
A Web Services Proxy Generator for Haskell 
André W. B. Furtado, Adeline de S. Silva, Carla M. P. do Nascimento, Gustavo A. dos Santos, 

Carlos A. G. Ferraz, André L. de M. Santos 

Centro de Informática (CIn) – Universidade Federal de Pernambuco (UFPE) 

Av. Professor Luís Freire, s/n, Cidade Universitária, CEP 50740-540, Recife/PE/Brazil 
+55 (81) 21268430 

{awbf,adss,cmpn,gas,cagf,alms}@cin.ufpe.br 

 

ABSTRACT 

This paper presents the implementation of a web services proxy 

generator for the Haskell functional language. Its purpose is to 

free Haskell programmers from low-level implementation details 

when building applications that consume services offered through 

the Web. The generator architecture, as well as implementation 

experiences resulting from the specific web services access/proffer 

model, is detailed. The final purpose is to show that Haskell and 

functional languages in general can be effectively used to 

implement distributed components and applications, interacting 

with services implemented in different languages and/or 

platforms. 

Categories and Subject Descriptors 

D.2.12 [Software Engineering]: Interoperability. 

General Terms 

Standardization, Languages. 

Keywords 

web services, proxy, Haskell, SOA (service-oriented architecture), 

interoperability 

1. INTRODUCTION 
Although relatively recent, the web services technology is 

considered to be one of the most important topics regarding 

distributed systems and information technology in general. By 

allowing the integration and interoperability of systems developed 

under different platforms and languages, web services became a 

concrete alternative to the development of distributed and 

connected applications. As a consequence, software industry is 

giving special attention to the subject, as it can be verified by the 

implementation and maintenance of web services support in major 

software development platforms, such as Microsoft .NET [10] and 

J2EE [15]. 

On the other hand, it can be noticed that the opportunities made 

available by web services are still under-explored in relation to 

functional languages. Although this type of programming 

languages incorporates some of the benefits of object-oriented 

programming [17], today’s most popular programming paradigm 

[12], as well as presents some advantages in relation to other 

paradigms (conciseness, elegance, higher abstraction and lazy 

evaluation, among others [17]), it is recognized that functional 

languages also present some limitations. The isolation of 

functional languages regarding integration with other languages 

and technologies is certainly one of the factors that limit their 

adoption as a solution to problems belonging to various 

application domains [21]. Although some efforts are being taken 

in order to overcome this deficiency, such as the integration of 

functional languages with COM [14], Java [9], .NET [7] and 

OpenGL [13], it is noticeable the absence of projects intending to 

integrate web services with functional languages. 

We believe, therefore, that the ubiquitous presence of recent 

internet technologies aimed at interoperability, such as XML, 

SOAP and web services, are major keys to situate functional 

languages, more specifically Haskell [5], as a viable alterative to 

the implementation of distributed applications and components. 

The approach presented in this paper consists of the creation of a 

web services proxy generator for Haskell, allowing applications 

implemented in this language to use services implemented in 

other languages/platforms and which are available in the internet 

through the web services technology. By detailing the 

implementation experience gathered during the development of 

the proxy generator, this paper also represents a contribution to 

other projects with focus on simplifying web services 

consumption for other languages1. 

The next sections of this paper are organized as follows. Section 2 

presents an introduction to key web services concepts. Section 3 

explains how to use the proxy generator from a Haskell 

programmer point of view. Section 4 details our implementation 

approach. Section 5, finally, presents some conclusions about the 

work and points out future directions. 

2. UNDERSTANDING WEB SERVICES 
Web services incorporate advantages of two previous 

technologies: web communication standards and application 

servers, which use the concepts of service-oriented computing. 

Evolving from these principles, web services technology uses a 

set of open standards as its foundation, such as XML, SOAP, 

WSDL and UDDI, which are maintained by the World Wide Web 

Consortium (W3C) [20]. These four key concepts are briefly 

described below: 

• XML (eXtensible Markup Language) is a language used 

to structure data and consists of the main web services 

foundation, since it allows the organization of data used 

in message exchanges between applications; 

                                                                 

1 The implemented proxy generator, as well as project details, can 

be found in http://www.cin.ufpe.br/~haskell/hwsproxygen. 

 

   

 

 



• WSDL (Web Services Description Language) is an 

XML-based language which describes the services 

proffered by a web service; 

• SOAP (Simple Object Access Protocol) is the transport 

protocol used to exchange data between the web service 

provider and the web service client; 

• UDDI (Universal Description and Discovery of 

Information) is a catalogue through which web services 

can be published and searched for. 

Figure 1 shows how each one of these technologies relates to each 

other: when a provider wishes to make a web service available to 

clients, it builds the web service description (through WSDL) and, 

optionally, registers the service in a UDDI catalogue. The 

catalogue, hence, maintains references to the WSDL description 

and to the service. When a client wants to use a service, it queries 

the UDDI catalogue by using different filters in order to find a 

web service compliant to its necessities, obtaining the service 

description in WSDL and the service access point. A proxy to 

interact with the web service can also be built in the client at this 

moment. The proxy uses the WSDL description, finally, to build a 

SOAP message through which it will communicate with the 

service provider and effectively consume the service. If the client 

already knows the URL of the web service WSDL description, 

which is always the case assumed in this paper, the UDDI 

catalogue query stage can be ignored. 

 

Figure 1. Key web service components. 

According to the above description, it can be noticed that, from 

WSDL specifications and SOAP-enabled communication 

processes, in theory it is possible to make the web services 

technology available to any programming language, with the aid 

of two important elements: a proxy, that hides low-level web 

service usage details; and a SOAP communication module, which 

allows message exchange using this protocol. 

3. USING THE GENERATOR 
The implemented web services proxy generator consists of a 

command line executable, named hwsproxygen.exe. The Haskell 

programmer must invoke it passing as parameters the URL of the 

web service description (WSDL file) and the output folder in 

which the proxy will be generated. For example, in order to 

generate, in the current folder (“.”), a proxy for a web service 

named Calc, which is hosted in a machine named MySrv, 

something similar to the following command line would be used: 

hwsproxygen.exe http://MySrv/Calc/Calc.asmx?WSDL . 

As output, the proxy generator creates a series of Haskell 

modules. One of these modules exports the proxy interface and 

must be imported by Haskell programs that will use (consume) the 

web service. In the above example, this important module would 

be named Calc and would be defined in the file Calc.hs. The 

other generated Haskell modules implement the HTTP 

communication with the web service server and necessary 

marshalling/unmarshalling [2] operations. The Haskell 

programmer will not need to use them directly; they will be used 

by the proxy. 

Figure 2 illustrates the relationship between the Haskell modules 

of a Haskell application under development which uses the proxy 

generator. In this scenario, the proxy generator was invoked three 

times, for hypothetical web services named Bank, Timer and 

Calculator. After the proxies generation, functions exported by 

the generated modules Bank.hs, Timer.hs and Calculator.hs can 

be used by the Haskell programmer in order to consume the 

services (web methods) proffered by those web services. 

 

Figure 2. Haskell modules after proxy generation 

Suppose the Bank web service proffers a service named 

getAccount, which receives a string value as input 

(corresponding to the identifier of the bank account) and returns a 

bank account as output. In order for the Haskell programmer to 

consume the getAccount service, she only needs to import the 

generated Haskell module Bank and call the function 

getAccount, as shown in Figure 3. Although this function 

invokes an Internet hosted service, the Haskell programmer 

consumes it as if it were defined locally and does not have to 

implement any network communication code. 

Figure 3. Example of web service consumption code, 

implemented by the Haskell programmer. 

4. IMPLEMENTATION APPROACH 
Once understood what happens after the invocation of the proxy 

generator and how to consume its generated modules, in this 

section we present its internal processing logic and architecture. 

Basically, the execution flow of a generator session can be 

divided in two distinct phases: 

• An intermediate code structure is built from the web 

service WSDL description; 

import Bank 
 
main :: IO() 
main  =  do 
  z <- getAcount “XYZ03” 
  putStrLn ("Account XYZ03: " ++ show z) 



• This intermediate code structure is converted into 

Haskell code that will be finally consumed by Haskell 

programmers. 

The generator was implemented using Microsoft Visual C# [11], 

one of the .NET Platform languages. This choice was done 

because .NET already contains an API for dealing with WSDL 

and other web service concepts. However, the implementation 

stage of the proxy generator was not restricted to this language, 

since it was necessary to code, in Haskell, the generated modules 

to be used by the programmer and internally by the generated 

proxy. 

The intermediate structure, implemented by a class named 

ProxyModel, provides a mapping between the web service 

WSDL description into programming language elements (such as 

functions, data types, etc.). This class, as well as other classes of 

the generator architecture, is presented in the generator 

Architecture Diagram (Figure 4). The Orchestration class is 

responsible for obtaining, from the network, the XML structure 

corresponding to the WSDL description. This class then builds a 

ProxyModel and invokes the method CreateModule of the 

Generator class. This method will map the intermediate code 

structure into Haskell code, as well as create the output files. The 

type hierarchy which has WSType as its root, finally, is used by 

the intermediate code structure to represent the different data 

types exposed by web services (such as enumerations, lists or 

primitive types, for example). 

The following subsections present specific details about the proxy 

generator implementation. 

 

Figure 4. Architecture Diagram of the proxy generator. 

4.1 HTTP Communication through Haskell 
The implementation of the communication between a Haskell 

client application and a web server that hosts web services was 

based on the Browse and HTTP Haskell modules, implemented by 

Bringert & Gray [4]. These modules allow the creation of HTTP 

packages and their dispatch to a web server, making available to 

the clients the response. The communication is implemented using 

sockets, accessible in Haskell by a standard module named 

Network. 

Since the Browse and HTTP modules do not support the SOAP 

protocol, it was included in the scope of this work the extension 

of these modules in order to enhance them with SOAP support. 

Fortunately, this extension was very intuitive and localized, not 

being a major challenge. It was only necessary to add a new 

HTTP header type, named SOAPAction, to the HTTP package 

definition, as well as to implement a buildSoapRequest 

function that builds parameterized SOAP requests: 

buildSoapRequest :: URI -> String -> String -> Request 

Both the first parameter (URI) of the function as well as its return 

type (Request) are Haskell data types [18]. The former is defined 

in the Network module, and the latter in the HTTP Module. The 

other parameters are strings that correspond, respectively, to the 

value to be assigned to the SOAPAction header of the HTTP 

package and to the value of the HTTP package body, which must 

comply with a specific XML/SOAP format. 

A Haskell module named SoapHttpClientProtocol, one of the 

most important generated modules, uses the Browse and HTTP 

modules. It implements the HTTP package creation logic, 

according to the SOAP specification, and performs requests to the 

web server, properly extracting the response. The main function of 

SoapHttpClientProtocol is invokeWS: 

invokeWS 

    :: String      -- web service address 

    -> String      -- web method to be invoked 

    -> String      -- SOAPAction header content 

    -> String      -- web service namespace 

    -> [Parameter] -- web service parameters 

-> String      -- xml node containing response 

-> IO String   -- response 

The Parameter type is a synonym type, corresponding to a string 

tuple containing the name and the value of a web method 

parameter. The name of the parameter is necessary because it is 

used to build the XML node responsible for encapsulating the 

parameter value.  

The parameters of invokeWS were defined as a consequence of 

what is expected to the creation of a HTTP package which uses 

the SOAP protocol and invokes a web service. It is worth noticing 

that invokeWS is an internal method, used only by the generated 

proxies. More high-level methods are available to the Haskell 

programmer, as discussed in subsection 4.4. 

4.2 WSDL/Haskell Mapping 
WSDL documents, which describe the services proffered by a web 

service, are created in XML. Therefore, it was necessary to 

develop a mapping between the possible contents of the WSDL 

XML and the target language in which the generated proxy is 

implemented. This subsection presents some of the mappings 

between the XML format of WSDL descriptions into Haskell. 

This mapping is facilitated by the ProxyModel intermediate 



structure, which was previously presented and will be ignored in 

this section for simplification purposes. 

Mapping the W3C specified primitive types used by web services 

into Haskell did not present much complexity, since Haskell 

contains the definition of the most common primitive types used 

by programming languages in general. Therefore, W3C’s int 

type was mapped into Haskell’s Int type and so on. An exception 

was W3C’s long type: since Haskell does not contain a definition 

for this type, the Haskell type Integer was used instead. 

Besides primitive types, web services also support user-defined 

types, receiving them as parameters or returning them as result. 

Enumerations, exemplified by Figure 5, are one example. The 

value of a variable belonging to an enumeration type can assume 

only one of the enumeration values in a given moment. 

Figure 5. Enumeration sample exposed in WSDL. 

The chosen approach for mapping enumerations defined in WSDL 

into Haskell consists of Haskell data types with multiple 

constructors, as shown in Figure 6. It is worth noticing that the 

created type derives from Haskell Read and Show classes. This is 

necessary in order to easily convert values of this type to/from 

strings, which is needed when generating and reading the XML 

body of requests and responses in HTTP (SOAP) packages. 

Figure 6. Converting the WSDL enumeration to Haskell. 

A WSDL description can also specify complex data types, i.e., 

types composed by the combination of other types. For example, a 

C# class named Client, containing as accessible fields its name 

(string) and age (int) would be typically exposed in WSDL as 

shown in Figure 7. 

Figure 7. Complex type sample exposed in WSDL. 

The chosen approach for mapping complex types exposed this 

way into Haskell consists of the definition of new Haskell data 

types with only one constructor, but with many labeled fields, as 

shown in Figure 8. 

Figure 8. Converting the WSDL complex type to Haskell. 

If the complex type does not contain child elements 

(<complextype/>, in the WSDL), it is still converted into a 

Haskell data type containing only one constructor, but now with 

zero fields. For example, a C# class named XYZ that does not 

contain visible attributes would be converted into Haskell as the 

following data type: 

data XYZ = XYZ 

A complex type, additionally, may contain as a child element 

another complex type. For example, a C# class exposed in WSDL, 

named Account, could contain an object of type Client as its 

child element. For this case, Haskell data types containing other 

Haskell data types as child fields were used. Nevertheless, these 

possibilities caused a considerable increase of complexity in 

relation to the conversion of a Haskell data type to/from XML. 

Lists are also supported by WSDL. For example, Figure 9 

presents a complex type named Bank, which contain as child 

elements a list of Accounts. 

Figure 9. List sample exposed in WSDL. 

Since lists or arrays are supported by the majority of today’s 

programming languages, such as Haskell, this mapping presented 

no difficulty at all, as shown in Figure 10. Nevertheless, some list 

specifications encountered in WSDL files, such as the one 

presented in Figure 9, caused an extra indirection level, since an 

intermediary type representing the list (ArrayOfAccount) was 

now introduced and had to be dealt with by the generator. 

Figure 10. Converting the WSDL list to Haskell. 

Finally, once the mappings between the various data types 

specified in WSDL into Haskell are defined, the generation of a 

Haskell module structure deserves some explanation. 

<s:simpleType name="Orientation"> 
    <s:restriction base="s:string"> 
        <s:enumeration value="North"/> 
        <s:enumeration value="South"/> 
        <s:enumeration value="East"/> 
        <s:enumeration value="West"/> 
    </s:restriction> 
</s:simpleType> 

data Orientation  = North 

                  | South 

                  | East 

                  | West 

                  deriving (Read, Show) 

<s:complexType name="Client"> 

 <s:sequence> 

   <s:element minOccurs="0" maxOccurs="1" 

      name="name" type="s:string"/> 

   <s:element minOccurs="1" maxOccurs="1" 

      name="age" type="s:int"/> 

    </s:sequence> 

</s:complexType> 

data Client = Client { 

   name :: String, 

   age :: Int 

} deriving (Show) 

<s:complexType name="Bank"> 

 <s:sequence> 

  <s:element minOccurs="0" maxOccurs="1" 

   name="accounts" type="s0:ArrayOfAccount"/> 

 </s:sequence> 

</s:complexType> 

<s:complexType name="ArrayOfAccount"> 

 <s:sequence> 

  <s:element minOccurs="0" 

     maxOccurs="unbounded" name="Account" 

     nillable="true" type="s0:Account"/> 

 </s:sequence> 

</s:complexType> 

data Bank = Bank { 

  accounts :: [Account] 

} deriving (Show) 



For each web service described in a WSDL document, a unique 

Haskell module is generated. The name of the Haskell module is 

defined by the name attribute of a WSDL XML node named 

service. Mapping from web methods into Haskell is also 

straightforward and intuitive. Each operation presented in the 

WSDL document, which corresponds to a web method, is 

converted into a Haskell function of the module under generation. 

An important observation is that the first character of the 

operation name must be converted to lower case, in order to 

comply with the Haskell syntax. This observation also applies to 

the field names of the generated Haskell data types (Figure 8). 

It is worth noticing, however, that the names of methods and 

attributes are used without any changes when the XML 

received/sent by the web server is built. Therefore, besides the 

proxy generator makes available to Haskell programmers names 

with first letters in lower case, the SOAP XML nodes use the 

same original names defined in WSDL. 

4.3 Converting to/from XML 
Since the low-level details of a web service usage include the 

creation and interpretation of an XML document, the proxy 

generator should, in runtime, convert the values of web service 

parameters into strings and encapsulate them in XML tags, in 

order to send them through HTTP (SOAP) packages. On the other 

hand, the generator should also be able to extract, from an XML 

file, the string corresponding to a web method invocation result, 

as well as to convert this string into the expected return type. 

The implementation of the Haskell standard functions read and 

show for primitive types and enumerations, available through the 

Haskell Prelude module, made this work easier. Whilst the read 

function converts a string into another data type, the show 

function does the inverse operation. Nevertheless, three issues are 

worth noticing in relation to this subject: 

• If the show function is applied to a value that is already 

a string, the resulting string will be enclosed by double-

quote characters (“). In the same way, if show is applied 

to a Char value, the resulting string will be enclosed by 

single-quote characters (‘). Since enclosing quote 

characters are not expected in values of a web service 

XML message, even if the value belongs to Char or 

String types, the proxy generator should identify when 

these characters are undesirable and need to be 

removed. 

• When dealing with Char values, web services use the 

Unicode [19] standard. This way, the proxy generator 

should generate Haskell code that converts Haskell 

Char values into Unicode and vice-versa. The first 

version of the proxy generator uses the chr and ord 

standard Haskell functions, respectively. Therefore, it is 

actually dependent on the implementation of these two 

functions to provide character encoding support. 

• If the function read is applied to a string representing a 

boolean value whose first letter is lower cased (such as 

“true” or “false”), it fails. This way, the generator 

should convert strings of such type to strings that start 

with upper cased letters (“True” and “False”). 

Although the usage of the read and show functions was 

appropriate for primitive types and enumerations, complex types, 

on the other hand, demanded a more elaborated approach. A new 

Haskell interface named XmlSerializable had its definition 

added to the SoapHttpClientProtocol module. For each 

Haskell data type generated from a WSDL complex type (except 

for enumerations), an implementation of this new interface is also 

generated. The interface defines only two functions: toXML, 

which should convert the Haskell data type into an XML string, 

and fromXML, which should do the opposite operation. The proxy 

generator, therefore, should identify, according to the type of the 

value being converted to/from XML, if an implementation of 

XmlSerializable interface should be generated and invoked by 

the generated Haskell code. 

In order to illustrate these concepts, suppose Account is a 

Haskell data type defined as shown in Figure 11. It contains as 

fields its balance (Double) and client (which is also a Haskell 

data type). 

Figure 11. Definition of the Account Haskell data type. 

The generated implementation for the toXML function is shown in 

Figure 12. The functions xmlTagStart and xmlTagEnd, defined 

in the SoapHttpClientProtocol module, are auxiliary 

functions for the generation of XML nodes. The contents of the 

Account data type child nodes are obtained in different ways for 

the balance field and for the client field: since the client 

field is a Haskell data type, the function toXML is invoked. On the 

other hand, the balance field belongs to a primitive type and, 

therefore, only the show function needs to be called2. 

Figure 12. Generation of the toXML implementation for the 

Account data type. 

The generation of the fromXML function implementation, on the 

other hand, is a little more complex, since the proxy generator 

should build the resulting Haskell data type (which can be 

composed by other Haskell data types). The generation of the 

fromXML implementation for the Account data type is presented 

in Figure 13. 

Each resulting Haskell data type field is extracted individually 

from the response XML. The function getNodeValues, exported 

by SoapHttpClientProtocol, is an auxiliary function that 

extracts the contents of an XML node, receiving the desired node 

                                                                 

2 Actually, the show function is not really called, but another 

function which invokes show and verifies undesirable enclosing 

quotes (check subsection 4.3). The show function was kept in 

Figure 12 for simplicity purposes. 

data Account = Account { 

      client  :: Client, 

      balance :: Double 

} deriving (Show) 

toXml account  = 

     (xmlTagStart "client") 

  ++ (toXml       (client account))    

  ++ (xmlTagEnd   "client") 

  ++ (xmlTagStart "balance") 

  ++ (show        (balance account)) 

  ++ (xmlTagEnd   "balance") 



name as parameter. Since more than one node can have the same 

name in an XML file, getNodeValues returns a list, not a single 

value. Nevertheless, since it is expected that the XML response 

has only one value regarding the Haskell data type field, the head 

function is used to extract the first (and only) element of the list 

returned by getNodeValues. 

Finally, a specific function is called according to the type of the 

field whose value will be extracted from the response XML. For 

the balance field, which belongs to a primitive (Double) type, 

the function read is invoked. For the client field, on the other 

hand, function fromXML is invoked, since client is a Haskell 

data type. 

Figure 13. Generation of the fromXML implementation for the 

Account data type. 

4.4 Generating the Final Exported Function 
Suppose getAccount is a web method implemented in C# and 

defined in a C# class named Bank. Suppose that its signature is3: 

public Account GetAccount (double balance) 

According to what was previously explained, after the proxy 

generator is invoked, a Haskell module named Bank will be 

generated, containing the definition of a Haskell data type named 

Account, its XmlSerializable implementation and, finally, a 

function named getAccount, which can be used by the Haskell 

programmer. The implementation of this function is presented in 

Figure 14. 

The first important point to be observed in the generated 

implementation refers to the function signature: since the web 

service invocation involves IO operations, the final function 

exported to the Haskell programmer returns an IO type, as 

expected [6]. 

The function body, on the other hand, has two distinct execution 

phases: first, the parameters expected by the invokeWS function 

are processed and invokeWS is called. The values defined in the 

where clause are generated from the web service WSDL 

description. In the generated code, we use zip to pair the elements 

of the name list and the value list of the parameters expected by 

the web method. 

                                                                 

3 In this example, an account balance, not a string account 

identifier, is received as parameter, in order to better illustrate 

the proxy generator capabilities. 

Next, a function call that is applied to the obtained invokeWS 

result, which is still a string, is generated. This generated function 

depends on the web method return type. In Figure 14, for 

example, fromXML is invoked, since the return type (Account) is 

a Haskell data type. If the return type were IO Double or IO 

Int, read would be the generated function call. If the return type 

were a list, on the other hand, a more complex function would be 

applied to the resulting string. For example, if the web method 

returned a list of Accounts, the generated code would be: 

return $ (\xml -> map fromXml 

(getNodeValues xml "Account")) strResult 

Figure 14. Generated implementation of getAccount, which 

would be exported to the Haskell programmer4. 

4.5 WSDL Flexibility Problem Turnaround 
Since web services were designed with multi-platform and multi-

language concepts in mind, the XML schema used to specify and 

constrain WSDL descriptions is extremely flexible, allowing 

different extensions and interpretations. This way, the contents of 

two distinct WSDL descriptions, although being different, can 

represent exactly the same web service. For example, the same 

web service created through different tools (such as Microsoft 

Visual Studio .NET [22] and Borland JBuilder [3]) can have very 

different WSDL descriptions. This nuance makes the proxy 

generator job more difficult, since it should provide a generic 

WSDL interpretation, unattached to its origin. Taking this 

difficulty into account, the first version of the proxy generator was 

designed to work with web services generated by Visual Studio 

.NET. Web services created using other tools are not granted to 

work with the generator, but this limitation should be removed in 

future versions. 

                                                                 

4 The URL http://tempuri.org is the default web service 

namespace. 

fromXml str = account 

  where 

    account = Account { 

       client  = accountClient, 

       balance = accountBalance   

    } 

    accountClient = 

       fromXml $ head $ 

       getNodeValues str "client" 

    accountBalance = 

       read $ head $ 

       getNodeValues str "balance" 

getAccount :: Double -> IO Account 

getAccount balance = do 

  strResult <- invokeWS uriStr name 

                        action namespace   

                        parameters response 

  return $ fromXml strResult  

  where 

    uriStr =  

       "http://localhost/TestWS/Bank.asmx"  

    name = "GetAccount" 

    action = "http://tempuri.org/GetAccount" 

    namespace = "http://tempuri.org/" 

    parametersValue = [(show balance)] 

    parametersName = ["balance"] 

    parameters = zip  parametersName 

                      parametersValue 

    response = "GetAccountResult" 



5. CONCLUSIONS 
In spite of the difficulty presented in subsection 4.5, it could be 

observed that the generator implementation occurred very 

intuitively, since the service access/proffer model used by web 

services could be naturally mapped into Haskell types and 

functions. Nevertheless, peculiarities of having Haskell as a target 

language, such as syntax issues presented in Section 4, had to be 

dealt with. 

The proxy generator architecture was developed in a reusable 

manner. Only its back-end needs to be changed in order to allow 

code generation for other target languages. This way, a natural 

evolution of this work would be an extension to other target 

languages, possibly belonging to other programming paradigms. 

We believe this extension will also occur intuitively, since the 

generator does not depend on its target language (Haskell), but 

uses concepts that are common to many other programming 

languages, such as primitive types, lists, data structures containing 

nested fields, functions, etc. 

An equally interesting work is the implementation of a web 

services provider for Haskell, which could be based on an 

existing Haskell web server [8] or on a server that supports 

ASP.NET [1], which would host code resultant from the 

compilation of Haskell to the .NET Platform [16]. Extensions like 

these would contribute to the final purpose of situating Haskell as 

a concrete alternative to the implementation of distributed 

applications and components. 

6. REFERENCES 
[1] ASP.NET: The Official Microsoft ASP.NET Site, 

http://www.asp.net. 

[2] Birrell A. D., Nelson B. J., Implementing Remote Procedure 

Calls, ACM Transactions on Computer Systems 2, 1 (1984). 

[3] Developer.com, Developing Web Services with Borland 

JBuilder Enterprise and BEA WebLogic Server, 

http://www.developer.com/java/ent/article.php/3485321. 

[4] Gray W., Bringert B., Haskell HTTP Module, 

www.bringert.net/haskell-xml-rpc/http.html. 

[5] Haskell.org., About Haskell, 

http://www.haskell.org/aboutHaskell.html. 

[6] Hudak P., Peterson J., Fasel J., A Gentle Introduction to 

Haskell, Version 98: Input/Output, 

http://www.haskell.org/tutorial/io.html. 

[7] Hugs98 for .NET, http://galois.com/~sof/hugs98.net/. 

[8] Marlow S., Writing High-Performance Server Applications 

in Haskell, Case Study: A Haskell Web Server, Haskell 

Workshop, Montreal, Canada, September 2000. 

[9] Meijer E., Finne S., Lambada, Haskell as a better Java, 

Electronic Notes in Theoretical Computer Science 41, no. 1 

(2001). 

[10] Microsoft.com, Microsoft .NET Homepage, 

http://www.microsoft.com/net/. 

[11] Microsoft Developers Network, Visual C# Developer Center, 

http://msdn.microsoft.com/vcsharp/. 

[12] Network Integrated Access (Netia.com), The Next Major 

Platform Shift: Java Computing Changes Everything, 

http://www.netia.com/Sun_Java_Sea_Change.pdf. 

[13] Panne S., HOpenGL: An OpenGL/GLUT binding for 

Haskell, http://www.haskell.org/HOpenGL/. 

[14] Peyton-Jones S., Meijer E., Leijen D., Scripting COM 

components in Haskell, IEEE Fifth Inter-national Conference 

on Software Reuse, Vancouver, BC, 1998 

[15] Sun Microsystems, Java 2 Platform, Enterprise Edition, 

http://java.sun.com/j2ee/. 

[16] The Haskell .NET Project, 

http://www.cin.ufpe.br/~haskell/haskelldotnet. 

[17] The Lambda Complex, Why does Haskell matter?, 

http://www.haskell.org/complex/why_does_haskell_matter.ht

ml. 

[18] Thompson S., Haskell: The Craft of Functional 

Programming, p. 239-275, Addison-Wesley, 1996. 

[19] Unicode.org, What is Unicode, 

http://www.unicode.org/standard/WhatIsUnicode.html. 

[20] W3C.org, World Wide Web Consortium, 

http://www.w3.org/. 

[21] Wadler P., Why no one uses functional languages, ACM 

SIGPLAN Notices, august/1998. 

[22] Westwind.com, Creating and using Web Services with the 

.NET framework and Visual Studio.Net, http://www.west-

wind.com/presentations/dotnetwebservices/DotNetWebServi

ces.asp. 

 

 


