
A Partial Reconfigurable Architecture for Controllers
based on Petri Nets

Paulo Sérgio B. Nascimento, Paulo Romero M. Maciel, Manoel E. Lima,

Remy E. Sant’ana, Abel Guilhermino S. Filho
Federal University of Pernambuco

Informatics Center
Fone: (+55) 8121268430, Recife-PE, Brazil

{psbn,prmm,mel,res,agsf}@cin.ufpe.br

ABSTRACT
Digital Control System in the industry has been used in most of
the applications based on expensive Programmable Logical
Controllers (PLC). These Systems are, in general, highly com-
plex and slow, with an operation cycle around 10ms. In this
work, a Reconfigurable Logic Controller (RLC) approach is
presented, based on a small and low cost Xilinx Virtex-II
FPGA architecture, operating as a virtual hardware machine.
In this context, the main process is specified in a formal lan-
guage, based on Petri nets or SFC (Sequential Function
Chart). For applications that demand more hardware than that
available in the FPGA, a partial reconfiguration mechanism
takes place. From the Petri net specification, the main process
is split into multiple contexts, which are sequentially executed
within the same FPGA, without violating the operation cycle of
application.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Systems –
industrial control, process control, real time.

General Terms
Performance, Design, Economics, Algorithms, Languages.

Keywords
Petri Nets, Programmable Logic Controller (PLC), FPGAs,
Virtual Hardware, Partial Reconfiguration.

1. INTRODUCTION
Digital machine control system has been widely used where
exists a set of binary sensors and actuators that only assume
one of the two states. Generally, this control is made by spe-
cific application equipment PLC (Programmable Logical Con-
trollers), based on a microprocessor. In most industrial applica-
tions, the PLC programmers use one the following languages:
LAD (Ladder Diagram), SFC (Sequential Function Chart) or
STL (Statement List). These languages present different syntax
and facilities to represent the process control flow. Particu-
larly, the SFC language [1] is a Petri net based language, simi-
lar to GRAFCET specification [3].

In this work, a new Reconfigurable Logic Controller (RLC)
architecture for applications of discrete machine control is pre-
sented. The RLC uses Temporal Petri Net (TPN) [3][5] as a
formal language for functional description of applications. This
architecture is based on a Xilinx Virtex-II FPGA (Field Pro-
grammable Gate Array) [7][8] device. The use of Petri nets
allows a natural description for functional and temporal capture
of the machine control system. It happens because Petri nets can
easily specify parallelism, concurrence and asynchronous as-
pects. Besides, a Petri net specification can also be easily derived
from LAD and SFC specifications, already used by commercial
PLCs [13]. The advantage of a Petri net description is its power-
ful set of mathematical analysis mechanism that allows verifica-
tion of properties and system correctness detection. To synthe-
size the processes in hardware, the Petri net specification is
translated to VHDL and further mapped into a Virtex-II FPGA.

FPGA architectures present advantages such as high parallelism
and control processing speed-up and a large amount of general
purpose I/O-pins, with different voltage standards and high
input/output rates when compared with PLC architectures. Cur-
rent PLC implementations, based on microprocessors, presents
difficulties to explore parallelism and meet severe time con-
straints for high complex applications. This difficulty is result of
PLC sequential interpreted-execution of the system specification
[4] in software.

Even for applications that need more resources than that avail-
able in a such FPGA, a multi-context approach [6][2], based on
the Petri net temporal partitioning can be performed without
loose of performance in several applications. In this way, this
work proposes an architecture in which the main process can be
split into small ones and executed in a only FPGA Virtex-II
Xilinx device [9], through a temporal and partial reconfiguration
process.

The section 2 presents the control application model in Temporal
Petri net (TPN); the section 3 exhibits the TPN translation for a
synthetizable VHDL; in the section 4 the architecture proposed
and dynamic and partial reconfiguration on Virtex-II are dis-
cussed in details; section 5 presents a case study based on an
elevator control; finally, the section 6 presents some conclusions
and future works.

2. TEMPORAL PETRI NET MODEL
The Petri net [3][5] is a formal model that allows modeling of
parallel, concurrent and asynchronous systems, in a natural way.
At the same time it also allows verification of properties that can
be fundamentals for the correct operation and control system
safeness. Petri net is based on local place state that allows an
easy and direct understanding of the modeled application. Be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI’04, September 7–11, 2004, Pernambuco, Brazil.
Copyright 2004 ACM 1-58113-947-0/04/0009...$5.00.

16

sides, it is possible to translate a LAD and SFC [1] representa-
tion directly on a Temporal Petri net.

Others formal models, as Finite State Machines (FSM), also
allow the discrete control systems specification, but, they
difficult a direct system understanding, because it is based on
the concept of global state. Global state hides the local behav-
ior, turning difficult the process modeling.

The Figure 1 depicts the discrete and reactive control system
used to model examples in this work.

Figure 1. Discrete and reactivate control system.

In this system, the environment is monitored continuously from
sensors that produce binary input signals X. The controller, as a
function of internal state E and the values of the sensors X,
promotes changes in states and in the output Y. Y vector de-
fines the actuators state, that defines actions on the environ-
ment, closing the loop control.

2.1 The TPN model overview
The proposed model for the Temporal Petri Net is represented
by a seven-tuple Ctrl that represents the Petri net specification
of the control process:

Ctrl = (TPN,X,Y,F,G,A,S), where:

TPN=(P,T,D,I,O,M0)

P = {p1,p2,...,pN} -- places set,
T = {t1,t2,...,tM} -- transitions set,
D = {Dt1,...,DtM} -- transitions delays set,
I = {It | t ∈T} -- input places sets,
O = {Ot | t ∈T} -- output places sets,
M0 = (M0(p1),...,M0(pN)) -- initial mark places,

X = {x1,x2,...,xK} -- inputs set,
Y = {y1,y2,...,yL} -- outputs set,
F = {f1,f2,...,fR} -- internal flags set,
G = {Gt1,...,GtM} -- transitions guards set,
A = {At1,...,AtM} -- transitions actions set,
S = {Sy1,...,SyL} -- output functions set. (1)

The internal state E of the controller is represented by marking
M(P) of places set P and binary values of flags f ∈ F inside of
controller:

E = (M(P), F) (2)

The TPN is safe [3][5], meaning that the places markings can
only assume the values 0 or 1. The fire of transition t ∈ T
represents a local modification of the state E, in other words:
the marks modification of local places into the set It ∪ Ot. The
fire of each transition t ∈ T is conditioned by the function of
guard Gt, defined as an boolean expression of the input signs,
of the places marks M(P) and of the values of the flags F:

Gt = Gt(X,M(P),F) ∈ {0,1}. (3)

The fire enables Ht of each transition t ∈ T is given by the
boolean expression:

Ht = Gt∧M(p’1)∧M(p’2) ∧ ... ∧M(p’k) where
p’1,p’2,...,p’k ∈ It. (4)
 The fire of a transition t ∈ T can represent an action At ∈ A
that consists in modifying the state of the output signals Y and of
values the internal flags F. The action At can be a combination of
the following actions:

1. Set(q): make q = 1,
2. Reset(q): make q = 0,
3. Cpl(q): make q = 1-q,
4. φ : no actions where
q ∈ Y ∪ F. (5)

In control applications, specification of temporizations is impor-
tant because when the controller reaches a state, it waits for a
delay time (Dt ∈ D) to starts a transition action (At ∈ A). The
three fire time semantics are defined for the transitions as fol-
lows:

1. The transition t fire begins removing marks from the input

places p ∈ It.
2. The transition t waits the delay time Dt.
3. The transition t finishes and placing marks in the output

places p ∈ Ot and executing the action At. (6)

Finally, each output y ∈ Y is given by a boolean function Sy,
function of: the input signals X, the place marks M(P) and the
internal flags signals F. The output y can also be one internal
flag ∈ F, in this case called external flag:

 Sy(X,M(P),F) or
y = external flag ∈ F (7)

3 TPN TO VHDL TRANSLATION
 A VHDL code representing a controller description is shown
below. The translation of the Petri net to a VHDL is done in a
very intuitive way. The automatic parsing process of the control-
ler is based on the expressions described in session 2.1:

ENTITY Ctrl IS
PORT(RST : IN STD_LOGIC; -- reset
 CLK : IN STD_LOGIC; -- clock
 x1,...,xK : IN STD_LOGIC; --inputs X
 y1,...,yL : OUT STD_LOGIC –outputs Y); END Ctrl;
ARCHITECTURE PetriNet OF Ctrl IS
SIGNAL p1,...,pN : STD_LOGIC; --places P
SIGNAL f1,...,fR : STD_LOGIC; --flags F
-- For each transition t’ such that Dt’≠ 0:
 SIGNAL t’s : STD_LOGIC; --start fire.
 SIGNAL t’d: STD_LOGIC; --finish fire.
SIGNAL Gt1,...,GtM : STD_LOGIC;--guards G.
BEGIN
Gti <= Gti(X,M(P),F); -- for each Gt ∈ G
PROCESS(RST,CLK)
--Time count variable for each delayed transition t’:
 VARIABLE t’c : INTEGER RANGE 0 TO Dt’;
BEGIN
 IF (RST='1') THEN --******************************
 M(P) <= M0; -- initial place marks.
 t’s<='0'; t’d<='0'; -- delayed transitions reset.
 f1<='?';...;fR<='?'; -- ? flags initial values.
 ELSIF((CLK'EVENT)AND(CLK='1')) THEN
-- Fire of each no delayed transition t:
 IF (Gt='1')AND(p='1', ∀ p∈ It) THEN
 p <='0'; --∀ p∈ It1, removes places marks.
 p’ <='1'; --∀ p’∈ Ot1 , put places marks.

17

 At ; -- action of transition t.
 END IF;
--Fire of each delayed transition t’:
 IF (Gt’=’1’)AND(p='1', ∀ p∈ It’) THEN
 p <='0'; --∀ p∈ It’, remove places marks.
 t’s <='1'; -- Start transition t’ fire.
 t’c :=Dt’; -- Initial time count variable value.
 END IF;
 IF (t’s='1') THEN
 IF (t’c=0) THEN
 t’s <='0';
 t’d <='1';-- Finish transition t’ fire.
 ELSE
 t’c:=t’c-1;-- wait delay time count.
 END IF;
 END IF;
 IF (t’d='1') THEN:
 t'd <='0'; -- complete transition t’ fire.
 p’ <='1'; --∀ p’∈ Ot’, put places marks.
 At’ ; -- action of transition t’
 END IF;
 END IF;--**
END PROCESS;
 yi <= Syi(X,M(P),F); -- output function map S.
END PetriNet;

The basic rules for Petri net to VHDL translation can be de-
scribed as follows:

• In the VHDL code, the guard expressions Gt ∈ G and the
output expression y = Sy ∈ S are implemented as concur-
rent statements.

• A process represents the transitions fire rules.

• The transitions are fired by each positive clock edge.

• “IF THEN ELSE” statements defines the control flow for
each transition.

• For delayed transitions t’ one variable t’c is used to count
the delay time.

The translation of control behavior of Ctrl controller (ses-
sion 2.1) into a VHDL file is also very easy and intuitive
[1][11], increasing the reliability in the equivalence between
the both behavior descriptions. The VHDL file encodes the
internal states of the net associating one flip-flop to each place
(p ∈ P), flag or control elements of the delayed transitions, in
similar way to the “code on-hot” method used in FSMs [11]. In
spite of great use of the flip-flops, this method is well adapted
for implementation in FPGA because of the great amount of
flip-flops available in these devices. This translation technique
also tends to decrease the size of the combinatorial logical
during the synthesis for implementation of the transitions fires
rules. Thus, in general, less hardware to implement the logic is
needed and more speed in the application can be reached.

4 DYNAMICALLY RECONFIGURABLE
 ARCHITECTURE
Depending on the size of the controller, a suitable FPGA
should be chosen. In the literature, however, several methods
are proposed to eliminate this restriction by using "Virtual
Hardware” technique, similar to the virtual memory used in
modern computers [6][2]. This technique takes the advantage
of the capacity of partial and dynamic reconfiguration of mod-
ern FPGAs, allowing that a great circuit can be partitioned in

smaller sub-circuits, called contexts, which can be fitted into the
FPGA in the time. A scheduler guarantees that the complete
circuit is sequentially mapped and executed as contexts into the
FPGA, taking into account all dependences, parallelism and
correctness of the net.

In this work, as depicted in Figure 2, the Virtex II architecture
from Xilinx [10] is used as the dynamic device for partial recon-
figuration.

Figure 2. Virtex II FPGA architecture.

In these devices, the logic is organized as a set of n columns with
m Configurable Logic Blocks (CLBs) per column and k 18kbits
of RAM blocks. Parameters n, m and k are dependents of the
chip. Each column in this architecture can be independently
configured without any stopping of the logic running in other
columns. The partial and dynamic reconfiguration characteristic

provide a powerful resource for those cases where larger circuits
can be split into small pieces (contexts) in the time, and then
processed sequentially or according to some special scheduling
algorithm.

In this direction, we propose an architecture in which some fixed
logic and just one reconfigurable area are present into the FPGA:

• The Fixed Logic Area (FLA) contains the circuits to gener-
ate the output signals Y (figure 1) and the reconfiguration
control (scheduler). Once mapped into the FPGA, these cir-
cuits should not change during any partial FPGA reconfigu-
ration.

• The Reconfigurable Logic Area (RLA) receives the sched-
uled context circuits to implement the controller functional-
ity in the time. RLA can also receive input signals ∈ X (Fig-
ure 1).

The contexts are executed according to their transitions and
associated actions.

4.1 The Dynamic Architecture
In the Figure 3 the dynamic architecture for multiple contexts
execution is presented. Two main blocks as described before, the
RLA and the FLA compose this synchronous model. The FLA
block is also composed by two special registers, the OAR to
store the partial context results and the Sy to store the output
signal from the circuits. The execution process is very simple.
After a positive edge of CLK_C, the context carried in the RLA
is executed. OAR stores the arguments of the output functions Sy
∈ S generated by context execution. OAR is synchronized by a
negative edge of context clock CLK_C.

 18Kbits Blocks SelectRAM

CLBs columns

Fixed Logic Area (FLA).
Reconfigurable Logic Area (RLA)
for Context Circuits.

18

Figure 3. Multiplexed context model.

The partial values stored in OAR can be feedback to the RLA
control in case of data dependency between the contexts. At the
end, after the execution of all the contexts that compose the
application, OAR contains the values of all the arguments of
the output functions Sy. The Sy in then up-to-dated to generate
the final output results in Y. Sy is loaded by the positive edge
of system clock CLK_S. Each pulse in the system clock
CLK_S corresponds to one controller operation cycle (scan
cycle for PLC). If the application has N contexts we will have
N pulses in CLK_C for each pulse in CLK_S.

Figure 4. Dynamic architecture layout in Virtex-II.

The communication between RLA and FLA is implemented by
Xilinx Bus Macros Communication primitives elements [9],
placed into the fixed logic area FLA. The Dynamic architecture
layout in Virtex device is depicted in the Figure 4.

Partial reconfiguration of contexts requires communication
fixed paths between FLA and RLA areas. As shown in Figure
4, the bus macro is a fixed routing bridge between fixed area
and reconfigurable area, facilitating reliable communication. It
is a pre-routed hard macro used to specify the exact routing
channels and will not change from compilation to compilation
of FPGA configurations [9]. For each of the different context
configuration, there is absolutely no variation in the bus macro
routing.

For dynamic architecture implementation of the RLC
showed in Figures 3 and 4, the Modular Design Methol-
ogy for Virtex device and ISE Xilinx tools [9] was used.

4.2 Temporal partitioning
The RLA area has n columns, depending on the device, being
equivalent to a certain number of gates. If AC is the necessary

area (equivalents gates) to implement a certain controller Ctrl in
the FPGA, then the number of contexts N is calculated by:

N ≈ AC / Number of gates available (8)
The temporal partitioning Part of Ctrl is defined by:
Part = {C0,C1,C2,...,CN-1} where Ci, i=0,...N-1,
Ci = (TPNi,Xi,Yi,Fi,Gi, Ai,PIi),
TPNi=(Pi,Ti,Di,Ii,Oi,M0i) ,
Ci is a subset of Ctrl,
Ci is defined by grouping of places Pi ⊂ P such that:
P1 ∪ P2 ∪....∪ PN = P and Pi ∩ Pj = φ ∀ i, j, i ≠ j,
The transition set Ti of Ci is give by:
Ti = {t ∈T (∃ p∈ Pi | p ∈ It∪Ot)}. (9)

All elements of the sets X, F, P that affect the fire of Ci transi-
tions, must be contained in Ci, so that the places set PIi is con-
tained in places set of Ci:

PIi={p∈P|(p∉Pi ∧∃ t∈Ti|(p∈It,or p appears in Gt)} (10)

Observe that Ci uses the values of p’∈ PIi but only calculates the
new marks of the places p ∈ Pi.

The circuit partitioning uses a constructive algorithm derived
from the method presented in [6]. This algorithm guarantees that
the resultant area of the group of transitions and places, into each
context, respects the RLA area restriction. Each context defined
by expressions (9) and (10) is translated into VHDL files in the
same way that in the section 3, with small modifications. The
new VHDL code implements serial scan paths for input and
output of internal state bits and X inputs in the contexts and the
appropriated output signals for supply the OAR block placed in
the fixed logic area FLA.

4.3 Context switching
After timing partitioning, the context switching is performed by
four steps. In this stage the bitstream configurations and context
states are loaded and saved according to the partitioning sched-
ule. For each new context in the FPGA reconfigurable area
(RLA) the following control stages takes place:
1. The bitstream for the context circuit configuration Ci is

loaded in the reconfigurable area RLA and the current con-
text internal state is loaded using the serial scan path input.
The load is synchronized by CLK_C.

2. Ci is then executed in the positive edge of CLK_C. This
procedure up-to-date the current internal state and load into
the OAR the values produced by the current context, in the
negative edge of CLK_C.

3. If Ci is the final context of application, one CLK_S pulse is
generated for up-to-date output signals Y.

4. The new current internal state of context Ci is saved by
serial scan path read, synchronized by CLK_C, and then,
the step 1 is repeated for the next context C(i+1)modN, where
modN indicates module N operation.

The above cycle starts from context C0 and continues indefi-
nitely along the controller operation. One Finite State Machine,
FSMC, placed into the fixed logic area FLA implements this
cycle. This FSMC is also responsible for the controller power-on
initialization and reset sequence. Saved internal context states
are implemented by the use of blocks selectRAM components
[10]. This resource implements a RAM memory into the FLA
area, big enough for storage of the contexts states. The FPGA
reconfiguration is made in the parallel SelectMap mode by one
external fast configuration device [10] synchronized by FSMC.

Output Y Input X

Output Arguments Register (OAR)
Output Function (Sy)

Context Clock (CLK_C)

System Clock (CLK_S)

RLA

C0 C1 CN-1

FLA

19

4.4 Response time and reconfiguration time
Consider that Trec is the RLA reconfiguration time, Tsrs is the
time to restore and save internal contexts state and Tcycle is the
operation cycle time of an application then, the following
relation is true for N contexts application:

Tcycle ≈ N*(Tsrs + Trec) (11)

Virtex-II FPGAs are very fast reconfigurable devices, with
reconfiguration time between 1µs and 5µs per CLB. Clock
signals around 100MHz are possible for these devices and very
fast rate (1 bit/clock) of save/restore contexts state is possible.
In general, control for industrial machines need operation
cycles around 10ms, because of the mechanical nature of their
components. This relative slow operation is a very interesting
aspect for the proposed architecture, since the process execu-
tion cycles of complex controls can be guaranteed in small and
cheap reconfigurable Virtex-II devices. Besides, each context
can be executed in one clock cycle, because of the high paral-
lelism degree of hardware contexts.

5 A partial reconfiguration design example
In order to demonstrate the architecture, an elevator control
unit is used as example. The Figure 5 shows the resulting TPN
controller model. The controller was split into two contexts C0
and C1, schedules in the reconfigurable device according to the
architecture described before. The reconfiguration process was
totally simulated on the Foundation ISE5.2 environment from
Xilinx.

A Virtex-II XC2V80 device with 80,000 equivalent Xilinx
gates has been used as the reconfigurable component. This
device is organized as a set of 8 columns and 16 CLBs (Con-
figurable Logic Blocks) per column, representing a density of
10,000 equivalent gates/column.

 Figure 5. TPN Model of elevator controller.

The complete configuration of the XC2V80 device, in the fastest
way, takes 0.48 ms [10] or 0.06ms/column. So, it is possible to
determine the time Trec(A) for reconfiguration of a given area A
(set of columns) in this device, as follows:

Trec(A) = A/10,000 * 0.06ms where A is given in equivalent
gates. (12)

In this example, the RLA block occupies 4 columns, equivalent
to 40,000 gates, corresponding to a reconfiguration time of
0,24ms for each context. The maximum number of interns state
bits, 512, into each context is the same of the flip-flops in the
area RLA. Now, considering a clock frequency of 100 MHz, the
operation cycle Tcycle given by equation (11) is Tcy-

cle=N*(2*512/100MHz +0.24ms). Thus, the total application
time Tcycle can be expressed by:

Tcycle ≥ N*0.251ms or
N ≤ Tcycle /0.251ms (13)

The expression (13) defines the maximum number of contexts
for high speed reconfiguration selectMap mode for a 100MHz
clock. Now, taking into account an industrial operation cycle
around of 10 ms, it is possible to implement until 40 contexts
into the proposed architecture. The effective area need to support
all 40 contexts into the RLA area of XC2V80 device would be
1,600,000 equivalents gates. In fact, if the circuit is not parti-
tioned, the unique large context would require at least a
XC2V1500 device to implement the application. The Figure 6
compares the small prices of Virtex II XC2V80 and of
XC2V1500 devices in terms of cost.

Figure 6. Virtex II devices cost [12].

This demonstrates the high economy in complex controls design
into small device using a temporal partitioning for low speed
applications. The table 1 shows the metrics extracted from syn-
thesis for the contexts C0 and C1, based on the Foundation ISE
5.2 tool.

Table 1. Contexts elevator controller synthesis

Device: XC2V80 – Virtex II; Tools: ISE - 5.2
 FLA Context 1 Context 2
Input and Output Pins* 28 18 18
Area (Equivalent gates) 1922 679 1100
Slice FlipFlops** Used 73 29 40
18Kbits Block Select RAM*** 2 -- --
Max. Clock. Freq (MHz). 162 234 220

*Total number of I/O Pins: 120; **Total number of slice flip-
flops: 1024; ***Total number of 18Kbits Block Select RAM: 8.

The synthesis is successful at a high clock speed around
160MHz. The high parallelism of the FPGA allows the execu-
tion of contexts with up to 40K equivalents-gates (bit operation)
in 0.251ms, including save/restore state and context reconfigura-
tion time. This represents 159Million gates-operations per sec-
ond. The most powerful CPU of Siemens PLC, the CPU 416,
executes 12,5M bit-operations per second [13]. This metrics
show the potential of such architecture even for higher perform-
ance application.

C0

C1

20

6 CONCLUSIONS AND FUTURE WORKS
In this work, RLC architecture of industrial control, based on a
partially reconfigurable Virtex II device, has been presented as
an alternative for PLC-based control. In this architecture, the
application is specified in a Temporal Petri net (TPN) that
introduces advantages for the formal verification of system
properties. Besides, the Petri net have a powerful graphic rep-
resentation of concurrence and asynchronous control systems
and a similar semantics to others already traditional control
specification tools in the industry (LAD and SFC). Also, a
direct mapping method from Petri net specification into VHDL
files bas been presented in order to improve the use of the
effective area of a FPGA hardware, by temporal multiplexing
of the controller context circuits.

An example, an elevator controller, has been presented and the
synthesis results of the dynamic reconfiguration were pre-
sented. Although the reconfiguration time (context switching)
can represent one bottleneck, it was demonstrated that, for low
speed industrial applications, as a machine control, the pro-
posed model can reach good results at a low cost, since that
small devices can be used without loose of performance. The
execution of splitting processes into contexts in small FPGAs,
with high level of parallelism, can also be faster than in com-
mercial PLCs, since PLC architectures are essentially sequen-
tial machines.

As future works, we intend to use more complex and real
industrial applications; expand the TPN model to include more
complex actions and data process; study architectures that
combine microprocessors models and FPGA-based TPN model
to incorporate the advantages of each approach in a based
platform design for industrial controllers; develop tools that
allow the automatic translation of currents LAD and SFC
specification into a TPN model; contexts properties verifica-
tion of the application specification and partitioning; automatic
controller implementation.

7 REFERENCES
[1] Adamski, Marian; “SFC, Petri Nets and Application Spe-

cific Logic Controllers”, Proceedings of IEEE, 1998.

[2] Chang, Douglas; Sadowska, Marek; “Partitioning Sequen-
tial Circuits on Dynamically Reconfigurable FPGAs”, IEEE
Transactions on Computer, vol. 48, no. 6, June 1999.

[3] Desrochers, Alan A.; Al-Jaar, Robert Y.; “Application of
Petri Nets in Manufacturing Systems”, IEEE PRESS,
NewYork, 1995.

[4] Koo, Kyeonghoon; “Architectural Design of RISC Proces-
sor for Programmable Logic Controllers”, Proceedings of
the 9th CISL Winter Workshop, Sungwoo Resort, February
1996.

[5] Murata, Tadao; “Petri Nets: Properties, Analysis and Appli-
cations”, Proceedings of the IEEE, vol. 77, no. 4, April
1989.

[6] Nascimento, Paulo S. B.; Lima, Manoel. E.; Maciel, Paulo
R. M.; “Algorithm for Switching Context Temporal Parti-
tioning Based in CDFG-Petri Net Model”, Proceedings
HPC2003, pp. 254-258.

[7] Xilinx, Virtex II Plataform FPGAs: Introduction and Over-
view, Datasheet DS031-1 (v 1.9), September 26, 2002.

[8] Xilinx, Virtex II Plataform FPGAs: Detailed Description,
Datasheet DS031-2 (v 2.1.1), December 6, 2002.

[9] Xilinx, Two Flows for Partial Reconfiguration: Module
Based or Small Bit Manipulations, Application Notes
XAPP290 (v 1.0), May 17, 2002.

[10] Xilinx, Virtex II Platform FPGA User Guide, User Guide
UG002 (V 1.5) December 2, 2002.

[11] Yakovlev, Alex; Gomes, Luis; Lavagno, Luciano; “Hard-
ware design and Petri Nets”, Kluwer Academic Publishers,
Boston,2000.

[12] www.marshall.com, site for information of prices in No-
vember 2003.

[13] www.siemens.com/simatic-controller.

21

