 5). 

COM is very general, but  it requires quite a bit  of 
C + +  code to build a COM object,  usually suppor ted  
by "wizards" of some sort. We are instead able to pro- 
vide a l ibrary of higher-order functions tha t  make it 
easy to construct COM objects without  wizardly sup- 
port  (Section 6). 

Overall, we give an elegant and easy-to-use design for using 
building and using COM objects in Haskell. In some ways 
there is nothing really difficult about  it, but  it has neverthe- 
less taken us over a year to evolve, so it is certainly a more 
subtle task than we initially appreciated.  
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Figure 1: A COM component in Haskell 

2 O v e r v i e w  

We begin by giving an overview of our architecture (Fig- 
ure 1). A Haskell program (grey box) tha t  implements a 
COM component consists of three parts: 

• The application code, writ ten in Haskell by the pro- 
grammer (labelled "user" in Figure 1). 

• A collection of automatical ly-generated Haskell "boil- 
erplate modules",  one per COM class. Each of these 
modules is generated by our H/Direct  tool from an In- 
terface Definition Language (IDL) specification of the 
classJ These modules deal with the "impedance mis- 
match" between Haskell and COM. 

• A Haskell l ibrary module, Com, which exports all the 
functions needed to support  COM objects in Haskell 
(labelled "library"); and a C l ibrary module that  pro- 
vides some run-t ime support .  

Our earlier paper  discusses the pros and cons of using a sep- 
arate interface definition language, IDL, to define the inter- 
face between COM components,  and we do not repeat  tha t  
discussion here [2]. Notice, however, that  we use IDL and 
H/Direct  both when invoking a COM object from a Haskell 
program, and when implementing a COM object in Haskell. 
In each case da ta  flows across the border in both directions, 
so there are clear similarities. 

Notice tha t  H/Direct  generates only Haskell modules; it does 
not also generate C code. This design choice minimise the 

1Optional ly,  the  bo i le rp la te  code  can  be pu t  inside one module .  

number of files and tools tha t  the programmer h a s t o  deal 
with. 

3 T h e  fore ign  f u n c t i o n  in ter face  

H/Direct  generates Haskell code tha t  marshalls values be- 
tween Haskell and the foreign language. But in the end, it 
must  generate a real call to the foreign procedure, passing 
parameters.  This foreign call can only be expressed using 
some extension to the Haskell language. The same is true if 
we want a foreign procedure to call a Haskell function. In 
this section we describe a set of language extensions tha t  
address this need. 

We have carefully minimised what  is required from the lan- 
guage implementation, while maximising the work done by 
H/Direct .  In this way, any Haskell tha t  implements our ex- 
tensions can interface with COM, using the implementat ion- 
independent H/Direct  to do most of the work. 

3.1 Fore ign  s ta t i c  i m p o r t  and  e x p o r t  

Earlier versions of GHC (the Glasgow Haskell Compiler) 
provided c c a l l  (or even casm) to invoke a C procedure [12]. 
However, while this facility is (fairly) easy to support  in a 
compiler tha t  uses C as an intermediate language, it is a 
bit  more difficult when using a native code generator, and 
well-nigh impossible when using an interpreter  such as Hugs. 
Furthermore, it says nothing about  how to allow C to call 
Haskell, or how to inter-operate with procedures with non-C 
calling conventions. 

Our new foreign function interface is much simpler. Here is 
an example of how to import  a foreign procedure: 

foreign import "hash32" hash :: Int -> IO Int 

This f o r e i g n  declaration is modeled directly on the 
p r i m i t i v e  declaration tha t  Hugs has supported for some 
time. The declaration defines the Haskell If} action hash 
which, when invoked, will call the external procedure 
hash32. The implementat ion of hash also takes care of con- 
verting between the Haskell representation of an I n t  and 
the corresponding external representation. 

The result of hash has type I0 I n t  rather  than simply In t ,  
to signal that  hash might perform some inpu t /ou tpu t  or 
have some other side effect. We give a short summary of 
the If} monad in the Appendix.  

The range of types tha t  can be passed to and from a foreign- 
imported procedure is deliberately restr icted to the (small) 
set of primitive types. By a "primitive type" we mean one 
that  cannot be defined in Haskell, such as In t ,  F l o a t ,  Char. 
Only the language implementat ion knows the representation 
of primitive types, and so only the language implementat ion 
can marshall  them. For all other types, such as lists or Boo1, 
H/Direct  is used to generate marshalling code. The same 
restriction applies to the other variants of f o r e i g n  tha t  we 
discuss later, for the same reasons. 

3.2 Var ia t ions  on  t h e  t h e m e  

We support  several variants of the basic foreign declara- 
tion: 
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• The name of the external procedure can be omitted, 
in which case it defaults to the same as the Haskell 
procedure. 

foreign import hash :: Int -> I0 Int 

• If the programmer is sure that the foreign procedure is 
really a function - -  that is, it has no side effects - -  he 
can write the type as a non-I0 type: 

foreign unsafe import "sin" 
sin :: Double-> Double 

The "unsafe" keyword highlights the fact that  the pro- 
grammer undertakes a proof obligation, namely that 
the function really is a function. We use this conven- 
tion uniformly (also e.g. in unsafePerformIO), so that 
a programmer can find all his proof obligations by say- 
ing grep unsafe.  

• By default, f o r e i g n  import uses the C calling con- 
vention, but  the convention can instead be specified 
explicitly: 

foreign unsafe import ccall "sin" 
sin :: Double-> Double 

We also support the standard calling convention 
( s t d c a l l )  used in Win32 environments. 

* In many systems it is necessary to specify the library 
or DLL" in which the external procedure can be found. 

foreign unsafe import "MathLib" "sin" 
sin :: Double-> Double 

A similar declaration allows the programmer to expose a 
Haskell function to the outside world: 

foreign export "put_char" putChar :: Char -> IO () 

This exports a C-callable procedure put_char  that  in turn  
invokes the Haskell function putChar, marshalling the pa- 
rameter appropriately. The calling convention can be spec- 
ified, just  as with f o r e i g n  import, and a pure (non-I/O) 
Haskell function can be exported just  as easily (no need for 
"unsafe" here): 

foreign export fibonacci :: Int -> Int 

Similar to the foreign import case, when the external name 
of the exposed function is ommited, it defaults to the same 
name as the Haskell function. 

3.3 S t a b l e  p o i n t e r s  a n d  fo re ign  objects 

It is often necessary to pass a Haskell value (pointer) to an 
external procedure. This raises two difficulties: first, the 
Haskell garbage collector cannot tell when the Haskell value 
is no longer required; and second, the value may be moved 
by the (copying) garbage collector. We solve both these 
problems by registering the Haskell value as a stable pointer. 
This registration (a) returns a stable value (a small integer) 
that names the value, and will not change during garbage 
collection, and (b) tells the garbage collector to retain the 

2Dynamically Linked Library 

value until told otherwise. Subsequently, the stable pointer 
can be dereferenced to recover the original Haskell value. 

An exactly dual problem arises when we want to pass to a 
Haskell program a pointer to an external object (e.g. a file 
handle, mal loc 'd  block, or COM interface pointer). Often, 
we would like to be able to call f c lose ,  or f ree ,  on the 
external reference when the Haskell garbage collector finds 
that it is no longer required. Such "run this when the object 
dies" behaviour is called finalization. 
We have defined extensions to Haskell to support both stable 
pointers and finalisation. They are described in detail in a 
companion paper [10], so we do not discuss them further 
here. 

3.4 D y n a m i c  i m p o r t  

The f o r e i g n  import primitive is fine if we know the name of 
the C function we want to invoke. But sometimes we don't .  
Notably, when invoking a COM object, we start from an 
interface pointer, which points to a location that  points to a 
vector table of methods (we discuss this more in Section 4). 
To invoke the method, we must fetch the address of the 
method from the vector table, and call it. f o r e i g n  import 
simply doesn't do the job; it works fine for link-time or load- 
time binding, but  not at all for run-t ime binding. 

To address this deficiency, we first need a new primitive 
Haskell data type, Addr, that  represents a machine address. 
(We could have used In t ,  but  that  seems unsavory.) Next, 
we extend f o r e i g n  import with a dynamic attribute: 

foreign import dynamic 
hashMethod :: Addr-> (Int -> IO Int) 

This defines a Haskell function hashMethod, whose type is 
as specified. Function hashMethod takes the address of the 
foreign procedure, which must be of type Addr, and returns a 
fully-fledged Haskell function that,  when applied, will invoke 
the foreign procedure. Consider the following example: 

do{ h <- ...get addr of hash procedure... 

-- h has type Addr 

; let hash = hashMethod h 

; rl <- hash 34 

; r2 <- hash 39 

) 

h is the address of a suitable C procedure; hashMethod turns 
h into a Haskell function of type I n t  -> I0 In t ,  which is 
then invoked twice. Of course, if h is bound to a bogus 
address then terrible things will happen. 

It is rather simple to implement f o r e i g n  import dynamic. 
The only difference from the static version is that  the call 
takes place to a supplied argument, rather than to a static 
label. This contrasts sharply with its dual, dynamic export, 
which we study next. 

3.5 D y n a m i c  e x p o r t  

Just as f o r e i g n  import is inadequate in general, so is 
f o r e i gn  export ,  for two reasons. First, f o r e i g n  export  
only makes sense in a compiled setting, since its effect is to 
generate a code label that  is externally visible; an interpreter 
cannot reasonably implement f o r e i g n  export .  
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Second, f o r e i g n  export  works on top-level functions. But 
we might want to export arbitrary functions. For example, 
external library procedures quite often take a callback pa- 
rameter; that  is, a pointer to ~ procedure that  the external 
procedure will itself call. For example, the Win32 API pro- 
vides a function that allows you to iterate over the current 
list of open windows: 

typedef BOOL (*WNDENUMPROC) (HWND, LPARAM) ; 
BOOL EnumWindows( WNDENUMPROC enumFunc 

, LPARAM iParam 
); 

The system call takes a pointer to a callback procedure to 
invoke for each open window, together with a value iparam 
that we'll ignore for now. The callback procedure returns a 
boolean value to indicate whether we should stop iterating 
over the windows or not. 

The system call itself can easily enough he imported into 
Haskell 3 

type BOOL = Int 
type LPARAM = Int 
type WNDENUMPROC = Addr 

foreign import "EnumWindows" 
enumWindows :: WNDENUMPKOC -> LPARAM -> IO BOOL 

But what to do with the callback? We want to implement 
it in Haskell, so the callback will have to be dressed up to 
appear like a C function pointer. One way would be to 
use f o r e i g n  export  to export a Haskell procedure as a C 
procedure, and add some mechanism to give Haskell access 
to the address of that C procedure, to pass to enumWindous. 

But there is a much more elegant solution. We provide a 
dynamic form of f o r e i g n  export ,  thus: 

type HWND = Addr 
foreign export dynamic 

mkWndEnumProc :: (HWND -> LPARAM -> I0 B00L) 
-> IO WNDENUMPROC 

This declaration defines a Haskell function mkWndEnumProc, 
with the type specified. Function rakWndEnumProc takes an 
arbitrary Haskell function value of the given type as its single 
argument, and returns a C function pointer. This C function 
expects to find two arguments on the C stack; it marshalls 
them into the Haskell world, and passes them to the Haskell 
function that  was passed to mkWndEnumProc. Here is an ex- 
ample of its use4: 

windowTitles :: IO [String] 
windowTit les = 

do{ ref <- newIORef [] 
; let getTitle :: HWND -> LPAKAM -> I0 BOOL 

getTitle hwnd ip = 
do{ t <- getWindowTitle hwnd 

; ts <- readIORef ref 
; writeIORef ref (t:ts) 
; return (boolToInt True) 
} 

; cback <- mkWndEnumProc getTitle 
; enumWindows cback (0: :Int) 
; readIORef ref 

SWe declare types BOOL, LPARAM, etc as Haskell type synonyms that 
mimic the C header file definitions of these types. Such type declara- 
tions are usually generated automatically by H/Direct. 

4The Appendix introduces IOB.efs. 

} 

Here, g e t T i t l e  is the callback procedure; it is called for each 
window, passing the window handle and the LPAPAM value. 
It in turn calls getWindowTitle (another foreign-imported 
procedure) to get the window title, and puts it onto the front 
of a list of window titles, kept in a Haskell mutable variable 
ref. 

The Haskell function g e t T i t l e  is turned into a C-callable 
procedure cback (of type Addr) by mkWndEnumProc, the func- 
tion defined by the f o r e i g n  export  dynamic declaration. 
Finally cback is passed to enumWindows. 

Phew! We do not want to claim that  this is beautiful pro- 
gramming style. For example, it is rather gruesome to use 
a mutable variable in g e t T i t l e .  But the style is dictated 
by the architecture of Windows system calls; we are stuck 
with it. However, we are now ready to understand quite a 
bit about f o r e i gn  export  dynamic: 

• The callback function g e t T i t l e  is a first class Haskell 
value. It is not a top-level function, as must be the case 
for a static f o r e i gn  export.  In this case, g e t T i t l e  has 
a free variable, ref ,  the mutable cell that  it updates. 

This capability is modeled in C by the LPARAM parame- 
ter. The system call accepts LPAPAM as well as the call- 
back procedure, and passes LPARAM each time it calls 
the procedure. In effect, the (callback, LPARAM) pair 
constitutes a closure, of code plus environment. 

In this particular case, a C programmer would use 
LPAB.AM to point to a location in which the list is ac- 
cumulated, just like ref .  If there were many free 
variables, matters would be less simple. The Haskell 
programmer does not need to bother with LPARAM - -  
indeed, 1p is unused in the definition of g e t T i t l e .  
mkWndEnumProc captures a first-class Haskell value, free 
variables and all. Higher-order programming in C! 

• m.kWndEnuroProc encapsulates a Haskell value as a C 
function pointer. To do this, it first registers the 
Haskell value as a stable pointer (Section 3.3), and then 
embeds the stable pointer in the C function. The pro- 
grammer can explicitly free the retained Haskell value 
using: 

freeHaskellFunctionPtr :: Addr -> IO () 

This operation cannot be done automatically, since it 
depends on knowing that  the exported function pointer 
is no longer needed externally. 

• As with the other f o r e i g n  declaration variants, a 
f o r e i gn  export  dynamic also allows you to specify 
which calling convention the returned function pointer 
should expect. 

3.6 I m p l e m e n t i n g  d y n a m i c  export  

Dynamic export is considerably harder to implement than 
dynamic import, because we have to generate a C function 
pointer that cannot be static, because it must somehow refer 
to the Haskell function it encapsulates. This forces us to 
perform a little bit of dynamic code generation. 

Our implementation for the Glasgow Haskell Compiler 
works by taking advantage of the static version of f o r e i g n  
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expor t .  Here, for example, is how we implement 
mkWndEnumProc. We repeat  its declaration here: 

foreign export dynamic 
mkWndEnumProc :: (HWND -> LPARAM -> I0 BOOL) 

-> I0 WNDENUMPROC 

GHC first generates code exactly as if the programmer had 
written: 

foreign export 
wndEnumProc : : HWND -> LPARAM 

-> StablePtr (HWND->LPAPAM->I0 B00L) 
-> If] Bf]f]L 

wndEnumProc h i sp = 
do{ f <- deRefStablePtr sp 

; f h 1 
} 

wndEnumProc takes an extra  argument,  a stable pointer to 
the function value (Section 3.3); it simply dereferences the 
stable pointer,  and calls the function it gets back. Now, 
GHC generates code for mkWndEnumProc, which does three 
things: 

• registers the Haskell function as a stable pointer; 

• dynamical ly generates a code fragment; 

• returns the address of this dynamical ly generated code. 

The dynamical ly-generated code consists of two or three in- 
structions: 

add-param <function pointer> 
jump .ndEnumProc 

The add-param "instruction" must be whatever machine 
code is necessary to pass one ext ra  parameter  - -  often 
this is just  a mat te r  of pushing it on the stack (perhaps 
also moving the re turn address). Once this is done, the 
s ta t ical ly-exported vndEnumProc will do the rest. Clearly, 
the dynamic-code-generation par t  is highly architecture de- 
pendent,  but  it  is also very short, and is not hard in practice. 

Unfortunately, this solution won't  work at all for the Hugs 
interpreter,  because an interpreter  can ' t  support  stat ic 
: foreign expor t .  Instead, the Hugs implementation of 
mkWndEnumProc dynamical ly generates the following segment 
of machine code: 

push <:function pointer> 
push <type descriptor> 
jump GenericCaller 

Here <type descriptor> is a (pointer to a C-format) string 
tha t  encodes the type signature of the function. The 
<:function p o i n t e r >  is a stable pointer to the Haskell func- 
tion value, as before. Finally, G e n e r i c C a l l e r  is a fixed piece 
of code tha t  (a) uses the type descriptor to marshall  da ta  
from C to Haskell, (b) calls the specified Haskell function, 
(c) marshalls the Haskell result back, and (d) returns to the 
C caller. G e n e r i c C a l l e r  is highly machine dependent,  since 
it must  know all about  the caller 's calling conventions; but  
at least it need only be wri t ten once. 

3.7 R e l a t e d  w o r k  

Foreign function interfaces (FFIs)  are clearly of great use, 
but  papers  describing them are relatively thin on the ground. 

Most functional programming systems provide a FFI ,  allow- 
ing calls to external functions to embedded within functional 
code. However, few provide equally good support  for the 
outside to call in. The e s h  Scheme implementat ion [14] is a 
notable exception; it was designed with the explicit goal of 
making hybrid Scheme and C / C + +  applications easier to 
write. Another,  more recent system is the Bigloo Scheme 
compiler [15]. 

For ML-based languages, the Standard  ML of New Jersey 
compiler 's foreign function interface does also provide sup- 
por t  for call-ins [5]. Function closures can be dressed up 
behind a C function pointer, which can then be passed out 
to the outside world, making it similar in power to foreign 
export dynamic. 

A similar approach is provided by the Objective Caml F F I  
[8], which requires exported functions to be registered by 
giving them a name (an arbi t rary  string) from within OCaml 
code. The run-t ime system provides a C callable entry point 
for looking up the OCaml function closure tha t  hides be- 
hind a name, and invoke through a class of invocation func- 
tions. This scheme requires tha t  the user makes up the 
difference using C, writing a lit t le bit  of s tub code that  does 
the lookup and invokes the function by marshall ing and un- 
marshalling the arguments and results. Contrast  this with 
f o r e i g n  expor t  dynamic which makes the Haskell-nature 
of the function pointers it re turns t ransparent  to the user. 

To our knowledge, the only other Haskell system tha t  pro- 
vides support  for externally-callable Haskell functions is the 
NHC 1.3 compiler [17], which provides a basic export  mech- 
anism similar to tha t  of Objective Caml's.  

4 H o w  C O M  w o r k s  

Before we can describe how to encapsulate a Haskell pro- 
gram as a COM component,  we have to digress briefly to 
explain how COM works. We concentrate exclusively on how 
COM works, rather  on why it works tha t  way; the COM lit- 
erature deals with the la t ter  topic in detail  [13]. This section 
is closely based on our description in [11]. 

Here is how a client, wri t ten in C, might create and invoke 
a COM object: 

/*  C r e a t e  t h e  o b j e c t  * /  
err_code = CoCreateInstance ( cls_id 

, iface_id 
, &iptr 
); 

if (not SUCCEEDED(err_code)) { 

• . .error recovery... 
} 

/*  Invoke a method */  
( * i p t r ) [ 3 ] (  i p t r ,  x,  y ,  z ) ;  

The procedure CoCrea te Ins tance  is best  thought of as an 
operat ing system procedure. (In real life, it takes more pa- 
rameters than those given above, but  they are un impor tan t  
here.) Calling CoCrea te Ins t ance  creates an instance of an 
object whose class identifier, or CLSID, is held in c l s _ i d .  
The class identifier is a 128-bit globally unique identifier, or 
GUID. Here "globally unique" means tha t  the GUID is a 
name for the class tha t  will not (ever) be re-used for any 
other purpose anywhere on the planet. A s tandard  uti l i ty 
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"Vtbl pointer" 
(not shared) 

Interface 

pointer 
/ '. 

" Object " 
state 

"Virtual function table" 
(shared by all instances) 

Querylnterface 

:! = AddRef 

: = Release 
I 

other 
I 

: ~ methods 

Figure 2: Interface pointers 

allows an unlimited supply of fresh GUIDs to be generated 
locally, based on the machine's IP address and the date and 
time. 

The code for the class is found indirectly via the system 
registry, which is held in a fixed place in the file system. 
This double indirection of CLSIDs and registry makes the 
client code independent of the specific location of the code 
for the class. Next, CoCreateInstance loads the class code 
into the current process (unless it has already been loaded). 
Alternatively, one can ask COM to create a new process 
(either local or remote) to run the instance. 

4.1 I n t e r f a c e s  and  m e t h o d  i n v o c a t i o n  

A COM object supports one or more interfaces, each 
of which has its own globally-unique interface identifier 
or IID. That  is why CoCreateInstaace takes a second 
parameter, i f ace_ id ,  the IID of the desired interface; 
CoCreateInstance returns the interface pointer of this inter- 
face in i p t r .  There is no such thing as an "object pointer", 
or "object identifier"; there are only interface pointers. 

The IID of an interface uniquely identifies the complete sig- 
nature of that interface; that  is, what methods the interface 
has (including what order they appear in), their calling con- 
vention, what arguments they take, and what results they 
return. If we want to change the signature of an interface, 
we must give the new interface a different IID from the old 
one. That  way, when a client asks for an interface with a 
particular IID, it knows exactly what that interface provides. 

A COM interface pointer is (deep breath) a pointer to a 
pointer to a table of method addresses (Figure 2). Notice 
the double indirection, which allows the table of method ad- 
dresses to be shared among all instances of the class. Data 
specific to a particular instance of the class, notably the 
object's state, can be stored at some fixed offset from the 
"vtbl pointer" (Figure 2). The format of this information is 
entirely up to the object's implementation; the client knows 
nothing about it. Lastly, when a method is invoked, the in- 
terface pointer must be passed as the first argument, so that 
the method code can access the instance-specific state. Tak- 
ing all these points together, we can now see why a method 
invocation looks like this: 

( * i p t r ) [ 3 ] (  i p t r ,  x, y, z ) ;  

None of this is language specific. That  is, COM is a binary 
interface standard. Provided the code that  creates an ob- 
ject instance returns an interface pointer that  points to the 
structures just  described, the client will be happy. In theory, 
the parameter passing conventions for each method can be 
different (but fixed in advance). In practice, they match the 
_ _ s t d c a l l  convention used by C and C + + .  

Interface pointers provide the sole way in which one can in- 
teract with a COM object. This restriction makes it possible 
to implement location transparency (a major COM war-cry), 
whereby an object's client interacts with the object in the 
same way regardless of whether or not the object is in the 
same address space, or even in the same machine, as the 
client. All that is necessary is to build a proxy interface 
pointer, that does point into the client's address space, but 
whose methods are stub procedures that  marshal the data 
to and from across the border to the remote object. 

4.2 G e t t i n g  o t h e r  in ter faces  

A single COM object can support more than one interface. 
But as we have seen before CoCreateInstaace returns only 
one interface pointer. So how do we get the others? Answer: 
every interface supports the QueryIn te r face  method, which 
maps an IID to an interface pointer for the requested IID or 
fails if the object does not support the requested interface. 
So, from any interface pointer, i p t r ,  on an object we can 
get to any other interface pointer, i p t r2 ,  which that object 
implements. For example: 

err_code = (*iptr)[0]( iptr, lid2, &iptr2 ); 

Why "[0]"? Because QueryInterface is at offset 0 in every 
interface. 

The COM specification requires that QueryInterface be- 
haves consistently. The IUnknown interface on an object is 
the identity of that object; queries for IUnknown from any 
interface on an object should all return exactly the same 
interface pointer. Queries for interfaces on the same ob- 
ject should always fail or always succeed. Thus, the call 
( * ip t r )  [0] ( i p t r ,  i i d2 ,&ip t r2 )  should not succeed at one 
point, but fail at another. Finally, when viewed as a binary 
relation over interfaces on a component, QueryIn te r face  
should be an equivalence relation. 

4.3 R e f e r e n c e  c o u n t i n g  

Each object keeps a reference count of all the interface point- 
ers it has handed out. When a client discards an interface 
pointer it should call the Release method via that  inter- 
face pointer; every interface supports the Release method. 
Similarly, when it duplicates an interface pointer it holds, 
the client should call the AddReg method via the interface 
pointer; every interface also supports the AddRef method. 
When an object's reference count drops to zero it can com- 
mit suicide - -  but. it is up to the object, not the client, to 
cause this to happen. All the client does is make correct 
calls to AddRef and Release. 

Every interface supports the three methods 
QueryInterface, AddKef, and Release. The three together 
constitute the IUnknown interface, which every other inter- 
face extends. 
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[object, 
uuid(00000000-0000-0000-C000-000000000046), 
pointer_default(unique) 

] 

interface IUnknown { 
HRESULT QueryInterface( [in] REFID iid, 

[out] void **ppv ); 
ULONG AddrRef( void ); 
ULONG Release( void ); 

} 

[ object, uuid(...) ] 
interface ILookup : IUnknown { 
HRESULT LookupByName ( [in,string]char* name, 

[out,string]char** number ) ;  
HRESULT LookupByNumber( [in,string]char* number, 

[ o u t , s t r i n g ] c h a r * *  name ) ;  
} 

[ object, uuid(...) ] 
interface IInsert : IUnknown { 
HKESULT Insert( [in,string]char* name, 

[in,string]char* number ); 
} 

[ uuid(...) ] 
coclass PBX { 

[default] interface ILookup; 
interface interface IInsert; 

} 

4.4 Describing interfaces 

Since every IID uniquely identifies the signature of the in- 
terface, it is useful to have a common language in which to 
describe that  signature. COM has such a language, called 
IDL (Interface Definition Language), but  IDL is not part of 
the core COM standard. You do not have to describe an 
interface using IDL, you can describe it in classical Greek 
prose if you like. All COM says is that one IID must identify 
one signature. 

Describing an interface in IDL is useful, though, because it 
is a language that  all COM programmers understand. Fur- 
thermore, there are tools that read IDL descriptions and 
produce language-specific declarations and glue code. For 
example, the Microsoft MIDL compiler can read IDL and 
produce C + +  class declarations that make COM objects 
look exactly like C + +  objects (or Java, or Visual Basic). 

As a short example, Figure 4.4 gives the IDL description 
Of the IUnknown interface, the interface that  every other 
extends. The 128 bit long constant is the GUID for the 
IUnknown interface. Also presented are the class and inter- 
face declarations for a simple telephone directory compo- 
nent, PBX. The PBX class supports two interfaces, ILookup 
and I I n s e r t .  The former has two methods, in addition 
to the standard IUnknown methods, while the latter has 
one. (The class and interface GUIDs are elided to " . . . "  
for brevity.) 

5 P o l y m o r p h i s m  exp re s se s  s ing le  inheritance 

Our earlier paper showed how to create and invoke COM 
components from Haskell. We found that  we were able to 
make compelling use of polymorphism to offer type secu- 

rity right at the heart of our implementation. Here are the 
types of the Haskell equivalents of CoCreateIns tance and 
QueryInterface:  

coCreateInstance :: CLSID -> IID iid -> I0 (IUnk lid) 
queryInterface :: IID lid -> IUnk a -> I0 (IUnk iid) 

• CLSID is the type of class GUIDs. 

• IID i i d  is the type of interface GUIDs, but parame- 
terised by, i i d ,  the "interface type". 

$ IOnk l i d  5 is the type of interface pointers, again pa- 
rameterised by its interface type. 

The polymorphism in coCreateInstance and query-  
I n t e r f a c e  elegantly ensures that the interface pointer re- 
turned is statically checked to support the same methods as 
the IID that was passed. 

Whenever coCrea te Ins tance  or q u e r y I n t e r f a c e  obtains a 
new interface pointer of type IUnk l i d  from COM, it at- 
taches a finaliser to it (Section 3.3), so that  when the Haskell 
program lets go of the interface pointer, the finaliser will 
automatically call Release. In this way, managing COM 
object reference counts is invisible to the programmer. 

5.1 I n t e r f a c e  t y p e s  

What  are these "interface types"? For every interface 
(GUID) defined in the IDL for a component, H/Direct sim- 
ply define a fresh Haskell type - -  the interface type. There 
is a one-to-one correspondence between interface IDs and in- 
terface types, which is why we use " i id"  for a type variable 
that  ranges over interface types. 

Strangely, such an interface type is an abstract data type 
with no operations, nor do we ever create a value of the type. 
For example, consider the ILookup interface in Figure 4.4. 
When fed this IDL, H/Direct will produce a Haskell module 
containing the following declarations (among others): 

da ta  ILookupT a = ILookupT 
-- The interface type 

type ILookup a = IUnknown (ILookupT a) 

iidlLookup :: lID (ILookupT O) 
iidlLookup = newlld "...GUID for ILookup..." 

The interface type for ILookup is called ILookupT. It is de- 
clared as an algebraic da ta  type with a single constructor 6 
We will return shortly to the type parameter for ILookupT; 
just  ignore it for now. Next, there is a type synonym, that  
defines ILookup a to be the type of interface pointers for in- 
terfaces of type ILookup. Finally, a suitably-typed interface 
ID for ILookup is defined. 

H/Direct also generates client stub definitions for the meth- 
ods of the interface: 

lookupByName : :  String -> ILookup a -> IO String 
1ookupByNumber :: String -> ILookup a -> I0 String 

Sin the  real  i m p l e m e n t a t i o n  i t  is ca l l ed  "IIlnknown", b u t  "IUnk" 
m a d e  o u r  t y p e s e t t i n g  easier!  

6It  wou ld  b e  b e t t e r  to  dec l a r e  it as a t y p e  w i t h  no  c o n s t r u c t o r s ,  
s ince  we neve r  use  t h e  c o n s t r u c t o r ,  b u t  Haske l l  does  n o t  a l low t h a t .  
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Notice tha t  these each take a typed interface pointer as their 
argument. It is impossible for the Haskell application to ac- 
cidentally call lookupByName passing it an interface pointer 
to an I I n s e r t  interface, say. And the only way the applica- 
tion can construct an interface pointer of type ILookup a is 
by calling coCreateInstance or queryInterface! 

5.2 I n h e r i t a n c e  

Why is ILookupT parameterised? Because it is possible to 
define another interface that  extends ILookup. The IDL 
might look like this: 

interface ISearch : ILookup { ... } 

Given this, H/Direct  will generate the following: 

d a t a  ISearchT a = ISearchT 

type  ISearch  a = ILookup (ISearchT a) 

i i d I S e a r c h  : :  IID (ISearchT ())  
i i d I S e a r c h  = . . .  

Now, the b e a u t i f u l t h i n g i s t h i s : i f I  have an interface pointer 
o f type  ISea rch  t ,  then I can  use lookupByName on it. Why? 
Because 

ISearch t = ILookup (ISearchT t) 

(just by expanding the type synonym for ISearch). That 
is, every interface pointer for ISearch  is automatically an 
interface pointer for ILookup, and indeed also an interface 
pointer for IOnknown. 

Now we can understand the type of i i d I S e a r c h  as well: 

iidISearch :: IID (ISearchT ()) 

i i d I S e a r c h  is the interface ID for ISearch  exactly, ex- 
pressed by instantiat ing the type parameter  to () .  

In short, we have been able to use simple polymorphic in- 
s tant iat ion to model (single, interface) inheritance, which 
luckily is precisely what COM requires. In retrospect the 
idea is quite obvious, and perhaps has been invented many 
times before, but  we have been unable to find a published 
account. 

6 E n c a p s u l a t i n g  H a s k e l l  as  a C O M  c o m p o n e n t  

Next, we turn to our third main theme, the task of im- 
plementing a specified COM component in Haskell. The 
start ing point is an IDL specification for the interface(s) the 
component must offer; as a running example we use the tele- 
phone directory given in Figure 4.4. This is closely based 
on the example used in [4] to introduce Component Pascal 's 
support  for interacting with COM. 

We tackle the encapsulation in three clearly-separated "lay- 
ers" (Figure 1): 

• Code writ ten by the application programmer writes 
(Section 6.1). There are two things to do here: pro- 
vide an implementation of the component,  and register 
it with COM so that  other components can invoke it. 

• Code generated by H/Direct  from the PBX IDL (Sec- 
tion 6.2). This boilerplate code deals with marshalling 

arguments between Haskell and the client; it also deals 
with creating the component 's  vector tables and inter- 
face pointers in exactly the form expected by COM 
clients. 

• Fixed code that  lives in the Corn l ibrary (Section 7). 

6.1 T h e  p r o g r a m m e r ' s  e y e  v i e w  

Wha t  does the Haskell programmer have to do to implement 
PBX in Haskell? First  he feeds the IDL to H/Direct ,  which 
generates a Haskell module PBXProxy.hs (Figure 1). This 
module imports  a Haskell module PBX. lhs ,  which provides 
the programmer 's  implementation of the PBX functionality. 
H/Direct  optionally outputs  a skeleton for this module, but  
the programmer must complete it by providing: 

• A type declaration for the state of the PBX object. This 
type is given the same name as the class. For example: 

type Name = String 
type Number = String 
type PBX = IORef [(Name,Number)] 

Here the s t a t e  PBX is held in a mutable IORef cell. 
The advantage of using mutable  references over a more 
"functional" state-transformer style is tha t  under the 
former scheme, the Haskell signatures for using com- 
ponents and for implementing components in Haskell 
are uniform. 

• An initialiser, initPBX, for the PBX state. For example: 

initPBX :: I0 PBX 
initPBX = newIORef [] 

• An implementation for each method. The Haskell type 
of each method is derived from the corresponding IDL 
type; this type translat ion is given in detail in [2]. For 
example: 

lookupByName :: String -> PBX -> I0 String 
lookupByName want pbx = 

do{ pairs <- readIORef phx 
; maybe (lookup want pairs) 

(coError E_Fail) (return) 
} 

The last parameter  of each method is the state of 
the object. The function coError  raises an excep- 
tion in the I0 monad, passing the E_Fai l  return code, 
which is marshalled into COM's E_FAIL return code by 
H/Direct .  

Finally, the programmer must make the new component 
known to COM by supplying a main module, Main. lhs ,  as 
follows: 

module Main where 

import Com(coRegister) 
import PBXProxy(pbx) 

main :: I0 () 
main = coKegister [pbx] 
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When the Haskell program is run, the call to coRegis ter  
registers the component(s) defined in its argument list. This 
step registers Haskell functions through which a client can 
create instances of the component(s). 

If a single Haskell program implements more than one COM 
component, main would import several Proxy modules, and 
would have several items in the list passed to coRegister .  

And that is all the programmer has to do! Next, we look 
behind the scenes, and study the PBXProxy and Com modules. 

6.2 C r e a t i n g  a c o m p o n e n t  i n s t a n c e  

H/Direct generates the module PBXProxy from the IDL for 
PBX, which exports the single value pbx. This value pbx en- 
capsulates the complete implementation of the component ~ 

pbx :: CoComponent 

data CoComponent 
= CoComponent 

{ componentCLSID : : CLSID 
, componentProgID :: String 
, newInstance :: IID lid -> I0 (IUnk iid) 
} 

A CoComponent is a triple of: a class ID, the unique 128- 
bit "name" of the class; a prog ID, a human friendly string 
through which the class ID can be looked up in the registry; 
and a function to create a new instance of the component. 
The first two fields are easy to generate from the IDL. ~Ve 
will focus on the last, newInstance. 

To create an instance of a COM component we need to con- 
struct an interface pointer that  looks precisely as depicted in 
Figure 2. We represent an interface pointer as a pointer to 
a mal loc 'd  pair of (a) a method vector table pointer and (b) 
a (stable pointer to) the object's state s. All the interfaces 
for a particular object share a common state. So there are 
two things we must be able to do: 

1. Create a method vector table. In the compiled imple- 
mentat ion we could do this statically, but  that is not 
possible in Hugs, so we provide a function that  dynam- 
ically builds a vector table. 

type CoVTable iid st = ... 

newCoVTable :: [Addr] -> CoVTable iid st 

Function newCoVTable uses malloc to allocate a fixed, 
never-freed, vector table, returning its address as a 
Haskell closure via unsafePerformI0.  By reflecting 
Haskell's underlying laziness and sharing in this way, 
we get sharing and laziness of vector tables for free! 

The CoVTable type is parameterised by the interface 
type ( l id )  of the interface it implements, and object 
state (s t )  understood by the methods. 

7The  ac tua l  d a t a  t ype  conta ins  a few ex t r a  fields - -  for examp le  a 
s t r ing  giving a shor t  descr ip t ion  of the  c o m p o n e n t .  

Sin principle ,  we could ins tead  c rea te  a fresh m e t h o d  tab le  for each 
ins tance  of the  object ;  the  m e t h o d s  could then  have  the  ob jec t  s t a t e  as 
a free var iable ,  jus t  like g e t T i t l e  did in Section 3.5. Bu t  t h a t  would 
m e a n  much  m e t h o d - t a b l e  dupl ica t ion ,  so ins tead  we follow C O M ' s  
hint ,  and  use a fixed m e t h o d  table ,  sha red  a m o n g  all ins tances .  

2. 

The method addresses passed to newCoVTable point to 
procedures that can be called directly by other COM 
objects. They can be generated using f o r e i g n  export.  
Function newCoVTable prefixes this list with three fur- 
ther addresses, for the standard IUnkno~ra interface 
methods QueryInter:face, hddRef, and Release. (A 
variant of newCoVTable is provided for those who want 
to write their own implementations of these methods - 
see Section 7.2.) 

Create an instance of  the object. A COM object may 
support several interfaces, so we must pass a list of 
(IID,VTable) pairs for every interface the object im- 
plements, each of type IfaceSpec: 

data IfaceSpec st 
= forall lid. IfaceSpec (IID lid) 

(CoVTable iid st) 

newCoInstance :: st -> [IfaceSpec st] 

-> IID lid -> IO (IUnk lid) 

Function newCoInstance takes an initial state, a list of 
interfaces (each specified as a (IID,VTable) pair), and 
an IID, and returns a suitable interface pointer to the 
object. 

The data  type declaration for I:faceSpec uses an ex- 
perimental extension of Haskell that  provides existen- 
tial data types 9. The data type has one constructor, 
IfaceSpec, with type: 

IfaceSpec :: IID lid -> CoVTable lid st 
-> IfaceSpec st 

The IID and CoVTable must have compatible l i d  types, 
but  that  type does not show up in the type of the con- 
structed value. Hence, a list of IfaceSpecs may differ 
in their i ids ,  but  will all share the same state s t .  

We are finally ready to give the code for the PBXProxy mod- 
ule. Remember that  its sole export is the component pbx. 

module PBXProxy( pbx ) where 

import PBX( PBX, initPBX, lookupByName, 
1ookupByNumber, insert ) 

import Com(CoComponent(..), 
IfaceSpec(..), 
newCoInstance, newCoVTable, 
CoIPRep, getCoState ) 

pbx :: CoComponent 
pbx = CoComponent { 

¢omponentCLSID = "...", 
componentName = "PBX", 
newInstance = newPBX 

} 

newPBX :: IID iid -> I0 (IUnk iid) 
newPBX = do{ init <- initPBX 

; newCoInstance init pbxISpecs 
} 

pbxISpecs :: [IfaceSpec PBX] 
pbxISpecs = [IfaceSpec iidIInsert vtInsert, 

9This  extension,  first sugges ted  b y L a u ~ r  [7] , i s  i m p l e m e n t e d  by  
several  Haskell  compi lers ,  lnclude G H C ,  hbc, and  Hugs.  
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IfaceSpec iidlLookup vtLookup] 

vtInsert :: VTable IInsertT PBX 
vtInsert = newCoVTable [wrapInsert] 

vtLookup :: VTable ILookupT PBX 
vtLookup = newCoVTable 

[wrapLookupByName, wrapLookupByNumber] 

-- Definitions of IInsertT, iidIInsert etc as before 

foreign export "LookupByName" wrapLookupByName 
:: CoIPRep PBX -> Addr -> Addr -> I0 () 

wrapLookupByName ip p_name p_number = 
do{ st <- getCoState ip 

; name <- unmarshallString p_name 
; number <- lookupByName name st 
; writeString p_number number 
} 

-- Similar wrappers for lookupByNumber, and insert 

All of this code is generated from the PBX IDL by H/Direct, 
which is a good thing, because it is quite tiresome to write. 

The definitions of pbx, newPBX and pbxISpecs axe straight- 
forward. The vector tables, vtInsert and vtLookup, are 
allocated on demand, by newCoVTable. The addresses in 
the vector table are obtained using foreign export. The 
function thus exported is a wrapper function (wrapInser t  
is an example) that takes the raw "self" interface pointer as 
an argument. The purpose of this interface pointer is to get 
the object state, so we give it the type CoIPRep PBX, and 
provide the operation: 

getCoState :: ColPRep s t  -> I0 s t  

which extracts the state component from an interface 
pointer. Now we can pass that state on to the user-written 
method i n s e r t ,  imported from module PBX. 

It may seem strange that  in Section 5 we gave interface 
pointers a type (IUnk) parameterised by an interface type, 
while here we parameterise a different type (CoIPRep) by 
the object state. How peculiar! However, even though both 
ave represented by a single address, they play quite different 
roles. A value of type IUnk l i d  is a client-side interface 
pointer for an object held elsewhere; its state is invisible, and 
when it is finalised (Section 3.3) we must call its R e l e a s e  
method. In contrast, a value of type CoIPRep s t  is a server- 
side interface pointer; its state is visible (because the 'this' 
pointer is passed to the method implementation), and when 
there are no further references we need only call f r e e  to 
return the store to malloc. 

When H/Direct is generating code for Hugs, it can only 
use foreign export dynamic, so the code for vtlnsert and 
vtLookup is a little more indirect, but still straightforward. 

7 T h e  Corn l i b r a r y  

The bottom layer of the encapsulation is the fixed, generic 
Haskell library Com. lhs  to support COM objects. We do not 
have space to present detailed code; instead we summarise 
what the implementation (completely written in Haskell) 
'does. 

7 . 1  A c t i v a t i o n  

When a client calls CoCreate lns tance (see Section 4) to cre- 
ate a COM object, COM looks in the registry to find which 
DLL to activate. If the DLL has not already been loaded, 
COM will load it and invoke its initialisation procedure. If 
the DLL holds a Haskell program, this initialisation proce- 
dure runs the Haskell programs function main. As indicated 
in Section 6.1, main in turns calls coRegister ,  passing it a 
list of all the components that this DLL serves: 

coRegister :: [CoComponent] -> 10 O 

Once CoCreateInstance has ensured that the DLL is 
loaded, it calls a standard entry point Dl lGetClass0b jec t ,  
passing the CLSID of the object to be instantiated. We ar- 
range that this call is forwarded to a Haskell procedure cre- 
ated (at initialisation time) by coRegis te r  using f o r e i g n  
export  dynamic. This Haskell procedure simply searches 
the list of components passed to coRegister ,  looking for 
one with a matching CLSID, and creates an instance of that 
component. (In reality, it creates a so-called class factory 
object for the object, which in turn  can be called to create 
instances of the object, but  the idea is the same.) 

'7.2 T h e  IUaknown in t e r f ace  

In Section 6.2 we said that newCoVTable and newCoInstance 
worked together to provide implementation of the IUnknown 
methods, Querylnterface, AddRef, and Release. In this 
section we outline how this is done. 

The basic idea is simple enough. Recall that we represent 
an interface pointer by a malloc'd pair of a pointer to the 
method vector table, and (a stable pointer to) the Haskelt 
state for the object. For COM objects that  use the Cam 
library support, the object state is a (Haskell) pair of two 
values: the "user" state (PBX in the above example), and 
the "system" state. The  system state in turn  is a pair of (a) 
a reference count for the whole object, and (b) a mapping 
from an IID to an interface pointer: 

type CoState st = 
(IORef Int 
, FiniteMap (IID ()) (CoIPRep st) 
) 

type Irate st =(IID (), CoIPRep st) 

With this object state in mind, we can provide standard 
AddRef and Release methods. They simply adjust the ref- 
erence count held in the CoState. When the reference count 
drops to zero, Release simply frees the stable pointer that 
keeps the object's state alive. That, in turn, may cause a 
number of finalizers to get called, see Section 3.3. 

The standard QueryInterface method uses the IID-to- 
interface-pointer mapping to do its work. The typing of 
the mapping looks strange, for two reasons. First, the 
Haskell type system cannot express the idea of a mapping 
in which the argument value determines the result type. 
One needs dependent types for that. Second, the result of 
QueryIn ter face  is in any case returned immediately to the 
external client, so little is gained by a sophisticated typing. 

With this in mind, newCoVTable uses the even-more- 
primitive newVTable to do its work: 
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newVTable : :  [hddr] -> VTable lid st 

-- Simply calls malloc 

type CoVTable iid st = VTable iid (CoState st, st) 
newtype VTable lid st = VTable Addr 

The function newCoVTable prepends the s tandard  imple- 
mentat ions for Que ry In t e r f ace ,  hddRef, and Release, be- 
fore calling newYTable. 

Finally newCoInstance allocates an interface pointer for 
each interface l°, builds the finite mapping from IIDs to in- 
terface pointers, and then constructs the object state. Oh! 
We need the object  s ta te  before we can construct the inter- 
face pointer! So the whole thing has to be wrapped in a 
f i x I 0  knot- tying combinator.  

8 R e l a t e d  w o r k  

Haskell is not the only advanced programming language to 
provide a mapping to COM. The Harlequin Dylan system [3] 
provides a well-engineered COM component framework for 
Dylan, let t ing the programmer both create and use COM 
components.  Equipped with such powers, Harlequin Dy- 
lan also provides a framework for writing ActiveX controls, 
something we have yet  to tackle. Component  Pascal [4] and 
Microsoft 's implementat ion of Java [9] are two other exam- 
ples of garbage collected languages which have been inte- 
grated with COM. 

Component  integration is becoming more widespread for 
functional languages too. Mercury has a CORBA interface 
[6]. A few days before we submit ted  this paper,  Leroy re- 
leased a version of Carol tha t  supports  COM components,  
using an architecture similar to tha t  described in this paper.  
We unders tand tha t  work is in progress on a COM interface 
for S tandard  ML of New Jersey. 

9 Conclusions 

The main burden of this paper  has been to give the details 
of an encapsulation of a Haskell program as a COM compo- 
nent. 

It is worth stressing tha t  Joe Programmer need to know 
little of this. All he need do is feed the IDL for the com- 
ponent to H/Direct  and write the application code. All 
the details of component construction, reference counting, 
interface querying, and simple finalisation (such as calling 
Release on interface pointers held by the object),  are han- 
dled automatically.  

Behind the scenes, though, there are many details to a t tend  
to, and we have not even discussed them all. (For exam- 
ple, we omit ted  many details about  object registration and 
finalisation.) Still, we hope to have conveyed something of 
the flavour. 

We have made good use of Haskell 's type  system to make 
application code completely type  secure, and H/Direct-  
generated code largely so. We found some interesting uses 
of polymorphism in so doing. However, we were not able to 
make all the Corn l ibrary support  code type-secure. 

1°Incidentally, it is easy to do this lazily, getting the behaviour of 
~ear-of~ interfaces for free [1]. 

Figure 3: Visual Basic PBX client 

All tha t  we describe is implemented in H/Direc t  and GHC 
(though some of the function names may differ). We look 
forward to exploring the possibilities of writing COM com- 
ponents in Haskell. As a tiny example of this, Figure 3 shows 
a Visual Basic application using the PBX server given in this 
paper. Real World - here we come! 
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A p p e n d i x :  I n p u t / o u t p u t  in  H a s k e l l  

In Haskell, a function tha t  has type I n t  -> In t ,  say, is a 
function from integers to integers, no more and no less. In 
part icular  it cannot perform any input /ou tput .  Any func- 
tion tha t  can perform I / O  has a result type of the form I0 r .  
This so-called monadic I /O has become the s tandard way to 
do inpu t /ou tpu t  in purely functional languages [12]. An I /O  
performing function can be used in a do expression, which 
serves to sequence such computations.  For example: 

m a i n  : :  I0 () 
main = 

do{ 1 <- getLine 
; p u t S t r  ( r e v e r s e  1) 
} 

This program uses two s tandard  functions: 

ge tL ine  : :  I0 S t r i n g  
p u t S t r  : :  S t r i n g  -> I0 () 

When main is performed, the do arranges first to perform 
getLine ,  binding the result, of type S t r i n g  to 1. The it 
performs p u t S t r  ( r e v e r s e  1), which displays the reverse 
of 1. 

Many of the programs in this paper  use mutable cells, similar 
to ML's r e f  type. 

n e w I O R e f  : :  a - >  I0 (IORef a) 
r e a d I O R e f  : :  I O R e f  a - >  I 0  a 

w r i t e I O R e f  : :  I O R e f  a - >  a - >  I 0  () 

A value of type IORef t is a reference to a mutable cell 
holding a value of type t .  The primitives to allocate, read, 
and write the cell are all in the I0 monad. Here is a short 
example, using Haskell's do notation: 

s w a p  : :  IORef a - >  IORef a -> I0 () 
- -  S w a p  t h e  c o n t e n t s  o f  t h e  t w o  c e l l s  

s w a p  a r e f  b r e f  = 

do{ a <- readIORef aref 

; b <- readIORef bref 

; writeIORef aref b 

; writeIORef bref a 
} 

A primitive IO action is also provided for tying knots, 

fixIO :: (a -> IO a) -> IO a 

which is the fixpoint combinator at the level of IO actions. 
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