
ipPROCESS: Using a Process to Teach IP-core Development

Marı́lia Lima, André Aziz, Diogo Alves, Patrı́cia Lira, Vitor Schwambach, Edna Barros
Informatics Center

Federal University of Pernambuco
Recife, PE, Brazil 50740-400

{msml, aaca, djca, pfal, vsc, ensb}@cin.ufpe.br

Abstract

The reusing of Intellectual Property cores has been an
alternative to the increasing gap between design producti-
vity and chip complexity of emerging System-on-chip (SoC)
designs. But the design of IP-cores has its own challen-
ges like portability, reusability, standards interfaces, well-
defined and useful documentation, easy to integration and
so on. All these characteristics together make the design of
an IP-core a complex task and in this way teaching this dis-
cipline has became a new challenge for educators. In this
paper we present an experience about how the utilization of
a well-defined development process can be used to facilitate
and speed-up students learning.

1. Introduction

The design of complex ICs based on pre-designed and
pre-verified IPs is emerging to solve known problems in
ICs design [4]. Aiming to guarantee the quality design of
each component of the system, it is essential to teach IP-
core and System-on-Chip based on industry standards, de-
sign methodologies and processes. Aligned with these de-
mands the Brazil-IP Network has developed a process for
IP-core development as a result of the Fenix Project [1].

This article presents the ipPROCESS, a process for
IP-core development with implementation in FPGA. This
process has been used in system design training of under-
graduate students in the institutions involved at Brazil-IP
Network. The goal of learning IP design by using a well-
defined design process is to facilitate and speed-up students
learning, once the process is well-defined in terms of ac-
tivities, each team members roles, what must be done and
when. It is expected that a process defined in such way pro-
vides a more detailed view of the entire flow, and guides
the students more clearly towards what must be done du-
ring the development of the IP-core. Result of joint effort
of Brazil-IP members, the ipPROCESS process has as its

main pillars: iterative and incremental design, UML-RT
diagrams [5], use of coding guidelines, functional verifica-
tion and pair programming [2, 4]. The next sessions present
the process in more details and shows how it is being used
for teaching IP-core design.

2. ipPROCESS

At the present version of ipPROCESS are represented
five major workflows of an IP design, namely: Require-
ments, Analysis & Design, Implementation, Functional
Verification and FPGA Prototyping. In other words, every
workflow groups a set of related activities.

Requirements

RTL

Implementation
Functional

Verification

Analysis &

Design

FPGA

Prototyping

[Done]

[Error]

[O
K

]

[OK]

[E
rr

o
r]

Figure 1. The ipPROCESS Workflows.

The general IP-core development flow is shown in Fi-
gure 1 according to the previously mentioned workflows.
Development starts capturing the requirements of the IP-
core in order to define the design based on the analysis of
the identified requirements. Once the design is done, the
team can be divided into two sub-teams: the verification
and the implementation teams. Verification team shall build
the verification model, while design team does the imple-
mentation (Verilog, VHDL, SystemC or any other HDL) of

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)

0-7695-2374-9/05 $20.00 © 2005 IEEE

the modules that compose the IP-core. After the IP-core
implementation is done, it ought to be submitted to func-
tional verification. Thus, in case the IP-core implementa-
tion passes the verification and is considered functionally
correct, we advance to the next step, FPGA implementation
and testing.

Next we present a brief description of the mentioned
workflows: (1) Requirements: the main purpose of this
workflow is to establish and to maintain agreement with the
customers and other users on what the IP-core should do
and to provide system developers with a better understan-
ding of the system functional and non-functional (like per-
formance, power, size, cost etc) requirements;(2) Analysis
& Design: the purpose is to transform the requirements into
a design of the IP-core and to adapt the design to match the
implementation environment; (3) Implementation: the pur-
pose is to define the organization of the code, to implement
the design elements and perform unit tests on the develo-
ped modules; (4) Functional Verification: this workflow fo-
cuses on evaluating the IP-core quality through the follow-
ing activities: finding and describing defects in the imple-
mentation, validating the IP-core functionality and also va-
lidating the requirements are implemented as specified and
(5) FPGA Prototyping: the purpose is to synthesize the im-
plementation into a FPGA and validate the IP-core require-
ments as specified in the Requirements workflow.

Every workflow mentioned above is defined in terms of
activities, roles and artifacts to be created (e.g. code lines,
documents, UML diagrams etc). Moreover, to facilitate and
speed-up the execution of each workflows activities, tem-
plates have been defined for the documents to be created,
tool mentors to some tools and checklists to the activities.
More detailed information of each workflow and the des-
cription of the process itself can be found at the website
http://www.brazilip.org.br/ipprocess.

The ipPROCESS has been used for training undergra-
duate students participating in the Fenix project. In this
paper we present as an example the development of the
8051 Microcontrollers IP-core. The team was composed of
nine students (divided in sub-teams) and the design process
has taken fourteen months. After the requirements for the
8051s IP-core has been defined, the project was partitioned
onto the following modules: CPU, USART, IO Ports, Inter-
rupt Manager, Timers and OCP-IP Interface (standard in-
terface among IP-cores [3]). Thus, each sub-team was res-
ponsible for the detailed specification of one of the modu-
les. In this stage documents were produced from the avai-
lable templates and some UML diagrams were created to
facilitate the understanding the functionality of each mo-
dule. After detailing and specifying the communication in-
terface among the modules, the team started the verification
and implementation stages. On those stages we adopted the
strategy of pair programming [2], that way each module has

been implemented by two students. It is important to no-
tice that each pair specified one module, implemented other
module and verified another one. This strategy allowed us
to identify the specification errors sooner and guaranteed to
each team member a broader understanding over the core
being developed, thus minimizing the communication and
integration errors among the cores modules. After imple-
mented and verified, the sub-team that implemented a given
module (soft core) was responsible for synthesizing, im-
plementing and testing it in Xilinx Virtex II XC2V1000-
4FG456C FPGA. This implementation of the 8051 Micro-
controller has 26,539 lines of SystemC RTL code and to
verify it was developed 817,623 test cases (including ran-
dom, compliance and corner) and 10,566 lines of SystemC
TL code were written. The core occupies 40% of 4-input
LUTS and 9% of slice flip-flops of the FPGA and has been
tested on-chip to a frequency of up to 12MHz.

2.1. Conclusion and Further Work

The process proposed by Brazil-IP Network, the ip-
PROCESS, has been defined in terms of activities, roles and
artifacts that extend from the understanding of what the IP-
core should provide until its final FPGA implementation.
Its utilization in the training of undergraduate students, as
mentioned previously, has shown that document templates,
pre-validated coding standards, practical tool tutorials and
guidelines are very useful during the learning process. The
use of the ipPROCESS makes easier and speed-up the learn-
ing process, and also supports team work. Furthermore,
some strategies used to define the ipPROCESS as pair-
programming, use of a coding guideline and functional ve-
rification [2, 4] has led to the creation of IPs with improved
quality, fewer errors and with well-defined interfaces.

Nowadays the ipPROCESS is being taught in regular un-
dergraduation and graduation classes where the challenge is
even greater: guarantee that the students experience all the
stages of the development of an IP-core in only few months.
One next step is to specify a workflow to define and group
the activities related to IP-cores distribution, in other words,
what must be delivered along with the code so that the IP-
core may be easily reused by third-parties [4].

References

[1] Brazil ip network. http://www.brazilip.org.br.
[2] extreme programming. http://www.extremeprogramming.org.
[3] Open core protocol specification. http://www.ocpip.org.
[4] M. Keating and P. Bricaud. Reuse Methodology Manual.

Kluwer Academic Publishers, 2002.
[5] P. Kruchten. The Rational Unified Process. Addison Wesley,

July 2000.

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)

0-7695-2374-9/05 $20.00 © 2005 IEEE

