
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

Vander Ramos Alves

Implementing Software Product Line Adoption Strategies

Ph.D. thesis

SUPERVISORS:

Prof. Paulo Henrique Monteiro Borba

Prof. Geber Lisboa Ramalho

Recife, March 2007.

Acknowledgments

I am most grateful to my supervisors, Paulo Borba and Geber Ramalho, for their re-
lentlessly in-depth and most fruitful supervision. Current and previous members of the
Software Productivity Group contributed substantially for achieving the results of this
work. In particular, Pedro Matos Jr. provided fundamental support during the method
definition and in the case studies. Alberto Costa Neto and Ivan Cardim also helped in
some case studies and helped substantially with discussions and reviews. Rohit Gheyi
and Tiago Massoni collaborated very closely for the definition of feature model refactor-
ings. I would also like to thank the members of the FLIP project, in particular Vilmar
Nepomuceno, Fernando Calheiros, Davi Pires, Jorge Leal, Gustavo Santos, and Sérgio
Soares for their most valuable participation in the evaluation and tuning of our method.
I would also like to thank Meantime Mobile Creations for research collaboration and
providing access to the mobile games. Tarćısio Câmara, Alexandre Damasceno, and
Pedro Macedo shared a substantial amount of domain knowledge for this work. I am
most grateful to them.

Uirá Kulesza has consistently provided most valuable feedback on parts of this work.
Also, discussions with him in related topics was most inspiring and an enjoyable experi-
ence. Valuable feedback on specific and general parts of this work has also been provided
by Rosana Braga, André Santos, and Jacques Robin.

This work was partially supported by CNPq, FINEP, FACEPE.

ii

Abstract

Software Product Line (SPL) is a promising approach for developing a set of products
scoped within a market segment and based on common artifacts. Potential benefits
are large scale reuse and significant boost in productivity. An incurred key challenge,
however, is handling adoption strategies, whereby an organization decides to start the
SPL from scratch, bootstrap existing products into a SPL, or evolve an existing SPL.
In particular, at the implementation and feature model level, development methods
lack adequate support for addressing this issue. In this context, we present an original
method addressing the creation and evolution of SPL focusing at the implementation
and feature model level. The method first bootstraps the SPL and then evolves it
with a reactive approach. The method is systematic because it relies on a collection of
provided refactorings at both the code level and at the feature model level. The method
was validated in the highly variant domain of mobile games.

iii

Resumo

Linha de Produtos de Software (LPS) é uma aborgadem promissora para o desenvolvi-
mento de um conjunto de produtos focados em um segmento de mercado e desenvolvidos
a partir de um conjunto comum de artefatos. Posśıveis benef́ıcios incluem reuso em larga
escala e significante melhoria em productividade. Um problema chave associado, no en-
tanto, é o tratamento de estratégias de implantação, em que uma organização decide
iniciar a partir do marco zero, fazer bootstrap de produtos existentes em uma LPS, ou
evoluir uma LPS. Em particular, a ńıvel de implementação e de modelo de features,
métodos de desenvolvimento carecem de tratar tal problema. Neste contexto, apresen-
tamos um método original para tratar da implantação e evolução de LPS focando a
ńıvel de implementação e modelo de features. O método primeiro faz o bootstrap da
LPS e então a evolui com uma abordagem reativa. O método é sistemático porque se
baseia numa colecão de refactorings tanto a a ńıvel de implementaçã como de modelo
de features. O método foi validado no domı́nio altamente variável de jógos móveis.

iv

Acronyms

Acronym Meaning
SPL Software Product Line
FM Feature Model
AOP Aspect-Oriented Programming
AJDP AspectJ Development Tools
IDE Integrated Development Environment
CC Conditional Compilation
API Application Programming Interface
J2ME Java 2 Micro Edition
MIDP Mobile Information Device Profile

v

Contents

1 Introduction 2
1.1 Summary of Goals . 4
1.2 Organization . 4

2 Software Variability 5
2.1 Historical Notes and Terminology . 5
2.2 Variability in Software Product Lines . 7
2.3 Domain Example: Mobile Games Product Lines 9
2.4 Software Product Line Approaches . 11

2.4.1 Feature-Oriented Domain Analysis 11
2.4.2 FAST . 14
2.4.3 KOBRA . 15
2.4.4 Adoption Strategies . 16
2.4.5 Scope . 17

3 Current Variability Implementation Approaches 18
3.1 Object-Orientation and Polymorphism 18
3.2 Design Patterns . 20
3.3 Frameworks . 22
3.4 Feature-Oriented Programming . 22
3.5 Deployment-Time and Run-Time Variability 24
3.6 Program Transformation . 27

3.6.1 Java Transformation System . 27
3.6.2 XVCL . 32

3.7 Conditional Compilation . 36
3.8 Aspect-Oriented Programming . 39

3.8.1 AspectJ . 39
3.8.2 AspectBox . 40
3.8.3 CaesarJ . 41

3.9 Comparison Framework . 42
3.10 Instantiating the Variability Framework 44

3.10.1 Design Patterns . 45
3.10.2 Frameworks . 45
3.10.3 AOP . 46
3.10.4 FOP . 47
3.10.5 JPEL . 48

vi

3.10.6 JaTS . 49
3.10.7 XVCL . 49
3.10.8 Conditional Compilation . 50

3.11 Comparative Analysis . 51

4 Implementing Product Lines Adoption Strategies 54
4.1 Method . 54

4.1.1 Extract SPL . 56
4.1.2 React SPL . 57
4.1.3 Refactoring Catalog . 58
4.1.4 Migrate SPL . 71

4.2 Formal Reasoning for AspectJ Refactorings 81
4.2.1 Programming Laws . 81
4.2.2 Deriving Refactorings . 84

5 Refactoring Feature Models 87
5.1 Motivation . 87
5.2 Refactoring Product Lines . 88

5.2.1 Issues in Product Line Refactoring 88
5.2.2 Definition of Product Line Refactoring 90

5.3 Formalizing Feature Models . 91
5.4 Feature Model Refactoring . 92

5.4.1 Motivation . 93
5.4.2 Refactoring Notation . 93
5.4.3 Unidirectional Refactorings . 94
5.4.4 Bidirectional Refactorings . 97
5.4.5 Discussion . 99

5.5 Case Study . 100
5.5.1 Context . 101
5.5.2 SPL Refactoring . 102

5.6 Unidirectional Refactorings Catalog . 104

6 Case Studies 110
6.1 Rain of Fire . 110

6.1.1 Study Setting . 111
6.1.2 Variability Identification . 112
6.1.3 Extraction . 112
6.1.4 Configuration Knowledge . 114
6.1.5 Analysis . 114

6.2 Best Lap . 116
6.2.1 Study Setting . 117
6.2.2 Variability Identification . 117
6.2.3 Migration . 118
6.2.4 Configuration Knowledge . 120
6.2.5 Analysis . 123

6.3 Open Issues and Possible Extensions . 125

vii

6.3.1 Import Variation . 125
6.3.2 Superclass Constructor Call . 126
6.3.3 Adding an else-if Block . 127

6.4 Case Studies Synthesis . 128

7 Conclusion 132
7.1 Future Work . 134
7.2 Related Work . 135

7.2.1 AOP and SPLs, and Refactoring 135
7.2.2 Programming Laws and Model Refactoring 136
7.2.3 Refactoring Product Lines . 137
7.2.4 Portability of Mobile Games . 138

Bibliography 140

viii

List of Figures

2.1 The Three Essential Activities for Software Product Lines [39]. 6
2.2 Variability funnel with early and delayed variability [65]. 8
2.3 Visualizing the effects of porting in the source code. 12
2.4 Feature diagram for Dictionary domain for embedded devices. 13

3.1 Varieties of polymorphism [35]. 20
3.2 Template method design pattern. 21
3.3 Mobile Game (MG). 23
3.4 Structure of the Software Product Line implemented with JaTS. 30
3.5 Catapults and dragons facing both directions on Rain of Fire. 30
3.6 T1 templates. 31
3.7 T2 templates. 32
3.8 Example of an X-Framework. 33
3.9 Traversal of X-Frames by the XVCL processor. 34
3.10 Refinement of virtual classes in CaesarJ 42
3.11 Propagating mix-in composition . 43
3.12 Positive and negative variability . 44

4.1 Method for implementing SPL adoption strategies. 55
4.2 Bootstrapping the Product Line. Core assets appear above the dashed line. 56
4.3 Evolving the Product Line. Core assets appear above the dashed line. . . 57
4.4 Refactoring the Product Line. Core assets appear above the dashed line. 58
4.5 Migrate SPL. 71
4.6 Extract Method to Aspect. 85
4.7 Derivation of Refactoring Extract Resource to Aspect - after. The dashed

lines denote application of programming laws (fine-grained transforma-
tions); the continuous line denote the application of the refactoring (coarse-
grained transformation) . 86

5.1 Problems in Refactoring SPLs . 89
5.2 Feature Diagram Notations . 91
5.3 Feature Model Example . 91
5.4 Class Diagram depicting Feature Model Components 92
5.5 Feature Model Refactoring Example . 93
5.6 Completeness proof of B-refactorings. B-R stands for B-Refactorings. . . 101
5.7 Reduction strategy for completeness proof. B-R stands for B-Refactorings.

All B-Refactorings are applied from left to right. 102

ix

5.8 Semantics-based reasoning versus catalog-based reasoning. 102
5.9 Case Study Program Refactorings . 105
5.10 Case Study Feature Model Refactorings 106

6.1 Platform variation of Rain of Fire. 111
6.2 Variability within Game Product Line 111
6.3 Best lap’s main screen . 117
6.4 Variability within Best Lap . 130
6.5 Plug-in for identifying variability in the conditional compilation SPL. . . 131

x

List of Tables

2.1 Effects of porting in the source code, listing the types of variation and
corresponding frequency. 11

3.1 Examples of variability support with design patterns. 21
3.2 List of templates found. 29
3.3 Framework for describing variability techniques. 44
3.4 Some design patterns according to the variability framework. 45
3.5 Framework technology according to the variability framework. 46
3.6 AspectJ described according to the variability framework. 46
3.7 FOP described according to the variability framework. 47
3.8 JPEL described according to the variability framework. 48
3.9 JaTS described according to the variability framework. 49
3.10 XVCL described according to the variability framework. 50
3.11 Conditional compilation described according to the variability framework. 50
3.12 Comparing implementation mechanisms according to the variability frame-

work. 51

4.1 Summary of Refactorings. 63
4.2 Relating Migration Strategies to Refactorings 81
4.3 Summary of Refactorings Derivations. Consecutive application of laws

is represented by →. Repeated application of a law is denoted with a
superscript *. 86

5.1 Summary of Unidirectional Feature Model Refactorings 95

6.1 Occurrence of each refactoring . 113
6.2 LOC in original and SPL implementations 115
6.3 LOC of aspects in the SPL. 115
6.4 Jar size (kbytes) in original and SPL implementations 116
6.5 Occurrence of the top 10 most frequently used preprocessing tags in Best

Lap . 118
6.6 Occurrence of preprocessing tags in Best Lap classes 118
6.7 Occurrence of migration strategies . 119
6.8 Occurrence of programming laws in each refactoring 120
6.9 SPL configuration knowledge . 121
6.10 Reuse of aspects in BestLap SPL . 123

xi

1

6.11 Sizes of Best Lap SPL. Exterior columns show sizes for instances; inte-
rior columns show sizes of the SPL for both the conditional compilation
version and the AO version. 124

6.12 Application (jar) Sizes of Best Lap SPL 125

Chapter 1

Introduction

Computational systems are becoming ubiquitous [110]. By using a mobile phone with
computational power, we can access and manipulate information almost everywhere and
anywhere. Similarly, other electronic devices will gain or augment computational power.
Indeed, the impact of information technologies in the society will increase significantly.
Therefore, in this scenario, applications have to comply with high ever-increasing quality
standards, specially availability and usability.

In order to meet these high quality standards, current applications must comply with
a series of functional and non-functional requirements such as persistence, concurrency,
distribution, and adaptability. This further increases the already complex task of devel-
oping these systems. Additionally, the development processes must be productive, and
the resulting software must be extensible and reusable [29].

In order to meet the challenge of developing current applications, paradigms such
as object orientation and software processes are used. The Object-Oriented Paradigm
is implemented by languages and relies on design and architectural patterns [33, 55].
As a result, it offers more effective means to achieve reuse, thereby increasing pro-
ductivity of future projects, and software maintenance. Object orientation, however,
has some shortcomings, such as difficulty in modularizing systemic requirements like
non-functional requirements and complex object protocols [100, 101]. In order to over-
come these shortcomings, novel extensions of object orientation have been proposed,
among which Aspect-Oriented Programming (AOP) [77, 79] is receiving increasing at-
tention [117, 129].

Software development processes also guide application development. These processes
define activities to be carried out, the resulting artifacts, and the roles to perform them.
Processes thus help to reduce development complexity, promoting its predictability and
reproducibility. One shortcoming of existing processes is lack of implementation sup-
port [71]. As a result, reuse and extensibility, achieved during design, may be lost during
implementation, resulting in quality decrease of the final software. Some extensions of
processes focusing on implementation are already being defined [3, 91, 116].

More recently, software processes are being generalized into process frameworks re-
ferred to as Software Product Lines (SPL) [39], which focus on the development of a
family of products targeting a specific market and based on a common base of artifacts.
In a product line, there is a generic architecture which is common to all products in
the line; this architecture is adapted for the creation of a particular product. In this

2

3

process, variability management [82] plays a key role: the specific products differ in
terms of these variations, and thus modelling and implementing them appropriately will
translate into higher product line productivity.

Additionally, variability in product lines is more pervasive through development
phases than in single-system development. In particular, the design and implementation
assets are considerably more variant in the product line setting [65]. Although modelling
and design are being intensively discussed in conferences like the Software Product
Line Conference, investigation of more suitable implementation techniques cannot be
neglected [17].

Additionally, a key orthogonal issue to a particular SPL development process is
handling adoption strategies, whereby an organization decides to start the SPL from
scratch, extract (bootstrap) existing products into a SPL, or react (evolve) an existing
SPL. Particularly, there is lack of support for this at the implementation and at the
feature model level, which describes its configurability. For instance, it is often not clear
which transformations should be applied to extract which variability. Further, there
is lack of correctness discussion regarding this transformations. This is particularly
important, since, in the SPL context, testing is considerably expensive [106].

Moreover, during such adoption strategies, it is necessary to evaluate the configura-
bility space of the SPL. For instance, if three isolated applications are to be extracted
into a SPL, then, at the end of such process, the resulting feature model describing
the SPL should should also have three instances. In the case in which the product line
reacts (evolves), the feature model should have more than 3 instances.

To the best of our knowledge, the issues described above have not been addressed.
In this context, we propose a systematic method for creating and evolving product lines.
Our method first extracts the SPL and then evolves it with a reactive approach. Initially,
there may be one or more independent products, which are refactored in order to expose
variations to bootstrap the SPL. Next, the SPL scope is extended to encompass another
product: the SPL reacts to accommodate the new variant. During this step, refactorings
are performed to maintain the existing product, and a SPL extension is used to add a
new variant. The SPL may react to further extension or refactoring. Alternatively, there
may be an existing SPL implemented with a variability mechanism from which we may
want to migrate. During such activities, the feature model as well as the configuration
knowledge evolve and need to be handled appropriately.

The method is systematic because it relies on a collection of provided refactorings
at both the code level and at the feature model level. Such refactorings are described in
terms of templates, which are a concise and declarative way to specify program trans-
formations. In addition, refactoring preconditions (a frequently subtle issue) are more
clearly organized and not tangled with the transformation itself. Furthermore, the refac-
torings can be systematically derived from more elementary and simpler programming
laws or feature model transformation laws. These laws are appropriate because they
are considerably simpler than most refactorings, involving only localized changes, with
each one focusing on a specific language construct. Therefore, they are easier to reason
about than the refactorings, increasing correctness confidence in such extractive trans-
formations. This is specially relevant because it reduces the burden on testing, which is
potentially expensive in the SPL scenario.

Our program refactorings rely on AOP to modularize crosscutting concerns, which

4

often occur in SPLs. In cases where variability cannot be handled by AOP, we point to
extensions in this paradigm or alternative implementation techniques. Accordingly, we
conduct a comparative analysis of SPL variability implementation techniques, which is
useful in this respect.

We evaluate our method in existing industrial-strength mobile games, assessing its
advantages and drawbacks. The benefits of the evaluation are twofold. First, it con-
tributes to building knowledge of use of non-trivial examples of variability mechanisms
such as AOP. Second, it sheds light on how non-trivial industrial issues in the context
of SPL can profit from novel uses of emerging techniques.

1.1 Summary of Goals

Our research has the following goals:

• provide systematic method for the extractive and reactive SPL adoption strategies;

• extend the notion of refactoring for SPLs;

• evaluate the proposed method in industrial-strength SPLs.

1.2 Organization

The remainder of the thesis is organized as follows:

• Chapter 2 reviews some essential concepts concerning software product lines and
discusses the notion of variability for product lines, contrasting it with single-
system development; it then describes a domain example and briefly reviews some
SPL methods as well as adoption strategies. Finally, it refines the scope of our
proposed method;

• Chapter 3 first reviews techniques for handling variability in software product
lines. It then presents a framework for describing these approaches and finally
contrast them according to such framework;

• Chapter 4 defines our method for implementing the extractive and reactive SPL
adoption strategies. It additionally shows how some elements of such method can
be understood formally;

• Chapter 5 first motivates the need for an extended notion of refactoring, where
feature models are also considered. It then extends the notion of refactoring to
the SPL context and formalizes feature models. Finally, it illustrates an strategy
for employing these concepts in the context of a case study in the mobile games
domain;

• Chapter 6 describes two case studies, evaluating the proposed method in the mo-
bile games domain. It then presents and addresses some open issues. Finally, it
compares the results of both case studies;

• Chapter 7 offers concluding remarks, pointing to future research and related work.

Chapter 2

Software Variability

Variability is the ability to change or customize a system [65]. Improving variability in a
system implies making it easier to do certain kinds of changes. It is possible to anticipate
some types of variability and construct a system in such a way that it facilitates this
type of variability. Reusability and flexibility have been the driving forces behind the
development of such techniques as object orientation, object-oriented frameworks, and
software product lines.

In this chapter, we first review some essential concepts concerning software product
lines (Section 2.1); next, we discuss the notion of variability for product lines, contrasting
it with single-system development (Section 2.2); we then describe a domain example
where variability issues are discussed (Section 2.3); finally, we briefly review some SPL
methods as well as adoption strategies (Section 2.4).

2.1 Historical Notes and Terminology

The concept of software families has early roots in Dijkstra [48] and Parnas [104, 105].
Dijkstra proposed a model of family-based development where differences in design
decisions distinguished family members. The original concepts of information hiding
separated the common and variable aspects of a module into an implementation and
interface, respectively [104]. Parnas later characterized families as groups of items that
are strongly related by their commonalities, where commonalities are more important
than the variations between family members [105].

Likewise, according to Withey [125], a product family is a group of products that
can be built from a common set of artifacts. A product family is defined on the basis
of similarities between the structure of its member products. Product family members
share at least a common generic architecture. That is, product families are scoped
primarily based on technical commonalities between the products.

On the other hand, the same author [125] defines a product line as a group of products
sharing a common managed set of features that satisfy the specific needs of a selected
market. Thus, this definition of a product line is based on a marketing strategy rather
than on technical similarities between its member products. The features defined for
a product line might require totally different solutions for different member products.
A product line might be well served with one product family; however, it might also

5

6

require more than one product family. On the other hand, a product family could be
reused in more than one product line.

Clements and Northrop [39] extended the previous definition in order to incorporate
technical similarities between member products. Accordingly, a software product line is
a set of software-intensive systems sharing a common, managed set of features satisfying
the specific needs of a particular market segment or mission and that are developed from
a common set of core assets (a core asset is an artifact used in the production of more
than one product in a SPL [39]) in a prescribed way. In the scope of our research and,
in particular, during the rest of this document, we assume this definition.

At its essence, a product line involves core asset development (also known as Domain
Engineering [45]) and product development (also known as Application Engineering [45])
using the core assets, both under the supervision of technical and organizational man-
agement. Core asset development and product development from the core assets can
occur in either order: new products are built from core assets, or core assets are ex-
tracted from existing products. Often, products and core assets are built in synergy
with each other. Figure 2.1 illustrates this triad of essential activities [39].

Figure 2.1: The Three Essential Activities for Software Product Lines [39].

Each rotating circle represents one of the essential activities. All three are linked
together and in perpetual motion, showing that all three are essential, are inextricably
linked, can occur in any order, and are highly iterative.

The rotating arrows indicate not only that core assets are used to develop products,
but also that revisions of existing core assets or even new core assets might, and most
often do, evolve out of product development. The diagram in figure 2.1 is neutral in
regard to which part of the effort is launched first. In some contexts, already existing
products are mined for generic assets (perhaps a requirements specification, an archi-
tecture, or software components) which are then migrated into the product line’s core
asset base. In other cases, the core assets may be developed or procured for later use in
the production of products.

7

There is a strong feedback loop between the core assets and the products. Core
assets are refreshed as new products are developed. Use of core assets is tracked, and
the results are fed back to the core asset development activity. In addition, the value
of the core assets is realized through the products that are developed from them. As
a result, the core assets are made more generic by considering potential new products
on the horizon. There is a constant need for strong, visionary management to invest
resources in the development and sustainment of the core assets. Management must
also support the cultural change to view new products in the context of the available
core assets. Either new products must align with the existing core assets, or the core
assets must be updated to reflect the new products that are being marketed. Iteration
is inherent in product line activities, that is, in turning out core assets, in turning out
products, and in the coordination of the two.

2.2 Variability in Software Product Lines

Over time, variability in software assets has become increasingly important in soft-
ware engineering. Whereas software systems originally were relatively static and it was
accepted that any required change would demand potentially extensive editing of the
existing source code, this is no longer acceptable for contemporary software systems.
Instead, newer approaches to software design share as a common denominator that
the point at which design decisions concerning the supported functionality and quality
requirements are made is delayed to later stages.

A typical example of such delayed design decisions is provided by software product
lines. Rather than deciding on what product to build beforehand, in software product
lines, a software architecture and set of components is defined and implemented that
can be configured to match the requirements of a family of software products. A second
example is the emergence of software systems that can dynamically adapt their behavior
at run time, either by selecting alternatives embedded in the software system or by
accepting new code modules during operation, such as plug-and-play functionality, for
instance.

The consequence of the developments described above is that, whereas earlier de-
cisions concerning the actual functionality provided by the software system were made
during requirement specification and had no effect on the software system itself, new
software systems are required to employ various variability mechanisms that allow the
software architects and engineers to delay the decisions concerning the variants to the
point in the development cycle that optimizes overall business goals. For example, in
some cases, this leads to the situation where the decision concerning some variation
points is delayed until run time, resulting in customer or user performed configuration
of the software system. In other cases, variability can be handled before compilation,
thus removing complexity of the final product.

Figure 2.2 illustrates how the variability of a software system is constrained during
development [65]. The space between the arrows of the funnel denotes the amount of
variability in the system. When the development starts, there are no constraints on the
system. This is visualized in Figure 2.2 by having infinite space between the arrows.
During development, the number of potential system decreases (so there is increasingly

8

less variability) until finally at run-time there is exactly one system, that is, the running
and configured system. At each step in the development, design decisions are made.
When software product lines are considered, it is beneficial to delay some decisions so
that products implemented using the shared product line assets can be varied. These
delayed design decisions are referred to as variation points [65].

Figure 2.2: Variability funnel with early and delayed variability [65].

Figure 2.2 displays two stereotypical variability funnels. The left one represents
a situation where a lot of variability is removed from the system early on; the right
one represents a situation where significant effort has been made to preserve variability
until very late in the development process. Arguably, the left funnel is easier to develop
and is more typical of conventional software development; the right funnel, however,
provides greater reusability and is more typical of product line development. Indeed,
reusable software contains inherently more variability than concrete applications and
such variability spans all development phases as shown on the right funnel of Figure 2.2.

Accordingly, variation management is the key discriminator between conventional
software engineering and software product line engineering. In conventional software
engineering, variation management deals with software variation over time and is com-
monly known as configuration management. In software product line engineering, vari-
ation management is multi-dimensional. It deals with variation in both time and
space [82]. In this context, managing variation in time refers to configuration man-
agement of the product line software as it varies over time, while managing variation in
space refers to managing differences among the individual products in the domain space
of a product line at any fixed point in time. Managing variation in space itself is chal-
lenging. Although the variants share a core architecture and other reusable assets, the
more diverse the domain, the harder it is to handle variants consistently, which in some
cases may outweigh the cost of developing the product line core itself. For instance,
as we have analyzed [2], the mobile device game domain, due to portability issues, is

9

highly variant, where the nature of variation can have different levels of granularity, and
the implementation of such variation usually crosscuts a number of artifacts. The scope
of our work is handling implementation of product line variability in space as well as
handling incurred feature model transformations

2.3 Domain Example: Mobile Games Product Lines

Game development is usually regarded simpler for mobile devices than for desktop plat-
forms [5]. Indeed, the resources provided by the latter support more complex applica-
tions, and the development cycle tends to be longer. On the other hand, mobile device
games (and mobile applications, in general) must adhere to a stronger portability re-
quirements [5, 34]. In fact, service carriers 1 typically demand from developers that
a single application be deployed in a dozen or more platforms. In a more demanding
case, a single game had to be ported to 69 different devices [52]. In fact, addressing
the porting issue effectively in this context is directly related to the ability to build a
product line with highly effective variability management.

Porting stems from a combination of technical and business constraints. Manufac-
tures release different devices targeting diverse customer profiles, in ever-shortening time
periods. Besides, operators and publishers need the developed games to be delivered to
the greatest possible number of users, forcing the developer to provide multiple versions
of the application, each optimized to a specific device. The demand of porting mobile
device games is so critical in the industry that there are currently specialized companies
in providing such service [124].

Despite being a known critical problem in industry, most current practices only
address the portability issue superficially. In fact, the presented solutions are more
descriptive than prescriptive; additionally, they present many hypothesis that restrict
their applicability, and very few have been validated in industry such as work described
elsewhere [96, 51, 49, 54, 36].

A significant amount of different mobile devices is produced and sold because there
are segments of the market with distinct needs and financial resources. Therefore, game
developers need to adapt the games so that they comply with the specific requirements
of each target device.

J2ME [94] is the edition of the Java platform targeted at mobile devices such as
mobile phones and personal digital assistants and is currently the most used platform for
developing mobile device games [5]. In J2ME and in other platforms, porting demands
efforts from the development team due to several variability issues [5]. In J2ME, in
particular, the main variability challenges, according to our experience [2, 111], are as
follows:

• Different features of the devices regarding user interface, such as screen size, num-
ber of colors, pixel size, sounds, and keyboard layout;

• Different execution memory availability and maximum application size;

• Proprietary Application Programming Interface (API) and optional packages;

1A service carrier is a telephone company providing local, long distance, or value-added service.

10

• Different profiles (MIDP 1.0 and MIDP 2.0)2;

• Different implementations of a same profile in J2ME [93];

• Device-specific bugs;

• Internationalization.

J2ME technology is evolving with the release of version 2.0 of its specification [108]
and the optional libraries specification, which can be present in the devices [93]. More-
over, most device manufacturers supply proprietary APIs which extend standard J2ME
functionalities. In principle, these innovations could be ignored in favor of porting, so
that all games would be implemented using the same API. However, industrial-strength
games frequently rely on such APIs, optional packages, and more advanced profiles like
MIDP 2.0. Likewise, some carriers require the inclusion of their proprietary APIs in the
telephones they commercialize and demand that developers use these libraries, further
compromising portability. This myriad of resources, of which the developer should take
advantage to build professional games, makes porting very expensive and complex.

Despite manufacturers efforts to make their devices totally compatible with the
J2ME standard specification, some devices have known bugs, requiring a number of
device-specific work arounds from the programmer when he or she has to use the de-
fective libraries. Once again, porting is compromised. Lastly, there is the language
issue: developers and publishers which operate globally inexorably need to translate
their games to a great variety of languages. In some cases, several languages can be
included in a single SPL instance; however, most of the time, it is more convenient and
efficient, in terms of final size of the application, to have several SPL instances, one for
each language.

As a result of these factors, developers are frequently forced to develop up to dozens
of variations of a single game, optimized for different types of devices, operators, and
languages. This further complicates the game development process, thus very likely hav-
ing a negative impact on the quality of the resulting software, because these variations
usually involve modifications scattered across various artifacts. Accordingly, providing
consistent maintenance of these variations becomes a more expensive and error-prone
task, as the functional common core is normally dispersed across such variations.

In order to illustrate the impact on the resulting code, we considered the porting of a
game developed (Rain of Fire3) from Motorola’s platform T720 to Nokia’s Series 60, both
J2ME-compliant, but the latter relying on proprietary API offering advanced graphics
manipulation [111]. Despite the apparent functional game simplicity, the differences
between the devices prompted changes in almost all application classes, adding up to
79 modifications. The average size of each modification was 2 lines, which revealed the
fine granularity of these changes. Table 2.1 illustrates the types of variations handled
in the porting.

2A profile is a set of APIs focusing on one domain of application. The Mobile Information Device
Profile (MIDP) is the most used profile, but there are differences across its versions, such as MIDP 1.0
and MIDP 2.0.

3In cooperation with Meantime Mobile Creations, under FACEPE/PAPPE and CNPq/Universal
research projects.

11

Type of Variation Frequency(%)
Argument in method call 30
Class constant value and definition 20
Local variable value and definition 11
Attribute definition 9
Graphics API 8
Additional softkey expression 5
Different expression 4
Drawing calculation expression 7
Class hierarchy 3
Method definition 3

Table 2.1: Effects of porting in the source code, listing the types of variation and
corresponding frequency.

We can visualize some of these variations in Figure 2.3. This figure shows screen
shots of the difference of a few game classes in two different platforms. The shaded
patterns denote code specific to a platform; code in white background is common to both
platforms. The goal here is not to understand the individual lines of code, but rather
to notice variability patterns. For example, the top leftmost screen shot shows that the
game in one platform incorporates additional behavior. The screen shot just below it
indicates isomorphic variations in the game in both platforms. The patterns in remaining
screen shots lie somewhere between these two. In general, we notice that platform
variations are highly crosscutting, i.e., they affect a large number of classes [2, 5, 34].
Furthermore, a significant body of research supports that the implementation of variant
features is inherently crosscutting [85, 23, 92, 89, 17].

2.4 Software Product Line Approaches

In order to handle variability and effectively build product lines, a number of approaches
have emerged. We describe some SPL development methods (Sections 2.4.1, 2.4.2,
and 2.4.3). The description is brief and not intended to be exhaustive for the follow-
ing reasons. First, we mention some fundamental approaches, from which we borrow
essential concepts (for example feature models from FODA); second, as Section 2.4.4
explains, an orthogonal issue to such methods is adoption strategy, which is the focus
of our research, as Section 2.4.5 describes.

2.4.1 Feature-Oriented Domain Analysis

In Section 2.2, we discussed that a key activity of a SPL development is core asset devel-
opment. Within that activity, domain analysis is an important activity, which defines
a set of reusable requirements for the applications in the SPL domain. In this context,
FODA (Feature-Oriented Domain Analysis) is domain analysis method focused on the
description of variabilities and commonalities by means of features, where a feature is

12

Figure 2.3: Visualizing the effects of porting in the source code.

a prominent and user-visible aspect, quality, or characteristic of a software system or
systems [75] (shortly ahead will we present more complete definitions, which we will use
for the remainder of this work). The FODA process consists of two phases: 1) Context
Analysis, whose purpose is to scope the domain to be analyzed, by considering project
constraints and availability of domain expertise; 2) Domain Modeling, which identifies
and models the main commonalities and variabilities between the applications in the
domain, representing them in a feature model.

A FODA feature model comprises the following elements:

• Feature diagram. The diagram depicts a hierarchical decomposition of features
with mandatory (must have), alternative (selection from many) and optional (may
or may not have) relationships;

• Feature definitions. Description of all features and its binding time (preprocessing,
compilation, deployment, or runtime);

• Composition rules (also referred to as constraints). These rules indicate which
feature combinations are valid and which are not;

13

• Rationale for features. The rationale for choosing or not choosing a particular
feature, indicating the trade-offs.

A feature diagram models the configurability aspect of the product line, thereby
leaving other aspects such as structural and behavioral relationships to other models.
The very advantage of feature diagrams is that they avoid cluttering the configurability
aspect with other aspects.

Figure 2.4 depicts a feature diagram for a product line in the domain of dictionary ap-
plications for embedded devices [7, 47]. Dictionary is the root feature of the product
line. Features Translation, Screens, and Search mechanism are mandatory (filled
circle); feature Dynamic customization is optional (open circle); features Dynamic

screens, Colorized screens, and Internationalized screens are or-features (filled
arc); Server and Memory are alternative features (open arc). An example of constraint
on this model (not shown in Figure 2.4) is that if feature Dynamic screens is selected,
then feature Dynamic customization should also be selected, since the latter supports
the former.

Figure 2.4: Feature diagram for Dictionary domain for embedded devices.

Variability in feature diagrams is expressed using optional, alternative, and or-
features. These features are referred to as variant features. The nodes to which variant
features are attached are referred to as variation points. In Figure 2.4, all features
except Translation, Screens, and Search mechanism are variant features; features
Dictionary, Screens and Search mechanism are variation points, which are clearly
pinpointed in the diagram.

A number of approaches are based on FODA or combine it with other techniques:

• Feature Oriented Reuse Method (FORM) [76] is a layered approach to the origi-
nal FODA and extends the latter to the software design phase and prescribes how
the feature model is used to develop domain architectures and components for
reuse; in particular, FORM provides a mapping from feature models to implemen-
tation artifacts. In order to refer this mapping, we employ Czarnecki’s [45] term
configuration knowledge.

14

• Featuring RSEB (FeatRSEB) [63] combines FODA and the Reuse-Driven Software
Engineering Business (RSEB) method [72], by including the domain an engineering
and feature modeling steps into RSEB, since this later provides no explicit feature
models. FeatRSEB also extends the feature model diagram, which is then changed
into a tree or a network of features linked together by UML dependencies or
refinements. Another distinguishing addition to the feature model is the explicit
representation of variation points.

• Bosch [32] defines a feature as a logical unit of behavior that is specified by a set
of functional and quality requirements. The idea is that a feature is a construct
used to group related requirements. We adopt this definition in our work.

• Benavides et al [25] extend feature models with extra-functional features and re-
lations amongst attributes; they can automatically analyze five properties in this
language, such as number of instances of a FM. However, they do not propose a
set of refactorings for FM and use them to refactor SPL.

2.4.2 FAST

FAST (Family-Oriented Abstraction, Specification, and Translation) [123] is a SPL
development process conceived in the context of telecommunication infrastructure and
real-time systems. It relies on a set of assumptions suggesting that SPL development it
is worthwhile in a domain. The first assumption is that software development is often
redevelopment, mostly creating new variations on existing software systems. Usually,
there are more similarities than differences between variations. The second assumption
is that it is possible to predict the changes that are likely in a software system, thereby
deriving future changes from earlier changes. In the last hypothesis, both software and
software development organization can be structured to take handle predicted changes,
which can be made independently of other type of changes. The purpose is to confine
changes refer only to a minimal subset of system modules.

FAST comprises three sub processes: domain qualification, domain engineering, and
application engineering. Domain qualification provides an economic model relating the
other two sub processes, by showing to which extent investment in domain engineer-
ing pays off in application engineering. In particular, domain qualification outputs an
economic model estimating the number and value of family members and the cost to
produce them.

In domain engineering, commonality & variability analysis is performed. Unlike
FODA, there is no use of feature model nor any graphical notation displaying the
configurability space of the product line. Additionally, core assets are designed and
implemented. Two important such assets are the definition of Application Modeling
Language (AML) and of the the application engineering environment. The former pro-
vides support for abstract specifications of applications. The latter enables analyzing
the specifications written in AML and generating code from the abstract specifications.
The synthesis of SPL instances can be either by composition or compilation, the choice
of which is domain dependent.

Finally, in application engineering, the core assets developed in domain engineering

15

are used generates produce family members rapidly in response to customer require-
ments.

2.4.3 KOBRA

KobrA [19] has been developed at the Fraunhofer Institute for Experimental Software
Engineering (IESE). This systematic method is designed for component-based product
line engineering. The key ideia is the integration of the product line and component-
based approaches, by unifying in this method the product line paradigm supporting
“reuse in large” and the component based paradigm supporting “reuse in small”.

KobrA method is divided in framework engineering and application engineering ac-
tivities. The framework engineering activity is based on the product line approach in
order to design and maintain a generic framework describing variabilities and common-
alities. A framework is defined as the static representation of a set of KobrA components
(Komponents) organized in the form of a tree. The results generated by this activity
are framework models defined in terms of a mixture of textual and UML-based models.
The application engineering activity is based on the component based approach in order
to instantiate the generic framework.

Each Komponent is described at the specification level and at the realization level.
The former defines the Komponents externally visible properties and behaviors; the
latter defines how the Komponent is decomposed in lower level Komponents. The final
goal is to develop applications containing specific variants corresponding to particular
customers requirements. The results generated by this activity are application models
defined in terms of a mixture of textual and UML-based models. Framework engineering
comprises four activities:

• Context Realization, which elicits the environment properties and defines the
framework scope. This phase takes also in charge the variabilities and commonal-
ities analysis. The business process model and the decision models are produced.

• Komponent Specification Using the business model and the decision models,
the purpose of this process is to describe the externally visible properties of a
Komponent. To fulfill this goal, the structural model (UML Class/Object dia-
grams), the behavioral model (UML Statecharts diagrams), the functional model
(operation schemata), and

• Komponent Realization, describes the private design of a Komponent realizing
specification. To fulfill this goal, the interaction model (UML collaboration dia-
grams), the structural model (UML Class/Object diagrams), the activity model
(UML activity diagrams), and the decision model (textual) are produced for each
Komponent.

• Component Reuse reuses pre-existing components or integrates directly exe-
cutable COTS components. The main task is to manage a process of negotiation
between the reusing Komponent (desired specification) and the reused component
(offered specification) in order to define a mutually acceptable specification.

16

The application engineering process uses the different models defined in the frame-
work engineering in order to recursively transform all the generic framework models for
the particular application. During this phase, the framework built during framework
engineering is used to construct specific applications. The application engineering is
divided into two activities:

• Context Realization instantiation. The purpose of this process is to instanti-
ate the frameworks context realization. The potential users problems are analyzed
and compared to the features supported by the framework. To fulfill this goal, con-
text decisions and a concrete realization of the applications context are produced.
To finish this process, customer-specific requirements can be added and the real-
ization of the application context must be evaluated concerning its completeness
and its correctness.

• Framework Instantiation. The purpose of this process is to instantiate recur-
sively the generic Komponent hierarchy of the framework using context decisions
and removing unwanted features. the decision model (textual) are produced for
each Komponent.

2.4.4 Adoption Strategies

An orthogonal issue to product line development methods is adoption strategy. Inde-
pendently from the SPL method, there are several approaches for developing SPLs [39]:
proactive, reactive, and extractive [81]. In the proactive approach, the organization ana-
lyzes, designs, and implements a fresh SPL to support the full scope of products needed
on the foreseeable horizon. In the reactive approach, the organization incrementally
grows an existing SPL when the demand arises for new products or new requirements
on existing products. In the extractive approach, the organization extracts existing
products into a single SPL.

Since the proactive approach demands a high upfront investment and offers more
risks, it may be unsuitable for some organizations, particularly for small to medium-
sized software development companies with projects under tight schedules. In contrast,
the other two approaches have reduced scope, require a lower investment, and thus
can be more suitable for such organizations. Although the extractive and the reactive
approaches are inherently incremental, it should be pointed out that the proactive ap-
proach can be incremental as well. In this case, products are simply derived based on
whatever assets are in the core asset base at the time. However, there still needs to be
a potentially high investment for this first increment and, although we do not need to
have all core assets in hand before starting to build products, all such assets need to
be designed and planned. An interesting possibility is to combine the extractive and
the reactive approaches. But, to our knowledge, this alternative has not been addressed
systematically at the architectural and at the implementation levels.

In all approaches, variability management must be addressed in the domain: while
focusing on exploiting the commonality within the products, adequate support must be
available for composing SPL core assets with product-specific artifacts in order to derive
a particular SPL instance. The more diverse the domain, the harder it is to accomplish

17

this composition task, which in some cases may outweigh the cost of developing the SPL
core asset themselves.

2.4.5 Scope

Indeed, as mentioned in Section 2.2, variability occurs at different levels, from require-
ments to implementation and test. However, despite the various existing SPL devel-
opment methods, there is still lack of detailed guidelines for the implementation level
and feature model level in the context of the SPL extractive and reactive adoption
strategies. As mentioned in Section 2.4.4, these are often used in practice to minimize
risks and costs. In view of that, the scope of our work is at the feature model level and
at the code level in the context of the extractive and reactive SPL adoption strategies.
The core of our method is described in Chapters 4 and 5.

Chapter 3

Current Variability Implementation
Approaches

In order to enable the implementation of SPL adoption strategies, we consider in this
chapter variability implementation approaches, since variability lies at the core of SPLs.
Variability management approaches predate software product lines [39, 43]. Indeed,
variability within single-software development, despite limited, has been supported by
language features in most paradigms, such as structured programming, functional pro-
gramming, logic programming, and object-oriented programming. However, with the
emergence of the product line approach, such language features gained even more im-
portance and were also refined and extended to design principles to meet the reuse goals
of this approach.

This chapter reviews and compares essential concepts for handling variability in soft-
ware product lines. The next chapter presents detailed discussion on a novel technique.
The remainder of this chapter is organized as follows. We first consider atomic lan-
guage underpinnings of variability in Section 3.1. Next, Section 3.2 describes the less
fine-grained approach of design patterns; Section 3.3 then considers the more coarse-
grained approach of framework technology. Feature-Oriented Programming is reviewed
in Section 3.4. Subsequently, Section 3.5 addresses variability at deployment-time and
at run-time. Sections 3.6 and 3.7 explain how some program transformation techniques
and conditional compilation address SPL variability, respectively. We then review in
Section 3.8 some AOP techniques. In Section 3.9, a framework for comparing the ap-
proaches is presented and then Section 3.10 describes each approach according to such
framework. Finally, in Section 3.11, we compare these approaches.

3.1 Object-Orientation and Polymorphism

The variability mechanisms considered in this work are based on object-orientation [28]
and its extensions. Ultimately, variability is implemented in programming languages. In
this section, we consider object-oriented language features supporting variability. The
next sections build on these features by providing higher level abstraction mechanisms.

Object-oriented languages define classes and manipulate objects, which have state
and behavior specified by classes. State is represented by a set of attributes, which are

18

19

usually kept private (a capability known as information hiding), whereas behavior is
represented by a set of methods, which are usually of public access to other objects.
Application features in object-oriented programs are implemented by a collaboration of
objects exchanging messages, where a message is a method call and frequently changes
objects state.

When a message is sent to an object, the particular operation that is performed
depends on both the request and the receiving object. Different objects that support
identical requests may have different implementations of the operations that fulfill these
requests. The run-time association of a request to an object and one of its operations is
known as dynamic binding. This and subtype polymorphism–described shortly ahead–
are the fundamental language mechanisms behind variability in framework technology, as
discussed in Section 3.3. Further variability with objects is supported by polymorphism,
which we describe next.

The word polymorphism is derived from the Greek language and means “the ability
to have many forms”. In programming languages, it refers to the idea of being able to
write code against an abstract interface and plug in different concrete implementations
behind the abstract interface. Programming languages support polymorphism with
many different mechanisms. We list some of them in the following paragraphs. The
original definition of polymorphism by Strachey from 1967 [118] distinguishes between
parametric and ad hoc polymorphism:

“Parametric polymorphism is obtained when a function works uniformly over
a range of types; these types normally exhibit some common structure. Ad
hoc polymorphism is obtained when a function works, or appears to work,
on several different types (which may not exhibit a common structure) and
may behave in unrelated ways for each type.”

Cardelli and Wegner [35] refined this definition as shown in Figure 3.1. Parametric
polymorphism is obtained using generic parameters. Inclusion polymorphism corre-
sponds to subtype polymorphism in object-oriented languages, that is, variables of a
given type can also hold objects of its subtypes. Coercion refers to the automatic appli-
cation of built-in or user-defined type promotions and conversions, for example, when
adding an integral and a floating-point number, the integral operand is converted into a
floating-point number. Overloading means providing different implementations of func-
tions for the same function name, but different operand types. Overloading and coercion
may conflict, for example, if both an overloaded function and an appropriate conversion
are equally applicable.

For example, all the previously discussed variants of polymorphism are available
in C++ [119]. Templates correspond to parametric polymorphism, virtual functions
to subtype polymorphism, function overloading to overloading, and built-in or user-
defined conversion operators or constructs to coercion. The only kind of polymorphism
allowing run-time variability in C++ is subtype polymorphism (via dynamic binding).
The remaining forms are completely resolved at compile time. All kinds of polymorphism
in C++ rely on a static type system.

As another example, Java [62] also provides all kinds of polymorphism mechanisms.

20

Figure 3.1: Varieties of polymorphism [35].

It supports both subtype polymorphism and parametric polymorphism1. Automatic
promotions and type conversions are available for built-in types, but not for user-defined
types. Methods can be overloaded as in C++, but operators cannot be overloaded
by the user. Subtype polymorphism occurs in Java in its pure form, with interfaces
to represent types; it can also occur with classes and extends constructs. Interfaces
correspond to C++ abstract classes containing declarations of pure virtual methods, but
no method implementations. An interface can be used to declare the type of a variable
that can point to any object of any class implementing this interface. The introduction
of interfaces relieves classes of their double role of being types and implementation
repositories at the same time and lets them concentrate on the latter. Because this is
not the case in C++, this language is sometimes said to support subclass polymorphism.

3.2 Design Patterns

In the previous section, we briefly characterized object-oriented language mechanisms for
supporting variability. As language mechanisms, such features provide atomic support
for that goal, but can be organized into coarse-grained structures such as design patterns
and frameworks. In this section, we characterize design patterns for handling variability.
In the next section, we address this issue with frameworks.

Design patterns involve descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context [55]. A design
pattern names, abstracts, and identifies the key aspects of a common design structure
that make them useful for creating a reusable object-design. The pattern identifies the
participating classes and instances, their roles and collaborations, and the distribution
of responsibilities. Each design pattern focuses on a particular object-oriented design
problem or issue. It describes when it applies, whether it can be applied in view of other
design constraints, and the consequences and trade-offs of its use.

In the product line context, design patterns are particularly useful because several
design patterns make some part of the design variable. For example, bridge allows

1Parametric polymorphism only became available in Java in 2004 with the Generics feature of J2SE
5.0.

21

varying the implementation of an object; state allows varying behavior depending on
the state; template method provides a way to vary computation steps while keeping
the algorithm structure constant. Table 3.1 summarizes variability support with some
design patterns.

Design Pattern Aspects that can vary
Bridge implementation of an object
State behavior
Decorator (wrapper) responsibilities of an object without subclassing
Adapter interface to an object
Strategy an algorithm
Template method steps of an algorithm

Table 3.1: Examples of variability support with design patterns.

In particular, the design pattern template method represents one of the fundamental
structures used in object-oriented frameworks, described in Section 3.3. The class dia-
gram in Figure 3.2 explains this structure. The algorithm() method calls a number of
abstract methods, for example, action1() and action2(). Concrete implementations
of the abstract methods are provided in the subclasses of Framework. The usual ar-
rangement is that the base class Framework is a part of a framework, and an application
defines a concrete subclass. The method algorithm() is referred to as template method
because it defines the overall algorithm structure, but it lets the developer vary some of
its steps.

Figure 3.2: Template method design pattern.

Template method handles fine-grained variation and is generally implemented using
inheritance to vary part of an algorithm. However, it can also be implemented with
parameterized inheritance [45]. The first approach relies on dynamic binding and thus
binding time is at run-time; the second approach is static and thus binding time is at
compile-time. In contrast, Strategy uses delegation to vary the entire algorithm and has
run-time binding mode.

22

3.3 Frameworks

A framework is a set of cooperating classes that make up a reusable design for a specific
class of software [74]. A framework dictates the architecture of the application. It
defines the overall structure, its partitioning into classes and objects, and their key
responsibilities, how the classes and objects collaborate, and the thread of control. A
framework predefines these design parameters so that the implementer can concentrate
on the specifics of the application. The framework captures the design decisions that
are common to its application domain. Frameworks thus emphasize design reuse over
code reuse, though a framework will usually include concrete subclasses that can be
used directly.

Reuse on this level leads to an inversion of control between the application and the
software on which it is based. When a developer uses a conventional library, he or she
writes the main body of the application and calls the code to be reused. When the
developer uses a framework, he or she reuses the main body and writes the code it
calls. The developer will have to write operations with particular names and calling
conventions, but that reduces the design decisions to be made.

In the product lines context, frameworks provide a high level of reuse. Indeed, a
framework encapsulates domain knowledge and is a semi-complete application in that
domain. By instantiating a framework, a product line member is created. The instan-
tiation process consists on defining the behavior for variation points (also known as hot
spots [107]) in the framework.

Variability in framework is often implemented with design patterns, such as template
method, strategy, and state. However, in general, design patterns are also often imple-
mented with dynamic binding, which brings run-time binding mode to frameworks and
incurs into some performance degradation. Additionally, since dynamic binding is an
intra-application mechanism, using it for inter-application variability often complicates
frameworks, which usually tend to grow rapidly in complexity.

3.4 Feature-Oriented Programming

Using classes as the traditional units of organization of object-oriented software does
not suffice to implement features modularly [100, 101]. Accordingly, a number of ap-
proaches focusing on more appropriate representation of features in the source code have
emerged. A class of approaches concentrate on encapsulating features as increments over
an existing base program, together with a mechanism for combining different features
on demand. Approaches in this class include GenVoca [22], mixin layers [114], and
AHEAD [24], and we refer to them as Feature-Oriented Programming (FOP). In this
section, we first describe the key principles of FOP and then how it handles variability
in the product line context.

Our explanation is driven by an example of a mobile game, whose simplified class
structure is shown in Figure 3.3. The central abstraction in Figure 3.3 is the class
MainCanvas. Once created by MidletController, MainCanvas also creates an instance
of the Resources class and of the GameScreen class; MainCanvas handles user input and
regularly updates game status by painting new state on the GameScreen object. In the

23

remainder of this section, we will use the abbreviation MG to refer to the mobile game.
We will discuss variability by means of a particular feature of this software, namely
clouds: as a scenery addition, MG can have clouds scrolling in the background.

Figure 3.3: Mobile Game (MG).

With FOP, a feature is encoded as a delta over an existing base structure. This delta
is usually expressed in a subclass/mixin-like style. Since we assume that we already have
a running version of the MG application, using FOP, we basically implement the clouds
functionality as a layer on top of MG; accordingly, we consider the MG software as the
base element (a constant in terms of AHEAD):

class MidletController {...}

class MainCanvas{...}

class Resources {...}

class GameScreen{...}

and define the clouds feature as a delta on top of it

refines class Resources {

Image clouds;

Image getClouds() {return clouds;}

}

refines class GameScreen {

void paint(Resources r) {

super.paint();

r.getClouds().paint();

}

}

The delta definition above uses the syntax of AHEAD and contains extensions
of Resources and GameScreen (in AHEAD, the modifier refine denotes extension).
The first refinement maps cloud abstraction to a base type, while the refinement for
GameScreen is needed to integrate the cloud feature into the control flow of the base.

24

Similar to subclasses, class refinements can add fields like in Resources or over-
ride methods like in GameScreen) with the additional flexibility that different lay-
ers can be freely combined. For example, we could have another layer that adds
an enemy feature to the MG application and combine it with the clouds layer. Ev-
ery combination of features can be made available in a separate namespace. This
means that we would have classes like base.Resources, base.GameScreen, as well
as clouds.Resources,...,enemy.Resources,...,cloudsenemy.Resources. Therefore, it
is possible to have multiple different configurations of a product line on top of the same
base application.

In terms of variability management, FOP is superior to framework technology, since
it introduces a layer module with two distinctive capabilities. First, a layer encapsulates
multiple abstractions and deltas of them, which together pertain to the definition of a
feature into a single modular unit. A layer localizes the definition of a feature that would
otherwise be scattered around the definition of several classes into a single code unit.
Second, a layer is a mixin-like module, that is, it abstracts over the concrete variant of
the base definition it applies to. Individual abstractions encapsulated within a layer are
defined as mixins to their respective base abstractions, and the layer plays a similar role
to them as classes play to their method definitions. This is a key to FOP support for
variability management: variants of a base behavior can be composed in a plug-and-play
fashion.

3.5 Deployment-Time and Run-Time Variability

Extending binding time to deployment-time and run-time is useful in the product line
context: most applications are developed to be used by a very large number of customers,
expecting different features, or imposing performance or memory constraints. Moreover,
most software also has to be adapted in order to be used in specific system architectures.
In particular, applications often have to be configured before or after it is delivered
to the customer, or even when these are running. Nevertheless, it is desirable that
such configuration be made without any extra development effort. Furthermore, some
customers require that they configure some aspects of the software by themselves.

A well-known approach to this issue is parameterizing software. In this approach,
we separate the source code from the definition of the values that may change from
one version of the application to another. We refer to these values as parameters.
The set of files in which the parameters are defined is referred to as profile. Indeed,
various programming languages development environments support this technique. In
particular, within Java, existing solutions include Properties, ResourceBundle, Jakarta
Commons, JConfig, Preferences, and JNDI.

However, recent research [112] shows that such tools do not meet a set of requirements
considered essential by developers when handling deployment and run-time variability.
Accordingly, such research presents a tool meeting those requirements. In the rest of
this section, we briefly consider this tools’ features in addressing these requirements.

25

JPEL

JPEL (Java Parameter Expression Language) [112] is a tool for parametrization of
Java applications. It implements a set of features, such as relationship among pa-
rameters, hierarchical grouping of parameters, and automatic adjustment of executing
processes [112], which are frequently required by developers when addressing deploy-
ment and run-time variability. We first explain its basic functionality and then explain
such features. The following example shows the screen.jpel file, which parameterizes
game screen width.

module SCREEN {

WIDTH = 600;

}

This simple file has only one parameter which represents the screen width. This file
configures, at deployment-time, the game screen to have a 600-pixel width. The following
code is an example of a Java class which makes use of the above parametrization file.

public class Screen {

private int width;

public void initScreen() {

try {

StaticConfiguration par;

par = ConfigurationBuilder.staticConfiguration("screen.jpel");

this.width = par.getInt("SCREEN.WIDTH");

if (this.width == 123) {...}

}

catch (ConfigurationException ce) { ... }

}

}

As shown in the example, variability of behavior can be implemented by having
conditionals test the value of the parameter. In the following subsections, we list and
explain JPEL’s features.

Relationship between parameters

Some of the parameters of a system may have relationships among themselves. These
relationships allow us to express some parameters as a function of others. If such
relationship is implemented in the source code, the system loses flexibility. On the
other hand, if the parametrization tool allows expressing the functional relation between
parameters, every time we change a parameter that is at the domain of a function, we
do not need to recalculate its image, which is done automatically by JPEL. This is a
very desirable feature for a parametrization tool.

Back to the example previously shown, one might wish to parameterize the screen
height as being the half of the screen width. This relationship can be expressed in a
JPEL parametrization file, screen.jpel in this case:

26

module SCREEN {

WIDTH = 600;

HEIGHT = WIDTH / 2;

}

Pre-defined operators and extensible API

In order to define a relationship between parameters, JPEL provides a wide range of
arithmetic and logic operators. Moreover, JPEL allows the developer to define new
operators using a functional language. The following example shows the use of a user
defined function.

module SCREEN {

WIDTH = 555;

HEIGHT = integerDivision(SCREEN.WIDTH, 2);

}

integerDivision (x,y) =

| (x<y) = 0

| otherwise = 1 + integerDivision(x-y, y);

This example defines HEIGHT as being the result of the integer division between WIDTH

and 2. To express this relationship, a user defined function (integerDivision) is used.
Moreover, JPEL allows developers to write relational operators using Java methods. In
order to accomplish this, the tool provides a set of abstract classes and interfaces which
the developer may implement to define new operators. These new operators can be
easily included in a profile.

Parameters hierarchical grouping

In addition to the grouping of parameters in separate files, it is useful to group param-
eters in a hierarchical structure. In the game screen example, the WIDTH and HEIGHT

parameters are grouped in the SCREEN module, and are referenced throughout the profile
as SCREEN.WIDTH and SCREEN.HEIGHT respectively.

Automatic update at run-time

The features above support deployment-time variability. However, JPEL also supports
parameters to be set dynamically, that is, run-time variability. JPEL dynamic parame-
ters can be changed at run-time without the need to restart the application.

Back to the game screen example, one could find it necessary to use dynamic
parametrization for the WIDTH parameter. The following Java code shows this:

public class Screen {

private int width;...

public void setWidth(int w) {

this.width = w;

}

27

public void initScreen() {

try {

DynamicConfiguration par;

par = ConfigurationBuilder.staticConfiguration("screen.jpel");

par.bind(this, "setWidth", int.class, "SCREEN.WIDTH");

par.execute();

PolicyListener listener = new PolicyListenerReload();

Policy onChange = new PolicyActivateOnChange();

((PolicyActivateOnChange) onChange).setPeriod(10000);

onChange.addPolicyListener(listener);

onChange.addConfiguration(par);

onChange.start();

}

catch (ConfigurationException ce) { ... }

}

}

This application checks for changes on the screen.jpel file every 10 seconds. When-
ever this file changes, JPEL updates the system variables with the associated new pa-
rameters. In this particular case, the SCREEN.WIDTH parameter is bound to the setWidth
method of the screen object. Whenever there is a change in the parametrization file, the
setWidth method of Screen will be executed receiving the new SCREEN.WIDTH value as
parameter.

3.6 Program Transformation

In general, program transformation systems should be considered when implementing
product line variability because they are able to describe complex variability patterns,
some of which can be crosscutting and have different levels of granularity, ranging from
a single line of source code to the package or component level. In this section, we
investigate how some transformation systems can be used to address product line vari-
ability. In particular, we describe a transformation system for Java in Section 3.6.1 and
a language independent XML-based transformation system in Section 3.6.2.

3.6.1 Java Transformation System

In this section, we describe the Java Transformation System (JaTS) [98], a system for
specifying and executing transformations in Java. First, we briefly explain JaTS main
features. Next, we show how this system can be used to manage variability in a mobile
device game.

JaTS Features

JaTS transformations are written in a language that extends Java with JaTS constructs.
The goal of the constructions is to allow type (class or interface) matching and the

28

specification of new types that are to be generated. The simplest among these is the
JaTS variable, which consists of a Java identifier preceded by the ’#’ character.

A JaTS transformation consists of two parts: a left-hand side (matching template)
and a right-hand side (replacement template). Both sides consist of one or more type
declarations written in JaTS. The left-hand side of a transformation is matched with
the source Java type being transformed, which implies that both must have similar
syntactic structures. The right-hand side defines the type that will be produced by the
transformation.

The application of a JaTS transformation to a Java type is performed in three phases:
parsing, transformation, and unparsing. The core phase is the transformation phase.
The first phase parses the program to be transformed and the left-hand side template
of the transformation and builds their corresponding parse trees. The second phase,
transformation, has three sub-steps: matching, replacement, and execution. The first
matches the parse tree of the left-hand side of the transformation with the parse tree of
the source Java type being transformed. Roughly, a node in the source type matches the
one in the left-hand side if they are identical or if the second one corresponds to a JaTS
variable. A mapping from variables to the values that they were matched to is produced
by the matching. This is called the result map of the matching. The second sub-step
consists of replacing occurrences of JaTS variables in the parse tree of the right-hand
side by corresponding values in the result map. The last sub-step consists of executing
some JaTS structures in the parse tree of the right-hand side of the transformation.
Such structures either query or update the parse tree, by optionally using iterative or
conditional declarations. Finally, the third phase, unparsing, reads the parse tree and
generates the text of the transformed program.

Managing Variability with JaTS

We now consider how JaTS can address variability implementation in the product line
context. In particular, we explored this when building a product line of a mobile device
game from existing versions for 3 different mobile phones. First, we briefly describe the
game and how it was initially implemented without the product line approach. We then
explain how JaTS helps with variation management during the product line adoption
strategy.

Rain of Fire2 is a shooting game, where the player is the master guardian of a city
and controls ballistas and catapults to defend his/her town from several types of flying
dragons with different speeds, power, and attack patterns. It is not necessary to kill
every dragon, but to destroy as many as possible in order to prevent the main city
buildings from being destroyed.

The game was initially ported in an ad hoc way to 3 devices: Nokia Series 40,
Nokia Series 60, and Motorola T720. This means that each device-specific version was
developed by copying an existing one, and adapting it manually. Clearly, this poses
serious maintenance problems, specially in this domain, where the number of versions
is frequently large. The goal of the study was to analyze the existing device-specific
versions, identify the incurred variation patterns, and propose a technique to manage

2In cooperation with Meantime Mobile Creations/CESAR, under FINEP/FLIP, FACEPE/PAPPE
and CNPq/Universal research projects.

29

Template-Variation Type
Extract/Implement Method

Add/Remove attribute
Add/Remove context

Add/Remove beginning block
Add/Remove ending block

Apply change do value
Class Hierarchy change

API Import
Argument in Method Call

Different Expression
Class Constant

Table 3.2: List of templates found.

these variations systematically while exploring the commonality. Although the technique
could be applied retroactively, the general benefit would be to use it to either port the
game to new platforms or to start porting new games. The approach relies on JaTS.

After analyzing the source code difference patterns of Rain of Fire’s implementation
for the three platforms, we then used JaTS to handle the variations identified. The
process employed was a simplified version of the process described in Chapter 4, focusing
on variability identification and extraction. The solution was based on the idea of
extracting the code for an abstract platform (the Core) from the existing concrete ones,
such that this core would contain all game features that were common to all platforms;
after that, the code for each platform would be generated by transformations on the
Core. It is worth mentioning that the code for the Core platform is not functional; it
cannot be compiled. The main reason for its existence is to delimit the boundaries of
the code that can be used in all three platforms without any modification.

In order to achieve this, we first catalogued all variations found. Next, we defined a
pair of transformations: one transformation from device-specific code to the Core (called
T1), and the reverse transformation, which would generate device-specific code from the
Core (T2). We then identified code patterns that were present in all occurrences of each
variation; overall, we were able to identify patterns for 11 variations. Finally, we created
JaTS templates to match these patterns in source code and realize both T1 and T2.
Table 3.2 shows a list of the templates developed.

Based on these templates for solving the variations, we set for constructing a software
product line for the game. Since we had templates to address all the existing variations
between the 3 different versions of the game, all we had to do was instantiate these
templates for each occurrence of these variations. The first step was to merge all the
template sets (left and right hand templates) responsible for implementing T1 (platform-
to-core transformation) for every class in the game. This way, each class would have
only one set of T1 templates, that included all variations necessary to transform a
device-specific code into Core code, instead of one set for each variation.

The template set merging process was repeated for the T2 transformation. It was
then possible to generate device specific code for any of the three platforms included

30

in the software product line, by applying the T2 transformations to the Core platform.
The product line structure after this process is represented in Figure 3.4.

Figure 3.4: Structure of the Software Product Line implemented with JaTS.

For example, one of the problems we came across while analyzing the differences
among the three platforms was the Flip variable feature. In the game, several images
must be drawn in both directions (left to right and vice versa), like catapults, for example
(see Figure 3.5); this drawing was implemented differently in Nokia’s platforms and
Motorola’s T720. While in T720 there is a need for image objects facing both directions,
Nokia’s proprietary API features the flip operation, which can mirror an image upon its
drawing on a canvas. In the T720 device, for drawing the two catapults, there were two
calls to the drawing method receiving two different images as parameters (to draw the
catapults on the left and right, respectively); in contrast, in Nokia’s platforms, there
was one call to the same drawing method used in T720 (to draw the left catapult), and
another one to the proprietary API’s method, receiving the same image as a parameter,
but indicating that it should be flipped.

Figure 3.5: Catapults and dragons facing both directions on Rain of Fire.

The approach we chose to solve this variation is as follows: since the first call to the
drawing method was common to both platforms, it should be moved to the Core with

31

T1’s JaTS templates. The subsequent call, however, would not be there; instead, the
Core would have a call to a drawRightCatapult() method call, whose definition would
be implemented differently depending on the platform. The method definition and its
composition with the core was accomplished with T2’s JaTS templates.

Figure 3.6 shows the templates for implementing the T1 transformation for this
variation. The names after the # character are called meta-variables; they are used
to represent elements of Java source code such as class names, attributes, constants,
code blocks, and so on. These templates are not totally complete; although they are
functional, some parts of the code that would make it more generic were omitted for
the sake of brevity and legibility.

Upon transformation, the meta-variables in Figure 3.6(a) are matched to the ele-
ments of the Java source file; #ATTRS (a FieldDeclarationSet) is used to store all
the atributes of the class, while #CDS and #MTDS (a ConstructorDeclarationSet and
MethodDeclarationSet respectively) store the constructors and methods of the class.
This same template captures a method in the code with the signature void m() (hypo-
thetically, the method which draws the catapults), and divides the body of this method
in three meta-variables #B1, #B2 and #B3. In our example, #B2 is the code block of the
method where the right catapult is drawn, and is specified explicitly by the developer.

The right-hand side template in Figure 3.6(b) makes the transformation generate
the Java file with the same structure that was captured with the matching template (it
just generates the previously captured attributes, constructors and methods), except for
the body of the m() method. Notice that instead of a block #B2 between #B1 and #B3

we now have a call to this.newM(), where newM() represents drawRightCatapult() in
our case). This transformation is similar to the Extract Method refactoring [53], except
for the fact that the extracted method (containing #B2’s code) is not implemented
anywhere in the resulting class; this code is stored elsewhere, for future use in the T2
transformation (Core to specific platform). This way, it can be implemented differently
for each platform in the product line. The resulting code from the transformation is the
code of the Core abstract platform.

(a) Matching template (b) Replacement template

Figure 3.6: T1 templates.

Figure 3.7 represents T2, that is, the reverse transformation of T1 in Figure 3.6. The

32

template in Figure 3.7(a) just captures the source code as it is, without specifying any
matching constraints; Figure 3.7(b) shows the replacement template, which outputs the
code and adds the implementation for the newM() method specific for the platform, thus
generating device specific code. It is the body of this method that differentiates code
from one platform to another’s with respect to the flip feature: we could here generate
code for S60, S40 or T720, depending on the replacement template chosen to apply to
the Core.

T1 and T2 illustrated here address only one instance of a specific variation; they show
how to derive code useful for an abstract platform from a concrete one, and vice-versa.
As mentioned before, the complete transformation (the one that addresses all existent
variations of a platform) consists of applying several of these template sets (matching
and replacement) to many Java source files.

(a) Matching template (b) Replacement template

Figure 3.7: T2 templates.

The solution proved to be effective, and the variations were solved. It was easy work-
ing with the code patterns for variations, because JaTS templates work with pattern-
matching. Apart from that, since JaTS transformations act directly in the source code,
the code for each platform is legible and localized. With the use of T1 and T2 transfor-
mations, it is possible to define a porting path from any platform to another one in the
product line, via the Core platform. However, there are some disadvantages: JaTS pat-
tern matching has limited flexibility, and the templates used for these transformations
depend partially on the Core code. Therefore, Core evolution potentially leads to JaTS
templates evolution.

3.6.2 XVCL

XVCL stands for XML-Based Variant Configuration Language [73]. It is a technology
designed for facilitating reuse and defining generic solutions on top of existing source
code. It can address similarity patterns found on programs, substituting them by generic
solutions in the form of XVCL meta-structures, which results in better maintainability
and reusability. In other words, the use of XVCL provides programs with the possibility
of being able to be easily:

33

• used as base for similar software (similar systems, from a product line for example,
can be developed extending the first one);

• maintained to comply with changes that may arise from evolutionary issues.

The idea behind XVCL is similar to the concept of abstraction over statements
in imperative languages (like methods or procedures): whenever a section of code is
used several times in several different places, we encapsulate that as an abstraction and
parameterize it. Then, when running that section of code, we just call that abstrac-
tion using the appropriate parameters. This avoids repeating identical blocks of code
throughout the program, and makes it easier to correct or add any functionality to it
afterwards, since such tasks become localized.

The corresponding component to abstraction over statements in this case is the
x-frame, which is the main component of XVCL. Whereas only statements can appear
in such abstraction, x-frames can include any kind of code in a program, besides other
x-frames. Each XVCL program contains a root x-frame, called SPC (the specification
file). A XVCL program consists of a composition of several x-frames. There is a XVCL
processor, which analyzes the SPC file and builds the program, composing it with all
other x-frames they use. Figure 3.8 illustrates an x-frame hierarchy (an x-framework),
and Figure 3.9 shows how the processor traverses on this x-framework to compose the
final program. So far we have explained the core behavior of XVCL. Next, we describe
XVCL’s features more closely.

Figure 3.8: Example of an X-Framework.

34

Figure 3.9: Traversal of X-Frames by the XVCL processor.

XVCL Features

This section describes the main commands of XVCL, presenting examples of how to use
them for implementing variability.

Adapt

The <adapt> command defines an x-frame that the processor should look up to process.
The processor finds this x-frame, and after processing it, returns the resulting code on
the place where the <adapt> command was called. It basically instructs the processor
to accomplish the following:

• adapt the x-subframework rooted in the named x-frame by inserting x-frame texts;

• emit/assemble the customized content of the adapted x-subframework into the
output;

• resume processing of the current x-frame after processing the x-subframework
rooted in the named x-frame.

In the following example, the specification file MyBuild adapts another x-frame,
Build.xvcl.

<x-frame name="MyBuild" outfile="Build.java" language="java">

<adapt x-frame="Build.xvcl"/>

</x-frame>

Break

The <break> command marks a breakpoint (variation point) at which changes can be
made by ancestor x-frames. Additionally, it can define the default code, if any, that

35

may be replaced by those x-frames. It is similar to an AspectJ join point, which defines
execution points in the code that are affected by an advice construct, except that the
<break> command explicitly defines sections of code that are to be affected by insert
commands (described shortly ahead). In the following example, the <break> construct
identifies a variation point in the class where new methods can be added by ancestor
x-frames.

<x-frame name="MyBuild"> public class Build extends GameItem { ...

public Build(int x, int y, Image image) {...}

... //all the class’ methods

//variation points for adding new methods

<break name="BUILD_NEWMETHODS"/>

} </x-frame>

Insert

<adapt>’s body, mentioned previously, may contain a combination of <insert> con-
structs. The <insert> command replaces the breakpoint break-name in the adapted
x-subframework with <insert>’s body. If we compare it to AspectJ, just like an advice
construct indicates code that is to be executed at a given join point, XVCL’s <insert>
command defines code to be inserted into a given <break> construct. The main differ-
ence is that code defined by <insert> is actually copied and then compiled to originate
the program (like macro replacing), instead of being woven into bytecode like advice
code in AspectJ.

There are two variations of the <insert> constructs. The <insert-before> com-
mand inserts the insert-body before the breakpoint break-name in the adapted x-
subframework; the <insert-after> command inserts the insert-body after the break-
point break-name in the adapted x-subframework. insert-body may contain a mixture
of textual content and XVCL commands.

For example, suppose we want to add a new method to the MyBuild example shown
in previous section. We already have a breakpoint defined to delimit the place where
we can add the method. Now the only thing we need to do is to add the appropriate
<insert> command in a x-frame that is parent to the frame that contains the <break>

command. In order to do this, we will change the x-frame presented on the first example,
to add an <insert> command that will add a new method to the class.

<x-frame name="MyBuild" outfile="Build.java" language="java">

<adapt x-frame="Build.xvcl">

//Breakpoint affected by the insert command

<insert break="BUILD_NEWMETHODS">

//Method we want to add

public void drawDestroyedBuild(int offSetX, Graphics g) {

... //Body of the method

//If desired, we could get this body from another x-frame.

}

</insert>

</adapt>

36

</x-frame>

3.7 Conditional Compilation

Conditional compilation is a well-known technique for handling variation. It has been
used in programming languages like C for decades and is also present in object-oriented
languages such as C++ and C#. Basically, preprocessor directives indicate pieces of
code that should compile or not based on the value of preprocessor variables. Such
decision may be at the level of a single line of code or to a whole file. More recently,
conditional compilation has been integrated with build environments such as Ant in
order to support novel features, such as the following:

• a more expressive preprocessing language for specifying variants, including pre-
processing expression language with logical connectives, for example;

• better user interface support, allowing easy selection of the desired variant.

An interesting tool with both features is the Antenna preprocessor [126]. In this
section, we show how variability can be implemented with such preprocessor in the
context of the mobile device game domain described in Section 2.3.

Managing Variability with Conditional Compilation

In order to assess the capability of conditional compilation in handling variability, we
describe an industrial case study with which we collaborated [5] in porting one game to
various mobile phones. First, we briefly describe the game; we then explain the game’s
specific variability issues; finally, we show how such variabilities were handling during
the porting process with the Antenna preprocessor.

My Big Brother3 is an interactive fantasy J2ME game developed for a TV show
called Big Brother, a well-known reality show in the brazilian TV. The game interacts
with the TV show, and the players are able to choose one of its characters and take care
of them by buying food, hygienic items, gifts, and punishing them whenever they do
not behave. Since the game uses a client-server system, the player is able to read news,
answer quizzes, vote for characters to be expelled from the show, and update the status
of their character.

To reach the target players planned by the customer, the game had to be ported
to all major devices in the brazilian GSM market. After carrier’s report with the most
popular devices, 8 versions of the game were developed to target almost 50 devices (some
devices are grouped into families and run the same code).

The most relevant porting issues involved screen size, network connections, key map-
ping, device known bugs, and J2ME MIDP versions. First, screen size variation implied
generating different assets (mostly images) for different platforms, which prompted de-
velopers to deal in the code with screen positioning of each image for each platform.
Second, the game uses HTTP POST connection to communicate with the game server.

3Developed by Meantime Mobile Creations/CESAR, which granted access to such game under
FACEPE/PAPPE and CNPq/Universal research projects.

37

These connections can behave differently in some platforms, for example, by not han-
dling HTTP redirections, or failing to read responses coded with an application/octet-
stream content-type. Third, key mapping is a common variation that has to be handled
in multi-platforms games: each device has its own key codes for mapping key presses.
Fourth, some devices also have known issues in the virtual machine implementation,
thereby forcing the developer to rely on work around. Lastly, a device may use a spe-
cific MIDP version, which may already provide built in support for a feature, which
may not available in other devices; therefore, leveraging functionality across all devices
involves the decision of either not using this feature at all or manually implementing it
for devices where it is not built in.

The approach to handle these variations in the game was to identify the variabil-
ity points between the targeted platforms and, using a preprocessor tool, isolate each
platform-specific code from the single code base. As mentioned, the tool used to ac-
complish this task was the Antenna preprocessor [126], a set of Ant tasks suitable for
developing wireless Java applications. Antenna provides a simple preprocessor, similar
to the ones known from C and other languages. It supports conditional compilation,
inclusion of one source file into another, and is helpful when trying to maintain a sin-
gle source for several devices, each having its own known-issues and add-on APIs, for
instance.

The following examples show how some of these variations were implemented using
this approach. The first example addresses MIDP implementation variation. In this
case, the T610 device uses MIDP version 1.0, which does not provide off-screen buffers.
Since the feature is still required for this device, developers had to implement it explicitly.
The solution was to implement this device-specific requirement within a preprocessor
directive. The resulting structure is as follows:

class GameScreen extends Screen {...

//#ifdef SCREEN_T610

private Image bufimage

= Image.createImage(128, 128);

private Graphics bufgraph

= bufimage.getGraphics();

//#endif

...

where bufgraph is the off-screen buffer and is only defined for the T610 device. Next,
the paint method needs to use this buffer in this platform, whereas for the others such
method just uses the Graphics object:

void paint(Graphics g){

//#ifdef SCREEN_T610

paintBuffer(bufgraph);

drawProgressBar(bufgraph);

g.drawImage(bufimage, 0, 0, 20);

//#else

38

paintBuffer(g);

drawProgressBar(g);

//#endif

}...

}

The following code snippet shows how screen size variation was handled. The
SCREEN HEIGHT constant is declared and initialized with different values depending on
the platform:

class Resources {...

//#ifdef SCREEN_SIEMENS

public static final int SCREEN_HEIGHT = 80;

//#elifdef SCREEN_N40

public static final int SCREEN_HEIGHT = 128;

//#elifdef SCREEN_N60

public static final int SCREEN_HEIGHT = 208;

...

//#endif

...

}

Finally, the following code snippet shows how the handling of the key mapping
variation was accomplished. The BOARD SOFT LEFT and BOARD SOFT RIGHT static fields
are also defined to different values according to the platform.

class GameController {...

public static int BOARD_SOFT_LEFT = 0;

public static int BOARD_SOFT_RIGHT = 0; ...

static{

//#ifdef KEYS_C650

BOARD_SOFT_LEFT = -21;

BOARD_SOFT_RIGHT = -22;

//#elifdef KEYS_T720

BOARD_SOFT_LEFT = -6;

BOARD_SOFT_RIGHT = -7; ...

//#elifdef KEYS_V300

BOARD_SOFT_LEFT = -21;

BOARD_SOFT_RIGHT = -22;

//#elifdef KEYS_SIEMENS

BOARD_SOFT_LEFT = -1;

BOARD_SOFT_RIGHT = -4;

//#endif

} ...

}

39

3.8 Aspect-Oriented Programming

Aspect-oriented languages support the modular definition of concerns which are gener-
ally spread throughout the system and tangled with core features [79]. Those are called
crosscutting concerns and their separation promotes the construction of a modular sys-
tem, avoiding code tangling and scattering.

3.8.1 AspectJ

AspectJ [78] is an aspect-oriented extension to Java. Programming with AspectJ in-
volves both aspects and classes to separate concerns. Concepts that are well defined with
object-oriented constructs are implemented in classes. Crosscutting concerns are usu-
ally separated using units called aspects, which are integrated with the classes through
a process called weaving. Thus, an AspectJ application is composed of both classes and
aspects. Therefore, each AspectJ aspect defines a functionality that affects different
parts of the system.

Aspects may define pointcut designators (or pointcuts for short), advices, and inter-
type declarations. Pointcut match join points, which are a set of points during program
execution flow, where we may want to execute a piece of code. Code to be executed at
join points matched by pointcuts is declared as an advice. Inter-type declarations are
structures that allow introducing fields and methods into a class, changing the hierarchy
of a type (making a class extend another class or implement an interface), and turning
checked exceptions into unchecked exceptions.

For example, aspect Variation below uses an inter-type declaration to introduce the
optionalImage field into class GameCore. It also declares an advice which specifying
code to be executed after the join point matched by pointcut p: the execution of method
loadImages of class GameCore. We use this(cobj) to bind the GameCore object which
is currently executing the loadImages method to cobj. This advice creates a new
image and binds it to the introduced field optionalImage, after method loadImages

has executed.

class GameCore {

private Image mandatoryImage;

public void loadImages() {

this.mandatoryImage = Image.createImage(...);

}

}

aspect Variation {

private Image GameCore.optionalImage;

pointcut p(GameCore cobj): execution(public void GameCore.loadImages())

&& this(cobj);

after(C cobj): p(cobj)

{

cobj.optionalImage = Image.createImage(...);

}

}

40

In addition to after advice, AspectJ also provides before and around advices def-
initions. The former allows advice code to execute before the join point; the latter is
more expressive and allows conditional execution of advice code at the join point. More
details on the language can be found elsewhere [87].

In the example, the image stored in optionalImage and its initialization could be
part of a variant feature in a SPL. For instance, it could represent an optional image
in a mobile device game, such that this image should be present in a version of this
game for one device, but not for another device. By coding this variation as an aspect,
a more localized and modular representation is achieved, thereby improving variability
management for such SPL.

3.8.2 AspectBox

AspectBox [27] extends AOP languages by providing a new construct: an aspectbox,
which can contain class and aspect definitions as well as import classes from other
aspectboxes. The key idea is that such construct is a namespace mechanism for aspects,
in the sense that aspects in the aspectbox affect only classes defined within it or classes
imported into it. The base system is not affected outside the scope of an aspectbox. For
example, the following piece of code4 defines an aspect within an aspectbox affecting
the imported class GameCore:

AspectBox Extension1 {

import GameCore;

aspect Variation1 {

pointcut p(): call (* *(..)) ;

after(): p()

{ ... }

}

}

Accordingly, a pointcut definition contained in an aspect refers only to classes that
are defined in the same aspectbox or that are imported: in the example pointcut p refers
the imported class GameCore only. The advice in aspect Variation1 refines the behavior
of such imported class. Since aspectboxes are namespaces, eventual conflicts between
aspects are avoided. For instance, there could be another aspect, Variation2, in another
aspectbox, Extension2. By living in different scopes, both aspects Variation1 and
Variation2 are kept separated, affecting different versions of the same class. Even
if such aspects, which are defined in different aspectboxes, had the same join points,
there would be no need to define precedence rules for composition ordering. This allows
multiple deployment of concurrent modifications in the same base system, avoiding
conflicting situations across aspectboxes.

Additionally, classes augmented with the aspect can also be imported from another
aspectbox. From the point of view of an importing aspectbox, there is no distinction
between classes defined within the aspectbox and those imported. Furthermore, The
import relationship is transitive: If aspectbox Extension2 imports a class GameCore

4AspectBox’s syntax is based on Squeak; the example is based on an equivalent AspectJ-like syntax.

41

from aspectbox Extension1, then a third aspectbox Extension3 can import GameCore
from Extension2. From the point of view of the importing aspectbox Extension3, there
is no difference if the class is defined or imported in the provider aspectbox Extension2.
Nevertheless, because aspects cannot be reused across multiple base systems, aspects
cannot be imported.

AspectBox emerges from Classbox [26]. The Classbox module system allows a class
to be extended by means of class member additions and redefinitions. These extensions
are visible in a locally and well-delimited scope. Several versions of a same class can
coexist at the same time in the same system. Each class version corresponds to a
particular view of this class. Classboxes and aspectboxes have a common root which is
the scoping mechanism for refinement. Whereas classboxes, like FOP, support structural
refinement (i.e., class members addition and redefinition), aspectboxes offer a scoping
mechanism for behavioral refinement.

3.8.3 CaesarJ

Traditional OO languages have only very limited and lightweight means for organizing
sets of collaborating classes, for example packages in Java or name spaces in C++. With
these lightweight organizational units, it is not possible to express variants of a collab-
oration, use collaborations polymorphically, use collaborations as first class values [92].
In other words, all these language mechanisms that proved so useful for single classes
are not available for sets of collaborating classes.

In this context, CaesarJ [18] is an aspect-oriented language supporting reusability.
It combines the aspect-oriented constructs, pointcut and advice, which can be bound
at run-time, with coarser-grained object-oriented modularization mechanisms. From an
aspect-oriented point of view, this combination of features is particularly well-suited
to make large-scale aspects reusable. From a component-oriented view, on the other
hand, CaesarJ is addressing the problem of integrating independent components into an
application without modifying the component to be integrated or the application.

The key concept in CaesarJ is that of a virtual class, which is an abstraction en-
capsulated within a module called family class. A virtual class, like a virtual method,
can have different meanings, which depends on the context of use. Virtual classes are
defined as inner classes of an enclosing family class; like methods and fields, they are
also members of instances of their enclosing family class. Hence, at any time during
the execution their meaning is relative to the dynamic type of the family object. Such
abstractions can be overridden and late bound (just like virtual methods). In addition,
old relations are inherited but automatically re-directed to the most specific definition
of a type reference. Moreover, new classes and relations can be added.

For example, Figure 3.10 shows the family classes HierarchyDisplay and
AdjustedHierarchyDisplay, each of which is a set of collaborating virtual classes and
where the latter family class refines the former by adding new members to the Node

virtual class. Such class in the latter family class refines the same class in the former,
and all the collaborating classes refer to the refined node. No cast is necessary, since all
references to the type Node in the other virtual classes are automatically re-bound to
the refined Node class, when they are referred to during the execution of an object of
type. In particular, in the context of an instance of AdjustedHierarchyDisplayType,

42

a CompositeNode is a subclass of the refined Node class.

Figure 3.10: Refinement of virtual classes in CaesarJ .

Another feature of CaesarJ providing flexibility is that family class modules can be
combined using mixin composition semantics (like FOP) which propagates into virtual
classes. For instance, Figure 3.11 shows family classes AdjustedHierarchyDisplayType
and AngularHierarchyDisplayType refining family class HierarchyDisplay. These
latter are then combined with mixin composition into family class
AdjustedAngularHierarchyDisplayType. As a result, in the context of this family
object, the collaborating classes refers to the refined versions of Node and Connection.
From a design viewpoint, features are implemented as classes and domain objects are
modeled by virtual classes. Features can refine classes of other features and features can
crosscut other features. Finally, features are combined by propagating mixin composi-
tion.

3.9 Comparison Framework

In order to systematically describe techniques for implementing product line variability,
we propose a framework following the principle of employing domain analysis in the

43

Figure 3.11: Propagating mix-in composition .

solution space, according to Coplien’s PhD thesis [43]. Accordingly, the solution space
(each technique presented in the previous sections) is described in terms of the kind of
variability it supports, the nature of variability, its granularity and binding time.

The framework has also been extended to incorporate some elements such as reusabil-
ity, which is also germane to the product line context [16]. We further extend the frame-
work with other relevant elements, such as performance and application size, which are
useful in certain domains such as mobile device games, as described in Section 2.3. Last,
but not least, we also consider the support for modular implementation of crosscutting
concerns as a parameter in the framework, since, as argued in Chapter 2, the imple-
mentation of SPL variability is frequently crosscutting. Following Colyer et al [42], we
distinguish between homogeneous and heterogeneous crosscuts: the former refine mul-
tiple join points with a single piece of advice, whereas the latter refine multiple join
points each with different pieces of advice.

The taxonomic parameters and their possible values are described in Table 3.3. Even
though the values of the framework items reusability, performance, and application size
are described in a non-quantifiable manner (high, medium, low), we remark that they

44

are still useful for a qualitative analysis, which is the focus of this chapter.

Framework item Possible values
Variability type positive, or negative or both
Variability in structure supported or not supported
Variability of behavior supported or not supported
Granularity fine-grained or coarse-grained
Binding time preprocessing, compile, deployment, run-time
Reusability high, medium, or low
Performance high, medium, or low
Application size high impact or low impact
Support for modular crosscutting supported or not supported

Table 3.3: Framework for describing variability techniques.

Variability type indicates addition or removal of behavior or structure when com-
pared to a base feature implementation. There are two ways of how variability can
be described: positive variability and negative variability. Positive variability option-
ally adds structure and/or behavior to a given core. Negative variability optionally
removes structure and/or behavior from a given core (Figure 3.12). Not necessarily
does negative variability imply reduced number of lines of code, but it usually does.
It depends on the variability mechanism: fine-grained mechanisms such as conditional
compilation supports negative variability; for other mechanisms such as frameworks
and AOP, some refactoring might be necessary, which has to be outweighed against the
structure/behavior removed.

Figure 3.12: Positive and negative variability .

Binding time refers to the point in development time when decisions are bound for
the variations, after which the behavior of the final software is fully specified [83]. Fine-
grained granularity refers to variation within classes, specially within method bodies,
whereas coarse-grained granularity refers to granularity above the class level.

3.10 Instantiating the Variability Framework

This section synthesizes each of the variability techniques described in the previous
sections in terms of the variability framework proposed in Section 3.9.

45

3.10.1 Design Patterns

Table 3.4 shows how some design patterns can be classified within the variability frame-
work proposed in Section 3.9. Each framework item can have different values for different
patterns. For instance, granularity can be either fine-grained with Template Method,
which handles intra-method variability, and coarse-grained with Strategy, which han-
dles algorithm variability (possibly involving data structures). For variability type, it
can be positive with decorator, which addresses behavior variability, or negative with
decorator, bridge, and adapter. For the latter, negative variability occurs at a more
coarse-grained level, by optionally skipping implementation of selected operations. In
terms of binding time, delegation allows Bridge and Strategy to have run-time binding
mode, and dynamic binding allows Template Method to have the same binding time.
On the other hand, if this pattern is implemented with parameterized inheritance, then
its binding time is compile-time. Finally, design patterns do not adequately support
modular crosscutting implementation, since even the implementation of most patterns
is crosscutting [56, 67].

Framework item Possible values for some design patterns
Variability type positive (decorator), negative (adapter, bridge, decorator)
Variability in structure supported (adapter, bridge, decorator)
Variability of behavior supported (state, strategy, template method)
Granularity fine-grained (template method), coarse-grained (strategy)
Binding time compile-time (template method with parameterized

inheritance), run-time (strategy, template method with
inheritance, bridge)

Reusability medium
Performance low (strategy), high (adapter)
Application size varies
Support for modular not supported
crosscutting

Table 3.4: Some design patterns according to the variability framework.

3.10.2 Frameworks

According to Section 3.3, Table 3.5 shows how framework technology can be classified
within the variability framework proposed in Section 3.9. Since frameworks often rely on
design patterns to implement variability, frameworks support both variability in struc-
ture and in behavior as well as positive and negative variability. Negative variability can
often be supported with inheritance with cancelation [115]; otherwise, application size
can grow considerably. Further, as a framework is a semi-complete application provid-
ing an integrated set of domain-specific structures and functionality [113], granularity
and reuse are high. Due to this coarser-grained nature compared to design patterns,
frameworks usually have compile-time binding mode, even though the patterns they
may rely on may have either binding time. The reason is that, when a framework is in-
stantiated, the variant behavior is often predictable, usually with at most some variation

46

points frozen during runtime, and thus static optimization can often eliminate dynamic
binding. In the cases in which dynamic binding is not eliminated, performance can be
affected. Finally, OO frameworks do not support modular crosscutting implementation,
since in the clean OO model of frameworks crosscutting behavior is usually expressed
by small code fragments scattered throughout several functional components.

Framework item Possible values for framework technology
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity coarse-grained
Binding time usually compile time
Reusability high
Performance varies
Application size varies
Support for modular not supported
crosscutting

Table 3.5: Framework technology according to the variability framework.

3.10.3 AOP

Based on Section 3.8, we are now able to describe AOP, according to the variability
framework. The framework instance for AspectJ is shown in Table 3.6.

Framework item AspectJ possible values
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity fine-grained, coarse-grained
Binding time compile, run, deployment time
Reusability medium, high
Performance high
Application size varies
Support for modular crosscutting supported

Table 3.6: AspectJ described according to the variability framework.

According to Table 3.6, AOP supports both positive and negative variability. For
instance, the former can be supported with refinement of virtual classes in CaesarJ as
well as with inter-type declarations in AspectJ and before or after advice constructs;
the latter is supported with around advice constructs where proceed is not invoked.
Additionally, variation in structure is supported with inter-type declarations in AspectJ
or with mixin-based composition and refinement of virtual classes in CaesarJ, while
variation in behavior is supported with advice constructs. Further, granularity with

47

AOP can be either fine-grained (with most constructs) or coarse-grained (with inter-type
declarations changing type hierarchy in AspectJ or with virtual classes in CaesarJ).

Besides, reusability can be either medium, because the pointcut language is still
mostly syntactically based in AspectJ, which makes aspects too dependent on names,
or high with virtual classes in CaesarJ, which allow reuse of collaboration of classes. In
terms of binding time, it can at compile time with AspectJ and CaesarJ, at deployment
time with AspectBox, and at runtime with CaesarJ. Application size can grow consider-
ably, specially when using generic pointcuts intercepting various join points. This code
bloat issue should be considered carefully in domains with constrained resources such
as the mobile device domain we described in Section 2.3. According to our empirical
experience [14], part of this can be avoided with optimization techniques. Finally, AOP
supports modular implementation of crosscutting concerns.

3.10.4 FOP

Table 3.7 categorizes FOP (Section 3.4) according to the variability framework. The
technique supports both positive and negative variations, since the delta layers cor-
responding to features can be freely combined, which also incurs in high reusability.
Additionally, variability in both structure and behavior is supported with the addition
of new fields or methods, or by overriding existing ones. Further, FOP has a granularity
grasp for coarse-grained variations, where the smallest unit of composition is a delta
layer of refine statements over an existing base.

FOP also causes minimum impact on the performance of programs: all feature code
is processed into normal source code of the target language (Java, for instance) that
will then be compiled, just as if it were all written directly in that language (all trans-
formations are applied in preprocessing time). However, an alternative implementation
approach could directly support FOP at compile-time. Furthermore, since homogeneous
crosscutting is not supported in FOP, its impact on application size is not significant.
Finally, FOP supports modular implementation of crosscutting concerns, which are lo-
calized in the delta layers. However, only heterogenous crosscutting is supported.

Framework item FOP possible values
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity coarse-grained
Binding time preprocessing-time, compile-time
Reusability high
Performance high
Application size low
Support for modular crosscutting partially supported

Table 3.7: FOP described according to the variability framework.

48

3.10.5 JPEL

Based on the description of Section 3.5, we are now able to describe deployment-time and
run-time variability with JPEL according to the variability framework. The framework
instance for JPEL is shown in Table 3.8.

Framework item JPEL possible values
Variability type not supported
Variability in structure not supported
Variability of behavior supported only for changes in values
Granularity fine-grained
Binding time Deployment- and run-time
Reusability Medium
Performance potentially low
Application size potentially high
Support for modular crosscutting not supported

Table 3.8: JPEL described according to the variability framework.

JPEL has the limitation that it can only implement value variations and thus
does not support modular implementation of crosscutting concerns. Using JPEL, it
is only possible to improve code reuse by extracting values from the source code to a
parametrization profile. Thus, a JPEL profile can not change the program structure.
Moreover, the changes in the program behavior are limited to that generated by value
changes. Further, positive and negative variability are not supported, because the se-
lection of the desired feature would be on the source code too, implemented using a
conditional structure (if or switch, for example).

JPEL profiles support fine-grained variability. We can use parametrization files to
change the values of local variables, or even the value of some constants used to calculate
an expression. This also constrains reusability. Additionally, possible binding-times with
JPEL are deployment-time and run-time. The former is happens when specifying profile
variable values before the application runs; the latter when it is running, which is made
possible by JPEL’s automatic update at run-time feature discussed previously.

The use of JPEL may generate some impact to the system performance. This impact
can be smaller in a deployment context, where the parameters are read from the profile
only when the method that fetches the parameter value is called. This usually happens
only once, when the application starts. On the other hand, in a run-time context, the
system checks for changes in the profile periodically. This can lead to a significant
performance degradation, depending on the time between each verification and the
number of parameters which have to be updated.

Furthermore, using JPEL implies in increasing the total application size, since in
order to extract the definition of some values to a parametrization file, new commands
must be added to the source code. Moreover, to run a program which uses JPEL,
the JPEL library must be present on the system (on the classpath). Finally, when
implementing negative features, code which is not called is still in the bytecode. This
may be a killer factor for resource-constrained domains, as explained in Section 2.3.

49

3.10.6 JaTS

Given the description of JaTS in Section 3.6.1, we now describe this technique according
to the variability framework. The framework instance for JaTS is shown in Table 3.6.
According to Table 3.9, JaTS supports both positive and negative variability as well as
variability in structure and behavior. Indeed, such capability is achieved with replace-
ment templates, which can add/remove these issues. Further, granularity with JaTS
can be either fine-grained, with templates specifying changes within method bodies, or
coarse-grained, with templates applying to a set of classes.

Framework item JaTS possible values
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity fine-grained, coarse-grained
Binding time preprocessing
Reusability medium, high
Performance high
Application size low
Support for modular crosscutting not supported

Table 3.9: JaTS described according to the variability framework.

Besides, reusability can be either medium, because the matching templates may de-
pend considerably on code within method bodies, or high, with matching templates
applying to whole set of classes. Whereas binding time is at preprocessing and per-
formance is high, application size does not grow considerably, specially because, unlike
AspectJ, variation points specified by JaTS constructs are not scattered in various join
points. Therefore, the code bloat issue with AspectJ described in Section 3.10.3 does
not affect JaTS, which is an advantage for domains with constrained resources such as
the mobile device domain we described in Section 2.3. Finally, JaTS does not support
modular implementation of crosscutting concerns.

3.10.7 XVCL

Table 3.10 describes XVCL (Section 3.6.2) according to the variability framework. The
technique supports both positive and negative variations (by use of the <break> con-
struct) as well as variability in both structure and behavior (by use of the <insert>

construct). XVCL has granularity grasp for both fine- and coarse-grained variations:
not only can it perform changes as fine as adding/removing simple lines of code (by use
of the <break> construct), but it can also compose whole x-frames in order to instantiate
a particular variant (by use of the <adapt> construct).

Additionally, XVCL provides high reusability: the concept of the x-frames makes it
possible for it to be reused several times in various product line instances (by use of
the <adapt> command). The technique also causes no impact on the performance of
programs: all XVCL code is processed into normal source code of the target language

50

Framework item XVCL possible values
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity fine-grained, coarse-grained
Binding time preprocessing
Reusability high
Performance high
Application size low
Support for modular crosscutting not supported

Table 3.10: XVCL described according to the variability framework.

that will then be compiled, just as if it were all written directly on that language
(all transformations are applied in preprocessing time). Furthermore, since variability
constructs do not specify scattered variation points (which is the case for AspectJ, for
instance), the impact on application size is not significant. However, XVCL does not
support modular implementation of crosscutting concerns.

3.10.8 Conditional Compilation

Finally, according to the variability framework proposed in Section 3.9, we are now
able to describe the conditional compilation. Table 3.11 summarizes such description.
The use of preprocessor directives enables this technique to support both positive and
negative variations as well as variability in both structure and behavior. Conditional
compilation can specify inclusion or not of a whole module (coarse granularity) or in-
clusion or not of a single line of code (fine granularity). In the latter case, which is more
frequently used, reusability is limited and maintenance poor.

Framework item Conditional compilation possible values
Variability type positive, negative
Variability in structure supported
Variability of behavior supported
Granularity fine-grained, coarse-grained
Binding time preprocessing
Reusability low
Performance high
Application size low
Support for modular crosscutting not supported

Table 3.11: Conditional compilation described according to the variability framework.

On the other hand, the technique causes no impact on the performance of programs,
since all preprocessor directives are processed into source code of the target language

51

that will then be compiled, just as if it were all written directly on that language (all
transformations are applied in preprocessing time). Furthermore, since preprocessor
directives specify mostly fine-granularity variability, the impact on application size is not
significant. Once the preprocessing tags are in place the configurability of the variability
is flexible, by involving a combination of tags; nevertheless, conditional compilation does
not support modular implementation of crosscutting concerns.

3.11 Comparative Analysis

We now synthesize and contrast the descriptions from the previous subsection. Ta-
ble 3.12 synthesizes the results. In the table, the following abbreviations are used. H
(high), L (low), S (supported), NS (not supported), Ps (partially supported), C (coarse-
grained), F (fine-grained), RT (run-time), PT(processing-time), DT (deployment-time),
CT (compile-time).

Since all previously described techniques support variability in behavior and pos-
itive/negative variability (except JPEL, which supports neither positive nor negative,
since variability is accomplished mostly with configuration constants and variant behav-
ior is pre-implemented in the code), we omit the corresponding rows from Table 3.12,
since they would not be relevant for contrasting these techniques. Additionally, for
brevity, Table 3.12 does not display design patterns because various patterns have dif-
ferent values according to the comparison framework. Some patterns according to this
framework were listed in Table 3.4.

Framework Frame- FOP JPEL AOP JaTS XVCL Cond.
item works compil.

Variability S S NS S S S S
in structure
Granularity C C F C,F C,F C,F C,F
Binding time CT PT, CT DT, RT CT, DT, RT PT PT PT
Reusability H H M M,H M,H H L
Performance H,L H L H H H H
Application H,L L H H, L L L L
size
Support for
modular N Ps N S N N N
crosscutting

Table 3.12: Comparing implementation mechanisms according to the variability frame-
work.

Although frameworks provide support for both positive and negative variability, the
granularity of such variability is mostly coarse-grained and dependent on underlying
design patterns such as Strategy and Bridge. Regarding structure, JPEL does not sup-
port variability in structure, which implies more variability effort at run-time, thereby
leading to worse performance.

52

Fine-grained and coarse-grained granularity can be both supported by XVCL, JaTS,
conditional compilation, and AOP, whereas for the other mechanisms either one or the
other is supported. XVCL has x-frame hierarchy and <adapt> command allowing for
both types of variability, respectively. JaTS templates can be applied to individual
classes or to sets of classes, and conditional compilation can specify variability at a
single line of code or at whole classes. AOP has both a pointcut language for fine-grained
variability (not as fine-grained as conditional compilation), and inter-type declarations
(AspectJ) and family class (CaesarJ) which allow coarse-grained variability.

In terms of binding time, JPEL supports run-time and deployment-time, due to its
automatic-update feature and deployment feature. AOP additionally supports compile-
time binding time, which could also be supported by FOP. The other mechanisms
support only one binding time, ranging from preprocessing to run-time. Further, we
note that poor reuse is achieved with conditional compilation, since its constructs are
mostly often applied for fine-grained variability. Reusability improves for JaTS and
AOP/AspectJ, but could be limited with templates and pointcuts, respectively. Frame-
works and FOP support high level of reuse because they are easily integrated with higher
level instantiation mechanisms such as Domain-Specific Languages (DSL) [90] and equa-
tional specifications [24]. AOP/CaesarJ also supports high reuse with the concept of
family class and mixin-based composition. Reuse with XVCL is also high due to flexible
composition of x-frames.

Application size can become a problem with AOP, since too generic pointcuts, de-
spite expressive, lead to pervasive weaving of code into the base bytecode, despite the
fact that optimizers can partially alleviate this problem. Frameworks can also become of
significant size, since use of inheritance for handling inter-application variability easily
leads to an explosion of combination of little classes and interfaces, which does not hap-
pen with FOP, since this latter supports plug-and-play combination of features. JPEL
can also have significant impact on application size, since it also has run-time binding
mode, which means the deployed application must embed the handling of variation.

Although XVCL has attractive features for implementing variability, a problem with
this mechanism is poor legibility. Since the approach is language-independent, the
developer has to explicitly indicate variation points in the code. AOP (AspectJ), on
the other hand, already has an expressive pointcut language which allows expressing
variability in a non-invasive way.

Even though conditional compilation does not support the modular implementation
of crosscutting concerns, once the preprocessing tags are in place, the configuration ac-
tivity is relatively simple: selecting or not a tag in the variant will enable or not that
crosscutting behavior. This could also be achieved with AOP and FOP. As explained in
Section 3.10.8, this is due to the often applied fine granularity capability of the condi-
tional compilation mechanism, but it lacks other desirable properties for SPL variability
implementation, such as reusability, locality, adaptability, plugability, and independent
development. Section 6 highlights this in terms of case studies.

AOP and FOP offer modular implementation of crosscutting concerns. Although
both support heterogeneous crosscutting, only AOP supports homogeneous crosscuts:
AOP handles homogenous crosscuts with wildcard pointcuts. Additionally, AOP pro-
vides finer control of crosscutting behavior with the cflow-like constructs and greater
access to runtime information. On the other hand, wildcard pointcuts in AOP should

53

be used carefully, since they may complicate composition [88]. Considering that cross-
cutting is a common phenomenon in SPL variability as mentioned in Chapter 2, AOP
then becomes an attractive solution. The method described in the following chapter
explores this.

Chapter 4

Implementing Product Lines
Adoption Strategies

In the previous chapter, we described techniques addressing variability implementation
in software product lines. Although some of these are widespread practices in indus-
try, they often fail to capture variability of crosscutting concerns [100, 101] modularly.
As discussed previously in Chapter 2, such concerns occur frequently in the implemen-
tation of SPL variability and thus have to be addressed int the context of adoption
strategies. This chapter shows how AOP, a paradigm for capturing crosscutting con-
cerns, implements variability in product lines and supports such adoption strategies.
The description is based on the SPL adoption strategy context and on the results of our
current experience [14, 13, 2, 12, 5, 111, 7, 4, 9, 10, 8].

The remainder of this chapter is organized as follows: in Section 4.1, we define our
process for implementing some SPL adoption strategies; we then show, in Section 4.2,
how some elements of such process can be understood formally.

4.1 Method

Contrary to the proactive SPL adoption strategy, our method relies on a combination
of the extractive and the reactive SPL adoption strategies. Our method first bootstraps
the SPL and then evolves it with a reactive approach. Initially, there may be one
or more independent products, which are refactored in order to expose variations to
bootstrap the SPL. Next, the SPL scope is extended to encompass another product:
the SPL reacts to accommodate the new variant. During this step, refactorings are
performed to maintain the existing product, and a SPL extension is used to add a new
variant. The SPL may react to further extension or refactoring. Alternatively, there
may be an existing SPL implemented with a variability mechanism from which we may
want to migrate. During such activities, the feature model as well as the configuration
knowledge evolve and need to be handled.

More specifically, the state diagram in Figure 4.1 defines the steps of our method.
First, Variability Identification identifies variation points across existing applications
or within an existing SPL. Such variation points are used during either Migrate SPL–
to change the variability mechanism employed–or Extract SPL, to bootstrap the SPL

54

55

from the existing applicatinos. Next, React SPL can be applied repeatedly either after
migration or extraction to accommodate new products into the SPL. Refactor Fea-
ture Model then updates the incurred changes in SPL configurability at the feature
model. Finally, some changes are also necessary at the configuration knowledge, which
is performed by Update Configuration Knowledge step. The shaded steps in Fig-
ure 4.1 are the core of our method and comprise our contribution, whereas the others
are templates to our method, that is, we require those steps to be performed but do not
specify a specific implementation. Nevertheless, we illustrate how template steps can be
performed in case studies (Chapter 6).

Figure 4.1: Method for implementing SPL adoption strategies.

The method is systematic because it relies on a collection of provided refactorings
both at the code level and at the feature model level. Such refactorings are described in
terms of templates, which are a concise and declarative way to specify program trans-
formations. In addition, refactoring preconditions (a frequently subtle issue) are more
clearly organized and not tangled with the transformation itself. Furthermore, the refac-
torings can be systematically derived from more elementary and simpler programming
laws [40, 69] or feature model transformation laws. These laws are appropriate because

56

they are considerably simpler than most refactorings, involving only localized program
changes, with each one focusing on a specific language construct.

In the following sections, we detail the core steps of our method, explaining the ex-
tractive and the reactive steps, and their associated refactorings in Sections 4.1.1, 4.1.2,
and 4.1.3. We then present migration step in Section 4.1.4. Refactor Feature Model
is described in Chapter 5. Finally, in Section 4.2, we explain how extractive and reactive
refactorings can be understood in terms of more elementary program transformations.

4.1.1 Extract SPL

After Variability Identification, the following step of our method is to extract the
SPL: from one or more existing product variants, strategies based on refactorings (de-
tailed in Section 4.1.3) extract core assets and corresponding product-specific adapta-
tion constructs. These constructs correspond to aspects and possibly supporting classes
(classes only appearing in one product). Figure 4.2 depicts this approach. In this case,
only one core asset is shown, but in general there could be more. Additionally, during
evolution of the SPL, a product-specific asset could become a core asset, in which case
it be used to derive at least two SPL members.

Figure 4.2: Bootstrapping the Product Line. Core assets appear above the dashed line.

Product 1 and Product 2 are existing applications in the same domain (for example,
versions of a J2ME game for two platforms). Core represents commonality within these
applications; it is usually a partially specialized OO framework, but can also contain
aspects, in which case such aspects modularize the implementation of crosscutting con-
cerns shared by at least two SPL instances. The core is composed either with Aspect
P1 and its supporting classes (Classes P1), if any, or Aspect P2 and its supporting
classes (Classes P2), if any, in order to instantiate the original specific products. The •
operator represents aspect composition (weaving). These aspects and their supporting
classes thus encapsulate product-specific code.

Once the variability is identified, the developer should analyze the variability pattern
within that concern. Depending on the pattern, a refactoring may be applied in order
to extract it from the core (Section 4.1.3). Indeed, refactorings can be used to create
product lines in an extractive approach, by extracting product-specific variations into
aspects, which can then customize the common core [14, 13, 2].

57

Although this step of the method focuses on code assets, other steps describe the
interaction of such assets with configurability-level artifacts, such as feature models [45].
Indeed, the method requires feature modeling and a configuration knowledge, which are
essential for effectively describing the SPL variability and product derivation. Chapter 5
describes in detail the transformation at the feature model level.

The mapping between features and aspects needs to be specified by a configuration
knowledge mechanism [45], which imposes constraints on features and aspect combi-
nations like dependencies, illegal combinations, and default combinations. Constraints
involving only feature combinations are also specified in the feature model. Throughout
this work, we assume a general configuration knowledge mapping individual features–or
sets of features–to aspects and classes: the set of features common to both products
map to SPL core assets; the set of product-specific features map to product-specific
aspects and supporting classes. However, our method does not bind a particular con-
figuration knowledge scheme. In particular, Sections 6.1.4 and 6.2.4 illustrate schemes
with different levels of granularity.

4.1.2 React SPL

Once the product line has been bootstrapped, it can evolve to encompass additional
products. In this process, a new aspect is created to adapt the core to the new variant.
Moreover, a new feature is added to the feature diagram in order to represent the new
product, and the configuration knowledge is updated to map the new feature to the new
aspect (Figure 4.3).

Figure 4.3: Evolving the Product Line. Core assets appear above the dashed line.

The refactorings in Table 4.1 (Section 4.1.3) can also be used for evolution. As
Figure 4.3 also indicates, the core itself may evolve because some of the commonality
between Product 1 and Product 2 might not be shared completely by Product 3. That is,
Product 3 has different commonality with Product 1 and Product 2 than these latter have
with each other; therefore, a slightly different core is necessary. This may trigger further
adaptation of the previously existing aspects, too. However, AspectJ tools can identify
parts of the core on which these previous aspects depend, and some refactorings could
also be aspect-aware according to the definition of Hanenberg et al [66]: evolving the
core may change some join points within it, so the aspect-aware refactorings accordingly
adjust aspects’ pointcuts to refer to the new join points, thereby minimizing the need

58

to revisit such previous aspects. The end of Section 4.1.3 discusses how our refactorings
could be extended to be aspect-aware according to this definition.

Another evolution scenario (Figure 4.4) involves restructuring the product line to
explore commonality within aspects. Such commonality (AspectFlip aspect) then be-
comes a core asset, since it is now explicitly shared by at least two SPL instances.

Figure 4.4: Refactoring the Product Line. Core assets appear above the dashed line.

Figure 4.4 can become more complex with the addition of new platforms and iden-
tification of reusable aspects. However, constraints in the feature model as well as the
configuration knowledge (the mapping of features to aspects) limit aspect combinations,
thereby providing support for scalability.

4.1.3 Refactoring Catalog

This subsection defines a refactoring catalog, which is a set of refactorings supporting
the extractive and the reactive activities described in the previous subsections. We
have developed this catalog empirically by analyzing variability in a number of mobile
games [14, 5, 111, 9, 10, 8]. It has allowed us to address most variabilities in this
domain, but we have not proved this catalog to be complete. We first specify the AspectJ
subset necessary for applying these refactorings. Next, we motivate some refactorings by
considering an example of feature extraction. Finally, we list the remaining refactorings.
Section 6.1.3 shows some strategies (sequence of applications of refactorings from this
catalog) that manage to handle the implementation of variability in the context of a
industrial-strength case study.

AspectJ subset

We consider a subset of AspectJ [40]. This simplifies the definition of transformations
and does not compromise our results. However, this may limit the number of refactorings
we are able to derive with our laws. For example, the use of this to access class members
is mandatory. Also, the return statement can appear at most once inside a method
body and has to be the last command. Additionally, we consider only the following
pointcut designators: call, execution, args, this, target, within and withincode.

Restricting the use of this simplifies the preconditions defined for the laws. This
can be seen as a global precondition instead of a restriction to the language. Most of the
laws dealing with advice require this restriction. This restriction allows an easy mapping

59

from the executing object referenced from this to the executing object exposed inside
advice with the pointcut designator this.

We only support the mentioned pointcut designators because we think they may
represent the core designators of this aspect-oriented language: they have sufficed for
us capture join point in 4 different application domains in previous work [40] and in
this work. Extending the set of laws to include other AspectJ constructs would be time
demanding but not difficult. Besides, it would not affect the already defined laws.

An Example

In the context of the mobile device game domain, we consider the optional figures
concern of a game. We examine the code declaring and using the dragonRight image.
First, we consider class Resources.

class Resources {...

Image dragonRight;...

void loadImages() { ...

dragonRight = Image.createImage("dragonRight.png");...

} ...

}

where such field is not used anywhere else in the class. The developer may decide
that dragonRight is an optional feature specific to Platform 1 (P1) and thus could
extract it into an aspect with inter-type declaration and advice constructs. We would
thus have

class Resources { ...

void loadImages() {...}

}

Aspect AP1 {

Image Resources.dragonRight;

after() returning(): execution(Resources.loadImages()) {

dragonRight = Image.createImage("dragonRight.png");

} ...

}

where Resources now represents a construct in the game core being built and AP1

denotes an aspect adapting it for a specific platform, namely P1. The fact that the field
is not used anywhere else in the class allowed us to move the attribution towards the
method border (end of method in this case), which allows the variation to be described
by a single after advice.

Refactorings like these occur frequently and we thus generalize them using a nota-
tion that follows the representation of programming laws [40, 69]. Refactoring Extract
Resource to Aspect - after, whose transformation template is shown shortly ahead, gen-
eralizes this transformation and has the purpose of extracting a single variant field,
along with part of its usage, into an aspect.

60

On the left-hand side of Refactoring 1’s transformation template, the f field and the
this.f=exp; command (exp is an arbitrary expression) denote the variability pattern
to be extracted. On the right-hand side, such variability is extracted into aspect A.
Aspect A uses an inter-type declaration construct to introduce field f of type T (in the
transformation template, T also encompasses the access modifier) into class C and an
advice construct to add the extracted command to method m.

In the following, we denote the set of type declarations (classes and aspects) by ts.
Also, fs and ms denote field declarations and method declarations, respectively. σ(C .m)
is used to denote the signature of method m of class C , including its return type and
the list of formal parameters. Γ(ps) denotes the type list from parameters ps , and αps
denotes the parameter names from ps . For brevity, we write exec and ret instead of
execution and returning, respectively.

Each refactoring provides preconditions to ensure that the program is syntactically
valid (not necessarily syntactically equivalent) and semantically equivalent (behavior
preserving) after the transformation. The first and second preconditions are necessary
to ensure that the code still compiles after applying the transformation, whereas the last
three preserve behavior. In particular, although the right-hand side of the refactoring
template is not syntactically equivalent to the left-hand side, both sides are semantically
equivalent, since the third refactoring precondition (shown shortly ahead) guarantees
that the this.f=exp command can be the last one or in the middle of method m.

Refactoring 1 〈Extract Resource to Aspect - after〉

ts
class C {

T f
fs
ms
T ′ m(ps) {

body
this.f = exp;
body ′

}
}

→

ts
class C {

fs
ms
T ′ m(ps) {

body
body ′

}
}
privileged aspect A {
T C .f ;
after(C cthis , ps) ret(T ′ t) :

exec(T ′ C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {
cthis .f = exp[cthis/this];

}
}

provided

• A does not appear in ts ;

61

• if the field f of class C is private, such field does not appear in ts nor in
ms ;

• f does not appear in body’ ; exp does not interfere with body’ ;

• A has the lowest precedence on the join points involving the signature
σ(C .m);

• there is no designator within or withincode capturing join points inside
this.f=exp;

In the preconditions above, we require that, if the field f of class C is private, such
field does not appear in ts nor in ms because, when moved to the aspect, the field would
be private with respect to the aspect and not with the class, hence a reference to f

in ts or ms would not compile (according to AspectJ semantics, visibility modifiers of
inter-type declarations are related to the aspect and not to the affected class).

The preconditions on the third bullet are necessary to allow moving the command
this.f=exp; to the end of method m, which is done as an intermediate step during
refactoring. Section 4.2.2 and Figure 4.7 explain the refactoring in terms of consecutive
applications of elementary fine-grained transformations. The precondition requiring exp

not to interfere with body’ is specified at a semantic level, but it can also be specified
syntactically if we have further information about the structure of exp, which happens
frequently, including in our example above and in our case study. In such cases, exp is
a static method call on third-party API to load image attributes, thus not interfering
with body’.

Despite its syntactic form, the semantic intent of the lower precedence precondition is
the following: the newly created after advice has the lowest precedence on the join points
involving the signature σ(C .m). Lowest precedence is required because such advice has
to execute immediately after body’ ; if there are other after advice affecting the same joint
point, these should execute after the former advice. According to AspectJ’s semantics,
one after advice executes before another after advice if, and only if, the former has lower
precedence the latter, thus the former will be the first to execute among other advice if
it has the lowest precedence.

However, the only way AspectJ allows specifying precedence among advice of differ-
ent aspects is by specifying precedence on aspects containing these advice, thus implying
that all advice of a certain aspect A have precedence over all advice of another aspect
B, which is a too coarse-grained way to do so. In fact, we may want some advice of A

to have precedence over some advice of B and some advice of B to have precedence over
advice of A, which would lead to an unsolvable constraint among the precedence of such
aspects.

Therefore, applying the same refactoring twice works if the code is extracted into
the same aspect (advice precedence within the aspects is addressed as shown shortly
ahead); otherwise, it will depend on whether there is already a precedence constraint
on the existing aspects. If so, the refactoring might not be applied; otherwise, the
refactoring can be applied and the new aspect A will have the lowest precedence. This is
a limitation of AspectJ’s expressiveness. An AspectJ extension could be accomplished to
define advice precedence on a finer-grained approach, by using the ABC compiler [20],
for example. In this case, the semantic intent of the refactoring could be expressed
syntactically.

62

The fifth precondition means that there are no within or withincode pointcut
designators in any aspect in the SPL that could match join points in the this.f=exp;

statement. This precondition is necessary because moving such statement may break
those pointcuts. Despite declarative, this precondition is verifiable by examining the
SPL aspects in the IDE using AJDT’s API.

The refactoring described creates aspect A. A slight variation of this refactoring
assumes A already exists. In this case, such aspect would have a particular form after
applying the transformation (in the following, pcs denotes pointcut declarations):

privileged aspect A {
T C .f ;
pcs
bars
after(C cthis , ps) ret(T ′ t) :

exec(T ′ C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {
cthis .f = exp[cthis/this];

}
afs
}

Note that, in this case, the advice cannot be considered as a set, since order of
declaration dictates precedence of advice. According to the AspectJ’s semantics, if two
advice declared in the same aspect are after, the one declared later has precedence; in
every other case, the advice declared first has precedence. Thus, we divide the list of
advice in two. The first part (bars) contains the list of all before and around advice,
while the second part contains only after advice (afs). This separation ensures that
after advice constructs always appear at the end of the aspect. It also allows us to
define exactly the point where the new advice should be placed to execute in the same
order in both sides of the refactoring: since the new after advice appears before afs,
it has the lowest priority among after advice constructs and thus will be the first after
advice to execute, as intended.

Additionally, for advice declared in different aspects, precedence depends on their
hierarchy or their order in a declare precedence construct (this is addressed by the
fourth precondition of the refactoring). Similar considerations apply to the remaining
refactorings. For brevity, we will assume the aspect is created in each case.

Remaining refactorings

Table 4.1 summarizes all refactorings from our catalog.
Some of the refactorings in Table 4.1, such as Change Class Hierarchy, are coarse-

grained; others, such as Extract Argument Function, are fine-grained; some, such as
Extract Method to Aspect, have medium granularity. Part of their names refers to an
AspectJ construct that encapsulates the variation. For example, the Extract Resource
to Aspect - after we described previously extracts the variant part of a concern, ap-
pearing as a field and its uses in the class, into AspectJ’s after construct. Finally, the

63

Table 4.1: Summary of Refactorings.
Refactoring Name

1 Extract Resource to Aspect - after
2 Extract Method to Aspect
3 Extract Context
4 Extract Before Block
5 Extract After Block
6 Extract Argument Function
7 Change Class Hierarchy
8 Extract Aspect Commonality

refactorings we present are not aspect-aware according to the definition of Hannenberg
et al [66], but these could be adapted to be so by relaxing some preconditions such as
the fifth of the Extract Resource to Aspect - after refactoring and accordingly changing
the within and withincode pointcuts involved following the guidelines presented else-
where [66]. In a broad sense, however, our refactorings are aspect-aware, since they can
be used in the presence of aspects and manipulate aspects constructs in transformation
templates and preconditions.

We now describe the remaining refactorings. The Extract Method to Aspect refac-
toring is intended to extract the variant part of a concern, appearing in the middle of
a method body, into AspectJ’s inter-type declaration construct. Such declaration can
then be implemented according to the specific variant. The refactoring structure and
its preconditions are shown shortly ahead.

Accordingly, method newm, used in class C, is defined in aspect A. Although this
could be considered lack of obliviousness [50], that is, in this case, the class knows
about the aspect, more recent research [120, 64, 84] has shown that obliviousness is not
necessary goal. In fact, achieving obliviousness might come at an expense of making
aspect constructs complex. In the refactoring, the very existence of method newm could
be interpreted as a service or contract that has be be provided by the aspect in order for
the class to perform its role. Such contract is consistent with the notion of Crosscuting
Interfaces (XPIs) [120, 64] and Extension Join Points (EJPs) [84].

64

Refactoring 2 〈Extract Method to Aspect〉

ts
class C {

fs
ms
T m(ps) {
body
body ′

body ′′

}
}

→

ts
class C {

fs
ms
T m(ps) {
body
newm(αps ′);
body ′′

}
}
privileged aspect A {

void C .newm(ps ′) {
body ′

}
}

provided

• newm is a fresh name;

• A is not declared in ts ;

• body ′ does not change any local variable;

• local variables declared in body ′ are not used in body ′′;

• return and super do not appear in body ′;

• ps ′ = ps , variables(body);

• there is no designator within or withincode capturing join points inside
body ′;

• there is no aspect in ts with an advice intercepting σ(C .newm).

where the list of parameters of method newm, ps ′ , is composed by the parameter
list of method m, ps , as well as parameters corresponding to accesses of local variables
of body used in body’, denoted by variables(body). Despite the number of preconditions
for this and the other refactorings presented in this section, we could still apply them
in many situations, as described in the case studies conducted in Chapter 6.

65

The following refactoring extracts the variant part of a concern, appearing as a
context over a block of code in a method body, into AspectJ’s around construct. Context
is also an arbitrary piece of code encapsulating body and, in particular, can have any
nesting.

Refactoring 3 〈Extract Context〉

ts
class C {

fs
ms
T m(ps) {
Context [body]
}

}

→

ts
class C {

fs
ms
T m(ps) {
body
}

} privileged aspect A {
void around(C cthis , ps) :
exec(T C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {
Context [proceed()][cthis/this]
}

}

provided

• super and return do not appear in Context ;

• body does not use local variables declared in Context ;

• there is no aspect in ts affecting the join point σ(C .m);

• there is no designator within or withincode capturing join points inside
Context .

66

The next two refactorings extract the variant part of a concern, appearing either at
the beginning or at the end of method body, into AspectJ’s before or after constructs,
respectively.

Refactoring 4 〈Extract Before Block〉

ts
class C {

fs
ms
T ′ m(ps) {

body ′

body
}

}

→

ts
class C {

fs
ms
T ′ m(ps) {

body
}

} privileged aspect A {
before (C cthis , ps) :

exec(T ′ C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {

body ′ [cthis/this]
}
}

provided

• body does not use local variables declared in body ′;

• super and return do not appear in body ′;

• A has the lowest precedence on the join points involving the signature
σ(C .m);

• there is no designator within or withincode capturing join points inside
body ′.

67

Refactoring 5 〈Extract After Block〉

ts
class C {

fs
ms
T ′ m(ps) {

body
body ′

}
}

→

ts
class C {

fs
ms
T ′ m(ps) {

body
}

} privileged aspect A {
after(C cthis , ps) ret(T ′ t) :

exec(T ′ C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {

body ′ [cthis/this]
}
}

provided

• body ′ does not use local variables declared in body ;

• super does not appear in body ′;

• A has the lowest precedence on the join points involving the signature
σ(C .m);

• there is no designator within or withincode capturing join points inside
body ′.

68

Refactoring 6 extracts the variant part of a concern, appearing as a function over
an expression in a method method call, into AspectJ’s around and proceed constructs.
The latter construct guarantees that we apply function f over expression x . In par-
ticular, if exp is null and f (x) = x/0, the refactoring is still valid: in this case
ArithmeticException would be raised in both the left-hand and in the right-hand
sides.

Refactoring 6 〈Extract Argument Function〉

ts
class C {

fs
ms
T n(ps) {
exp.m(f (x))
}

}

→

ts
class C {

fs
ms
T n(ps) {
exp.m(x)
}

} privileged aspect A {
around (context) :

call(O .m(Γ(x))) &&
withincode(C .n(Γ(ps)))
&& bind(context) {

proceed(f (x))
}

}

provided

• local variables and super do not appear in f (x);

• there is no aspect in ts affecting the join point σ(C .m); O is the static
type of exp;

• there is no designator within or withincode capturing join points inside
f (x).

69

Refactoring 7 is a coarse-grained refactoring changing the type hierarchy using As-
pectJ’s declare parents construct.

Refactoring 7 〈Class Hierarchy〉

ts
class C ′ extends C {...}
class D extends C ′ {...}

→

ts
class C ′ extends C {...}
class D extends C {...}
privileged aspect A {
declare parents :
D extends C ′

}

provided

• D and C ′ have the same interface.

In contrast to the previous refactorings, which can be used both in the extractive
and in the reactive scenarios, Refactoring 8 would be used only in the reactive scenario
(Figure 4.3). The transformation evolves the SPL, by reusing previously created pieces
of advice. There are variations of this refactoring for the other kinds of advice constructs.

On the left-hand side template, body occurs in aspects A and B. The idea is to factor
out such commonality into another aspect, C, in which the new advice, on the right-hand
side template, is executed whenever the ones in aspects A and B execute. The second
and third preconditions ensure that the transformation is syntactically valid; the first
and fourth preconditions ensure that behavior is preserved. For example, for the first
precondition, if such sets were not disjoint, then, on the left-hand side, body would be
executed twice (for the joinpoints matched by both exp1 and exp2), whereas on the
right-hand side body would execute only once. The fourth precondition has a similar
role to that of the fifth precondition of Refactoring 1.

70

Refactoring 8 〈Extract Aspect Commonality〉

ts
privileged aspect A {
fieldsA
methodsA
pointcutsA
barsA
before(ps) : exp1{
body
}
bars ′A
afsA
}
privileged aspect B {
fieldsB
methodsB
pointcutsB
barsB
before(ps) : exp2{
body
}
bars ′B
afsB
}
privileged aspect C {
fieldsC
methodsC
pointcutsC
barsC
afsC
}

→

ts
privileged aspect A {
fieldsA
methodsA
pointcutsA
barsA
afsA
}
privileged aspect B {
fieldsB
methodsB
pointcutsB
barsB
afsB
}
privileged aspect C {
fieldsC
methodsC
pointcutsC
barsC
before(ps) :

exp1 || exp2 {
body
}
afsC
}

provided

• The set of join points captured by exp1 and exp2 are disjoint;

• exp1 and exp2 do not rely on locally defined pointcuts;

• body does not use attributes and methods of the aspects;

• there is no designator within or withincode capturing join points inside
body .

71

4.1.4 Migrate SPL

Apart from the extractive and reactive adoption strategies, there may be a case when
there is an existing SPL already implemented using some variability mechanisms and
we would like to implement it using another variability mechanism. We refer to the
process of accomplishing this as migration strategy, and reasons for accomplishing it
include moving to a mechanism that better supports understandability, traceability,
and further evolution of the SPL in the reactive scenario.

In this section, based on our experience in the mobile games domain [14, 13, 2, 12, 5,
111, 7, 4, 9, 10, 8], we present some migration strategies from one SPL implemented with
conditional compilation to one using AOP. The strategies present a variability pattern
handled by the first mechanism and show how it can be translated into a pattern using
AOP constructs. We first present such patterns within an example and later show them
in template form so that they can be reused in contexts other than the mobile games
domain. Figure 4.5 illustrates the process:

Figure 4.5: Migrate SPL.

Super Class Variation

There can be variations in the super class of some classes. These variations occur, for
example, when defining a Canvas class that is used to draw shapes and images on the
screen. For Nokia devices, it is required that these classes extend the Nokia API class
com.nokia.mid.ui.FullCanvas instead of MIDP [108] class
javax.microedition.lcdui.Canvas. If the device supports MIDP 2.0 or is a Siemens
mobile device, Canvas super classes are also different, called respectively
javax.microedition2.lcdui.game.GameCanvas and
com.siemens.mp.color game.GameCanvas. As a consequence, dealing with this varia-
tion requires changing an import declaration and the corresponding super class name
in the extends clause. Using conditional compilation tags, it is possible to define a dif-
ferent import and extends declaration for each of those variations. The following piece
of code shows how this variability mechanism is employed to address such variations for
configurations corresponding to Nokia and MIDP devices.

72

//#ifdef nokia_device
//# import com.nokia.mid.ui.FullCanvas;
//#else
//# import javax.microedition.lcdui.Canvas;
//#endif
...
//#ifdef nokia_device
//# public class MainCanvas extends FullCanvas {
//#else
//# public class MainCanvas extends Canvas {
//#endif
...

Using AspectJ, such variability can be addressed by declaring an aspect for each
possible super class alternative, corresponding to a different configuration. A declare

parents clause with the required class name is defined in the aspect. Additionally, the
corresponding import declaration is transferred to the aspect. The piece of code below
shows the result of applying this strategy to the example just mentioned.

//core
public class MainCanvas {...}

//Nokia configuration
import com.nokia.mid.ui.FullCanvas;
public aspect NokiaCanvasAspect {

declare parents: MainCanvas extends FullCanvas;
...

}

//MIDP configuration
import javax.microedition.lcdui.Canvas;
public aspect MIDPCanvasAspect {

declare parents: MainCanvas extends Canvas;
...

}

The approach presented above only works because FullCanvas is a subclass of
Canvas, which is a precondition of declare parents. The classes GameCanvas (MIDP
2.0 and Siemens) also respect this rule.

This strategy can be generalized by a pair of source and target templates specifying
a transformation on code assets of the SPL. The source template is as follows:

//#ifdef TAG
//# ts’
//#else
//# ts’’
//#endif

73

//#ifdef TAG
//# public class C extends C’ {
//#else
//# public class C extends C’’ {
//#endif

fs
ms

}

Where TAG is a conditional compilation tag, whose selection in the SPL configura-
tion binds the superclass of C to C’, including the corresponding import. When not
selected in the SPL configuration, the superclass of C is bound to C’’, also including its
corresponding import. We denote the set of type declarations by ts’ and ts’’. Also,
fs and ms denote field declarations and method declarations, respectively.

Code assets matching the source template are transformed according to the following
target template, where aspect A binds the superclass of C to C’. The import required
by C’ is in ts’ and is moved aspect A.

//core
public class C {

fs
ms

}

//configuration 1
ts’
public aspect A {

declare parents: C extends C’;
}

//configuration 2
ts’’
public aspect B {

declare parents: C extends C’’;
}

Interface Implementation Variation

Another kind of variation in hierarchy that can arise is to make a class implement
a different interface. It usually happens due to the use of different APIs requiring the
implementation of specific interfaces. This variability issue is similar to the one presented
in the previous subsection and can be handled similarly in the migration strategy. The
main difference is that it uses declare implements instead of declare parents.

If Condition Variation

A common variation in mobile devices is the number and type of keys in the keypad.
Additionally, the values that represent key pressing events differ between mobile de-
vices families. This latter variability is usually implemented through blocks of constant

74

definitions with different values subject to conditional compilation. Other possible im-
plementations include macro and configuration files.

When migrating to AspectJ, it is possible to introduce constants via inter-type decla-
rations with the appropriated values. Additionally, there are variations in if conditions
responsible for checking whether a specific key has been pressed and launch the code
that handles the event. These variations usually required to add more or-conditions

to treat the additional keys. The following code shows an example of this situation.

public class MainCanvas extends Canvas {
protected void keyPressed(int keyCode) {...

if (keyCode == LEFT_SOFT_KEY
//#ifdef device_keys_motorola
//# || keyCode == -softKey
//#endif

) {
// handle key event

}
...

}
}

The previous example shows that an additional or-condition can activate the code
inside if command for Motorola mobile devices. With conditional compilation, using
one or more ifdef’s addresses this variability issue.

We defined a migration strategy that involved: 1) the extraction of if-condition

to a new method defined in the class containing the base condition; 2) the use of an
around advice in an aspect to enhance the base condition. The result is as follows:

public class MainCanvas extends Canvas {
protected void keyPressed(int keyCode) {...

if(compareEquals(keyCode, softkey)) {
// handle key event

}
}
private boolean compareEquals(int keyCode,

int softKey) {
return keyCode == softKey;

}...
}

//Motorola device configuration
public privileged aspect DeviceKeysMotorola {

boolean around(int keyCode, int softKey) :
execution(private boolean MainCanvas.compareEquals(..))
&& args(keyCode, softKey)

{
return keyCode == softKey || keyCode == -softKey;

}

75

...
}

The source template of the migration strategy is shown next:

ts
public class C {
fs
ms
T m(ps) {

body
if (cond

//#ifdef TAG
//# op cond’
//#endif

) {
body’

}
body’’

}
}

where cond represents the base condition and the variation is an additional expres-
sion op cond’. The expression op represents binary operators and cond’, any boolean
expression. Also, body, body’, and body’’ denote blocks of statements in a method.
The target template of this strategy is presented next:

ts
public class C
fs
ms
T m(ps) {

body
if (getCond(ps’)) {

body’
}
body’’

}
boolean getCond(ps’) {

return cond;
}
}

//SPL configuration handling variability issue
public aspect A {...

boolean around(ps’) :
execution(boolean C.getCond(..))
&& args(ps’)

{

76

return cond op cond’;
}

}

It is important to notice that using an around-advice allows substituting or com-
plementing the original condition specified in the if statement, by executing or not a
proceed statement.

Feature Dependency

This section presents the strategy employed to migrate a feature depending on others
features. For example, there can be a feature called Arena, that allows posting game
results to a public server for ranking purposes. This feature also presents results on
the device screen. Since screen size is variable across devices, it would be necessary to
develop an Arena feature to each appropriated screen size. Using conditional compi-
lation, this feature implementation is spread in many classes and tangled with other
functionalities.

In the following code, if the tag feature arena enabled is enabled during SPL
instantiation, some common constants to paint the scroll bar are defined, but the con-
stants ARENA SCROLL HEIGHT and ARENA SCROLL POS Y have different values depending
on the device’s screen size.

public class MainScreen {
//#if feature_arena_enabled

/** Constants to paint the scroll bar */
//#if device_screen_128x128
//# public static final int ARENA_SCROLL_HEIGHT = 92;
//# public static final int ARENA_SCROLL_POS_Y = 17;
//#elif device_screen_128x117
//# public static final int ARENA_SCROLL_HEIGHT = 81;
//# public static final int ARENA_SCROLL_POS_Y = 16;
//#endif

//#endif
...
}

The strategy adopted to implement this feature dependency was to define an aspect
called ArenaAspect to handle the core of the feature and, for each screen size variation
inside Arena, define others aspects, ArenaScreen128x128 and ArenaScreen128x117.
Additionally, there is the following constraint on the SPL configuration knowledge:
when the optional feature Arena is enabled, one of the aspects ArenaScreenWxH is
automatically selected depending on the screen size of the device. The piece of code
below shows the result of applying this strategy to the class MainScreen mentioned
previously.

public class MainScreen {... }

public aspect ArenaAspect {

77

/** Constants to paint the scroll bar */
}

public aspect ArenaScreen128x128 {
public static final int

MainScreen.ARENA_SCROLL_HEIGHT = 92;
public static final int

MainScreen.ARENA_SCROLL_POS_Y = 17;
}

public aspect ArenaScreen128x117
public static final int

MainScreen.ARENA_SCROLL_HEIGHT = 81;
public static final int

MainScreen.ARENA_SCROLL_POS_Y = 16;
}

The template generalizing this migration strategy is presented next. It is important
to notice that TAG A represents an optional feature and tags TAG B1 and TAG B2 represent
features depending on TAG A.

public class C {
fs
ms
...
//#if TAG_A
//# fs’
//# ms’

//#if TAG_B1
//# fs’’
//# ms’’
//#elif TAG_B2
//# fs’’’
//# ms’’’
//#endif

//#endif
}

The target template of this strategy is presented next, where C.fs’, C.fs’’ and
C.fs’’’ are the sets of fields introduced via inter-type declaration into class C by the
aspects composed with C. The same pattern is used for methods, but they are named
C.ms’, C.ms’’ and C.ms’’’ instead. Aspect A is included in the SPL instance if, and
only if, feature A is selected; aspects AB1 and AB2 are present in the SPL instance if,
and only if, their corresponding features are present and feature A is also selected.

public class C {
fs
ms

}

78

public aspect A {
C.fs’
C.ms’

}
public aspect AB1 {

C.fs’’
C.ms’’

}
public aspect AB2 {

C.fs’’’
C.ms’’’

}

Variability in Constant Declaration

A considerably frequent variability is the declaration of class constants referring to screen
elements. For example, the following code snippet shows the declaration of different
values for the same constant depending on the device:

/** Width used to show loading message */
//# if device_screen_128x117

//# public static final int LOADING_MESSAGE_AREA = 118;
//# elifdef device_screen_176x205

//# public static final int LOADING_MESSAGE_AREA = 154;
//# endif

To handle this, we declare the constants in a interface and use a declare parents

construct to state that such interface should be implemented by the class. In this way,
behavior is preserved, since a reference to a constant such as LOADING MESSAGE AREA

will be available through the interface:

public aspect Screen128X117 {
declare parents : GameScreen implements GameScreen128x117;
public interface GameScreen128x117 {
/** Width used to show loading message */
public static final int LOADING_MESSAGE_AREA = 118;

}
}
public aspect Screen176X205 {

declare parents : GameScreen implements GameScreen176x205;
public interface GameScreen1176x205 {
/** Width used to show loading message */
public static final int LOADING_MESSAGE_AREA = 154;

}
}

Variability in Method Body

Another variability pattern that can occur is finding out the language used in the game
in order to set a default or a customized one:

79

public static void initDefaultLanguage() throws IOException {

//# ifdef general_multi-language

//# [code X]

//# else

//# [code Y]

//# endif

}

A related example is variant behavior when playing sound. There are three variabil-
ities subsuming the whole method playing the sound, as shown in the following code
snippet:

private void playSound(int soundIndex) {

//# if device_sound_api_nokia

[code X]

//# elif device_sound_api_samsung

//# [code Y]

//# elif device_sound_api_mmapi || device_sound_api_siemens

//# [code Z]

//# endif

}

This can be handled by implementing each variant behavior as a method introduced
by an inter-type declaration:

public privileged aspect SoundPlayerNokia {

public void SoundEffects.playSound () {

[code X]

}

}

public privileged aspect SoundPlayerSamsung {

public void SoundEffects.playSound () {

[code Y]

}

}

public privileged aspect SoundPlayerMMAPI {

public void SoundEffects.playSound () {

[code Z]

}

}

Variability in Method Call

This pattern refers to variant behavior at the beginning, middle, or end of a method.
For example, the following variability pattern occurs at the end of a method and refers
to calling network facility for posting results after calculating player’s score:

80

void gc_computeLevelScore() {

...

//#if feature_arena_enabled

//# NetworkFacade.setScore(this.scr_levelTotalScore);

//# NetworkFacade.setLevel(this.gc_getCurrentLevel());

//#endif

}

This can be by implementing the posting of players score in an after advice , which
then interacts with the network service.

public aspect ArenaAspect {

...

after(GameScreen cthis) :

execution(void GameScreen.gc_computeLevelScore()) && target(cthis) {

NetworkFacade.setScore(cthis.scr_levelTotalScore);

NetworkFacade.setLevel(cthis.gc_getCurrentLevel());

}

}

Similarly, for variability occurring at the beginning of the method, we rely on before

advice and appropriate pointcut. For variability in the middle of the method, we identify
special anchor points for which to write a pointcut and write according specific behavior
in an after advice.

Discussion

Some of the strategies presented previously could benefit from general OO techniques
(e.g. using abstract methods and subclassing, patterns and so forth), but this would
imply having a subclass for each possible device, thus leading to complex class hierar-
chies. Additionally, many more classes would be involved, thus incurring into a penalty
in terms of bytecode size, a critical issue in the mobile application domain.

The strategies replace the scattered ifdefs by a number of aspects, which have to
be managed. This can addressed by a configuration knowledge, relating device configu-
rations to configurations involving sets of aspects and core classes. Section 6.2.4 shows
this in the context of a case study. The AO advantage lies in the fact that the extracted
variability can be used elsewhere without replicating code, whereas the ifdef variability
can only be used in that context.

Although some variabilities addressed are very fine-grained, they are crosscutting,
because they can be logically grouped together with other fine-grained variability affect-
ing other join points, such that this unit,the aspect,implements a feature. More gener-
ally, we could further cluster crosscutting variability so that it can be more broad in a
module-classes and aspects–implementing a given feature. Finally Table 4.2 relates the
migration strategies and the refactorings from the refactoring catalog of Section 4.1.3.

81

Table 4.2: Relating Migration Strategies to Refactorings
Migration Strategy Refactoring

Super class variation Change class hierarchy
Interface implementation variation Change class hierarchy
If condition variation Extract context
Feature dependency Extract resource to aspect
Variability in constant declaration Extract resource to aspect
Variability in method body Extract method to Aspect
Variability in method call Extract Before/After Block

4.2 Formal Reasoning for AspectJ Refactorings

This section analyzes how the extractive and reactive refactorings from Section 4.1.3
can be decomposed into or derived from existing elementary programming laws [40],
which are simpler and easier to reason about than the refactorings, thereby increasing
correctness confidence in such extractive transformations.

Although the derivation presented in this section is not a novel technical achieve-
ment by itself, since previous work by Cole and Borba [40] proposed a catalog of pro-
gramming laws and showed derivations of other refactorings, the derivation we present
here, in the context of SPL, is relevant. First, such previous work did not explore the
derivation of SPL refactorings. Second, the derivation presented here is important for
establishing soundness of the SPL refactorings we presented previously. Not only is this
relevant for tool developers–who indeed have to carry out the derivations–but also for
SPL developers–who use the tool. Indeed, even though SPL developers do not need to
understand the derivation of the refactorings, they should be interested in the very fact
that they do exist, since that can be interpreted as a quality attribute (or certification
stamp) of the tool they use: the more the tool uses derivation, the more reliable the
tool is and the less effort SPL developers spend in testing, which is extremely expensive
in the SPL scenario [106].

Section 4.2.1 reviews some existing fine-grained aspect-oriented programming laws [40].
Then, in Section 4.2.2, we relate such refactorings and laws by showing how the former
can be described in terms in of the latter.

4.2.1 Programming Laws

Programming laws [69, 40], like refactorings, are transformation structures which pre-
serve program consistence and behavior. In contrast, they are much simpler than most
refactorings: they involve only localized program changes, and each one focuses on a
specific language construct.

Differently from refactorings, laws can be applied not only from the left to right
side, but also in the opposite direction. Therefore, there are different preconditions
depending on the direction the law is used. This is represented by arrows, where the
symbol (←) indicates that a precondition must hold when applying the law from right to
left. Similarly, the symbol (→) indicates that a precondition must hold when applying
the law from left to right. Finally, the symbol (↔) indicates that a precondition must

82

hold in both directions.
For example, the Law 1 has the purpose of moving the implementation of a single

method into an aspect using an inter-type declaration. This simple transformation
is easier to understand and reason about. According to AspectJ semantics, visibility
modifiers of inter-type declarations are related to the aspect and not to the affected class.
Hence, it is possible to declare a private field as a class member and as an inter-type
declaration at the same time and using the same name. As a consequence, transforming
a member method that uses this field into an inter-type declaration implies that the
method now uses the aspect inter-typed field. This leads to a change in behavior. A
precondition is necessary to avoid this problem.

Law 1 〈Move Method to Aspect〉

ts class C {
fs
ms
T m(ps) {
body
}

} privileged aspect A {
pcs
as
}

=

ts class C {
fs
ms

} privileged aspect A {
T C .m(ps) {
body
}
pcs
as

}

provided

(↔) A does not introduce any field to C with the same name of a C field
used in body .

For example, the Law 2 has the purpose of adding an after advice. On the left-hand
side of the law, body ′ is the last block of code to execute in method m. Thus, we can
extract it to an after advice. On the right-hand side, body ′ is not present in method
m, although it is executed after the execution of method m by an after advice declared
in aspect A. In this aspect, the symbols used in the advice construct have the same
meaning as in Refactoring 1.

Law 2 〈Add After-Execution Returning Successfully〉

83

ts
class C {

fs
ms
T m(ps) {

body
body ′

}
}
privileged aspect A {

pcs
bars
afs

}

=

ts
class C {

fs
ms
T m(ps) {

body
}

}
privileged aspect A {

pcs
bars

after(C cthis , ps) ret(T ′ t) :
exec(T ′ C .m(Γ(ps)))
&& this(cthis)
&& args(αps) {
body ′[cthis/this]

}
afs
}

provided

(→) body ′ does not use local variables declared in body ; body ′ does not call
super;

(↔) A has the lowest precedence on the join points involving the signature
σ(C .m);

(↔) there is no designator within or withincode capturing join points
inside body ′;

The lowest precedence precondition of this law is analogous to the lowest precedence
precondition of Refactoring 1, which was discussed in Section 4.1.3. Likewise, the last
precondition of this law corresponds to the fifth precondition of Refactoring 1. Therefore,
the constraint refers to any aspect.

Examining the left-hand side of this refactoring, we see that body ′ executes before
all after advice possibly declared for this join point. This means that the new advice on
the right-hand side of the law should be the first one to execute, preserving the order
in which the code is executed in both sides of the law. Thus, the after advice should
be placed at the beginning of the after list (afs). Moreover, in order to ensure that
the new advice created with this law is the first one to execute, we have a precondition
stating that aspect A has the lowest precedence over other aspects defined in ts . This
precondition must hold in both directions.

Law 3 represents the language construct which introduces a field into a class. Ana-
lyzing this transformation from the left to the right, we can see that field declaration is
removed from class C. However, we introduce field in this class by using an inter-type
declaration construct declared in aspect A.

84

Law 3 〈Move Field to Aspect〉

ts
class C {

fs
T field
ms

}
privileged aspect A {

pcs
bars
afs

}

=

ts
class C {

fs
ms

}
privileged aspect A {

T C .field
pcs
bars
afs

}

provided

(→) The field field of class C does not appear in ts and ms .

This precondition is necessary for the same reason that the second precondition of
Refactoring Extract Resource to Aspect - after is necessary, which was explained in
Section 4.1.3.

4.2.2 Deriving Refactorings

In this section we use aspect-oriented programming laws [40] to show that the refac-
torings previously discussed in Section 4.1.3 are behavior preserving transformations.
Although we do not conduct a strictly formal proof, the derivation is still useful for un-
derstanding refactorings in terms of simpler transformations. Additionally, representing
the refactorings as a composition of programming laws helps to better define the pre-
conditions under which those refactorings are valid. For their simplicity, programming
laws [69] are suitable for this. A complete formal proof requires establishing the validity
of the laws with respect to a formal semantics, which is still on going work [41].

The laws we use (defined elsewhere [40]) consider the entire context, and therefore
apply to closed programs. Nevertheless, their associated side conditions are purely
syntactic. Furthermore, although the context is captured for each particular law ap-
plication, this is by no means a requirement that the context be fixed for successive
transformations. If, eventually, a modified context no longer satisfies the conditions
of a law previously applied, this does not invalidate the effected transformation; it just
means that in the current context the application of the law would not be valid. Accord-
ingly, the laws compose in the sense that their consecutive application is equivalent to a
coarse-grained transformation (refactoring). Indeed, such composition is not as flexible
as in Hoare’s laws [69]–which can be applied to open programs–, but has sufficed to
derive the refactorings.

We can derive the Extract Method to Aspect refactoring (Section 4.1.3) from the
Move Method to Aspect law (Section 4.2.1). This law is the only aspect-oriented trans-
formation necessary to accomplish this refactoring. Nevertheless, we first need to apply

85

an object-oriented refactoring: Extract Method [53]. This refactoring creates a new
method in class C called newm with proper parameters and return type, which executes
the piece of code labelled as body’. Extract Method can only be applied if the extracted
code does not change more than one local variable, otherwise the extracted method
would need multiple return values. The object-oriented refactorings can be proven to
be sound using object-oriented programming laws [31].

Note that the scenario after the method extraction matches the left side of Move
Method to Aspect law, with newm corresponding to m in the law. If the target aspect
already exists, we can apply this law to end the transformation. Otherwise, it would
be necessary to use Add empty aspect and Make aspect privileged laws [40] to create
a new aspect and make it privileged. At this point, we complete the derivation of
Extract Method to Aspect refactoring. The sequence of steps necessary to accomplish
this refactoring is shown in Figure 4.6.

Extract Method → Move Method to Aspect

Figure 4.6: Extract Method to Aspect.

As another example, Refactoring 7 (Extract Resource to Aspect - after), presented
in Section 4.1.3, can be represented as a sequence of object-oriented transformations
and aspect-oriented programming laws (Figure 4.7). In this case, starting from the
left-hand side template of this refactoring, we first need to rearrange the source code
manipulating field f because AspectJ does not provide any mechanism to introduce
crosscutting behavior in the middle of a method. In order to move the crosscutting code
to an aspect, we first need to move such code to the beginning or end of the method;
this allows the creation of a before or after advice, respectively. In this refactoring,
the crosscutting code was moved to end of the method (we name such transformation
by OO law in Figure 4.7). The OO law holds if the code to be moved is independent
of the remaining method code, which is guaranteed by the third precondition of the
Refactoring 7 (Section 4.1.3). Once the crosscutting code is at the end of the method, we
can use Law 2 (Add after-execution returning successfully), mentioned in Section 4.2.1,
to create a new advice that is triggered after the method’s successful execution. At this
point, Law 3 (Move Field to Aspect) can be applied to extract field f into the aspect.
The summary of transformations necessary to accomplish this refactoring is shown in
Figure 4.7.

The remaining refactorings can be similarly derived from programming laws. In
Table 4.3, each row summarizes the derivation of a refactoring whose name is on the
first column (this matches the refactorings from Table 4.1) in terms of the consecutive
applications of aspect-oriented laws (defined elsewhere [40]) in the second column. In
the table, consecutive application of laws is represented by→, and repeated application
of the same law is denoted with a superscript *.

We notice that refactorings can have different levels of complexity when compared to
laws. Some refactorings, like Extract Aspect Commonality, can be considerably coarse-
grained, representing a combination of some laws. On the other hand, some refactorings,
like Extract Before Block, can be mapped directly into a single law.

86

Figure 4.7: Derivation of Refactoring Extract Resource to Aspect - after. The dashed
lines denote application of programming laws (fine-grained transformations); the con-
tinuous line denote the application of the refactoring (coarse-grained transformation)

Table 4.3: Summary of Refactorings Derivations. Consecutive application of laws is
represented by →. Repeated application of a law is denoted with a superscript *.

Refactoring Derivation of refactoring in terms of laws
Extract Method to Aspect Extract Method → Move Method to Aspect
Extract Resource to Aspect - after OO Refactoring →

Add After-Execution Returning Successfully →
Move Field to Aspect

Extract Context Add Around-Execution
Extract Before Block Add Before-Execution
Extract After Block Add After-Execution Returning Successfully
Extract Argument Function Add Around-Call
Class Hierarchy Extend From Super Type
Extract Aspect Commonality Change Advice Order → Move Advice*

→ Merge Advice

Chapter 5

Refactoring Feature Models

As discussed in Chapter 2, adoption strategies for Software Product Lines (SPL) fre-
quently involve bootstrapping existing products into a SPL and extending an existing
SPL to encompass another product. One way to do that is to use program refactorings.
However, the traditional notion of refactoring does not handle appropriately feature
models (FM), nor transformations involving multiple instances of the same SPL. For
instance, it is not desirable to apply a refactoring into a SPL and reduce its configura-
bility. At the same time, the method described in Chapter 4 relies on an activity to
refactor the feature model. In this chapter, based in our previous work [11], we extend
the traditional notion of refactoring to an SPL context. Besides refactoring programs,
FMs must also be refactored. We present a set of sound refactorings for FMs. We
evaluate this extended refactoring definition for SPL in a real case study in the mobile
games domain.

The remainder of this chapter is organized as follows. Section 5.1 further motivates
the need for an extended notion of refactoring, where feature models are also considered.
Next, Section 5.2 extends the notion of refactoring to the SPL context. Section 5.3 then
formalizes feature models, which is necessary for subsequent description of feature model
refactoring in Section 5.4. Finally, Section 5.5 illustrates an strategy for employing these
concepts in the context of a case study in the mobile games domain.

5.1 Motivation

The method for implementing SPL adoption strategies described in Chapeter 4 includes
a combination of bootstrapping existing products into a SPL (extractive approach) and
extending an existing SPL to encompass another product (reactive approach). Addi-
tionally, it requires a feature modeling refactoring step. Although the extractive and
reactive approaches can be enacted by the application of program refactorings, the tra-
ditional definition of program refactoring [99, 53] does not take into account intrinsic
characteristics of SPL: feature models and configuration knowledge [45] mapping in-
stances of the feature model (FM) to classes and aspects in the solution space. For
instance, refactoring of a SPL may have the undesirable effect of reducing its configura-
bility. Another problem is that the traditional notion of refactoring applies only to a
single product rather than to a SPL, thereby not taking into account transformations

87

88

involving more than one product. Therefore, the standard definition of refactoring needs
to be extended for SPLs, taking into account their specific characteristics.

In this chapter, we extend the traditional notion of program refactorings for SPLs
in such a way that, in addition to regular program refactoring, FMs are also refactored,
thus completing the definition of the method described in Chapter 4. In order to achieve
this goal, we propose a set of sound feature model refactorings. A FM transformation is
a refactoring when the resulting FM improves (maintains or increases) the set of all pos-
sible configurations (products) of the initial FM. So, a SPL refactoring not only improves
code structure, but also the quality of the FM by maintaining or increasing the SPL
configurability in extractive or reactive scenarios, respectively. The main contributions
of this chapter are the following:

• A new extractive program refactoring for software product lines (Section 5.2);

• A refactoring notion relating multiple feature models (Section 5.4);

• A catalog of sound feature model refactorings (Section 5.4);

• An approach for verifying soundness of software product lines refactorings (Sec-
tion 5.5).

We evaluate this extended refactoring definition in extracting a SPL from legacy
code in the mobile games domain. In this way, developers not only employ traditional
refactorings (accordingly compiling and testing to verify whether type safety and be-
havior are preserved), but also use the sound catalog of FM refactorings we propose so
as to guarantee configurability improvement.

5.2 Refactoring Product Lines

In this section, we explain issues that need to be addressed when considering refactoring
in the SPL context (Section 5.2.1). We then propose an extended definition of refactoring
for such context (Section 5.2.2). Finally, we present a new extractive program refactoring
involving multiple programs.

5.2.1 Issues in Product Line Refactoring

The term refactoring was coined by Opdyke in his thesis [99]. He proposed refactorings
as behavior-preserving program transformations in order to support the iterative design
of object-oriented application frameworks [99]. The cornerstone of his definition is that
refactorings must maintain correct compilation and observable behavior. In practice,
behavior preservation is guaranteed by successive compilation and tests. Opdyke’s work
and many of the later refactorings apply to frameworks (a technology heavily used today
in SPL development) and often introduce variation points. Nevertheless, as program
transformations, they do not handle configurability-level issues (better addressed at the
FM level), nor do they define extractive transformations from two or more existing
applications into a SPL.

89

Figure 5.1: Problems in Refactoring SPLs

Figure 5.1 describes a scenario with two SPLs that are merged into a SPL, where
A and B are programs from SPL1 and SPL2, respectively. In order to accomplish this,
refactorings are employed. The→ arrow represents a refactoring. Figure 5.1 shows that
SPL1 and SPL2 are refactored to add or expose a set of optional features, as can be seen
in their respective FMs (we deliberately omit the FMs of SPL2 and SPL1-2). Finally,
both SPLs are extracted into SPL1-2, which addresses all the products configurability.
Relying on the standard definition of refactoring, we notice two main issues:

• The definition of refactoring needs to be extended for SPL’s context, encompassing
configurability improvement by dealing with FMs (Problem 1);

• We need more program refactorings merging multiple programs into one program
(Problem 2).

As aforementioned, in practice, a decrement in SPL configurability while refactoring
is undesired. However, the traditional notion of refactoring does not take configurability
into account, as we can see in Figure 5.1. If program (source code) A1 is correctly
refactored into A2, following traditional refactoring steps, still it is not guaranteed that
configurability is improved. We must certify that FM2 (corresponding to program A2)
improves the possible configurations of FM1. Since the configurability is described by
a FM, such model should also be considered during SPL refactoring. So, we need to
extend the traditional definition in order to apply FM refactorings (Problem 1).

In order to check configurability improvement, we may rely directly on the semantics
of FM to analyze whether the final FM encompasses all the configurations of the initial
one. Nevertheless, this may be time-consuming, error-prone, and costly, since analyzing
semantics of models may become exponentially hard for large FM models potentially
annotated with logical constraints. In order to solve this problem, we propose a catalog

90

of sound FM refactorings that improve configurability and would thus help the developer
to evolve FMs (Section 5.4).

Furthermore, evolving a SPL often involves adapting two or more applications and
unifying them, as for extracting products into a SPL. However, this requires program
refactorings merging multiple programs into a product line (Problem 2). Traditional
refactorings [53] usually transform one program into another. For instance, the tradi-
tional refactoring notion is not straightforward in considering a refactoring that merges
programs Ai and Bj into the AB program in Figure 5.1, improving configurability of
both SPLs into the new one. In this case, specific program refactorings for SPL are
required.

5.2.2 Definition of Product Line Refactoring

In order to deal with Problem 1, we first extend the definition of refactoring for SPLs
(in addition to the refactoring catalog for FMs shown in Section 5.4) :

Definition 1 SPL refactoring is a change made to the structure of a SPL in order to
improve (maintain or increase) its configurability, make it easier to understand, and
cheaper to modify without changing the observable behavior of its original products

In order to deal with Problem 2, we propose a refactoring dealing with several pro-
grams. For instance, Refactoring SPL 1 shows an extractive refactoring, in which two
existing applications are extracted into a SPL. The refactoring exposes reusable code
(Core) among the existing applications, thereby removing code duplication. Other code
artifacts (X and Y) are kept the same. Each application is now instantiated by reusing
asset Core. Configurability is not guaranteed to be maintained; for that, feature models
must be considered (using the FM refactorings shown in Section 5.4).

Refactoring SPL 1 〈merge programs〉

The SPL refactoring definition consists of three templates: 1) two templates match
the code of the existing applications (left side of the arrow); 2) the third template defines
how the code of these two applications is extracted into the SPL code. In our approach
illustrated in Section 5.5, Refactoring SPL 1 is used together with traditional program
refactorings. In order to guarantee behavior-preservation, compilation and tests are
used.

91

5.3 Formalizing Feature Models

In order to define feature model refactoring, we first need to formalize its semantics. This
section presents a formalization latter employed in Section 5.4. As presented previously
in Section 2.4.1, a FM represents the common and the variable features of concept
instances and the dependencies between the variable features [45]. Each feature model
describes, in a tree, a set of features and how they are related.

Relationships between a parent feature and its child features (or subfeatures) are
categorized as: Optional (features that are optional), Mandatory (features that are
required), Or (one or more must be selected - represented by a filled triangle), and
Alternative (exactly one subfeature must be selected - represented by a unfilled triangle).
Figure 5.2 depicts these relationships graphically.

Figure 5.2: Feature Diagram Notations

In order to formalize feature models, besides these relationships, we also allow feature
models to include propositional logic formulas about features. For instance, the formula
B ⇒ ¬C states that if feature B is selected, feature C cannot be selected.
Example. Figure 5.3 depicts a FM. It has four features (A, B , C and D), one formula
(B ⇒ ¬C) and two relationships: an option relationship between A and B , and an or
relationship between A, C and D .

Figure 5.3: Feature Model Example

The semantics of a FM is the set of its possible (valid) configurations. A configura-
tion contains a set of feature names; if valid, it satisfies all constraints of the model. For
example, the configurations {A,B ,D } and {A,C } are valid for the model in Figure 5.3.
However, the configuration {A,B } is invalid because the or relationship between A, C
and D states that whenever A is selected, C or D must be selected.

92

In order to support the definition of FM refactorings (Section 5.4), we specified
a formal semantics for FMs. Next we show an UML class diagram [30] graphically
describing the abstract syntax of this formalization. A feature model contains a set of
feature names and a set of formulas. A configuration contains a set of names selected,
as specified in Figure 5.4.

Figure 5.4: Class Diagram depicting Feature Model Components

We express all FM relationships in formulas. For example, a mandatory relationship
between features A and B is represented by the formula A ⇔ B .

Next, we formalize the semantics of a FM, which is given by a set of configura-
tions that satisfy all modeled constraints. The expression values(c) yields all selected
features in the configuration c.

semantics(fm:FM): set[Config] =
{ c:Config |

values(c) ⊆ features(fm) ∧
∀ f:forms(fm) | satFormula(f,c)

}

The relation satFormula checks whether a configuration satisfies a propositional
formula. For instance, considering the model in Figure 5.3, configuration c satisfies the
formula B ∨ C if c contains B or C . As another example, a configuration satisfies the
formula B ⇒ ¬C if c contains B but not C .

5.4 Feature Model Refactoring

According to Section 5.2.2, SPL refactoring involves not only program refactoring, but
also FM refactoring. In this section, based on the definition of SPL refactoring, we
initially propose a corresponding definition of FM refactoring; next, we define a catalog
of such refactorings in Sections 5.4.3 and 5.4.4. Finally, we discuss additional aspects of
such refactorings (Section 5.4.5).

We define FM refactorings as follows:

Definition 2 A feature model refactoring is a transformation that improves the quality
of a feature model by improving (maintaining or increasing) its configurability.

93

Let m1 and m2 be two FMs. So, according to Definition 2, m2 refactors m1 if and only
if all valid configurations of m1 are valid configurations of m2, as formalized next.

refactoring(m1,m2: FM): boolean =
semantics(m1) ⊆ semantics(m2)

5.4.1 Motivation

Figure 5.5 depicts two small FMs. It describes the colors of a car. In the left-hand side
(LHS) FM, a car can be black or white. Suppose that we would like to refactor the
LHS model to the right-hand side (RHS) model by adding a new alternative. So we can
have an additional blue car in the resulting model, while still maintaining the previous
configurations.

Figure 5.5: Feature Model Refactoring Example

For ensuring correctness of the refactoring depicted in Figure 5.5, we have to show
that the resulting FM improves the configurability of the initial FM (Definition 2). The
LHS FM has two valid configurations: {Car ,Black } and {Car ,White }. The RHS
FM has the same configurations of the LHS FM plus the configuration {Car ,Blue }.
Since the RHS model contains all valid configurations of the LHS FM, it is a valid FM
refactoring.

Following a similar approach to prove FM refactorings containing considerably more
features, relations and formulas may be difficult, time-consuming and error-prone. In
order to avoid that, we propose a catalog of sound FM refactorings (Sections 5.4.3 and
5.4.4). As discussed in Section 5.4.5, the catalog provides a more abstract alternative
to ensuring correctness than directly relying on semantics. Next we give an overview of
the notation used to state the refactorings.

5.4.2 Refactoring Notation

Each refactoring consists of two templates (patterns) of FMs, on the left-hand (LHS)
and right-hand (RHS) sides. We can apply a refactoring whenever the left template
is matched by a given FM. A matching is an assignment of all variables occurring in
LHS/RHS models to concrete values. Any element not mentioned in both FM templates
remains unchanged, so the refactoring templates only show the differences between the
FMs. Moreover, a dashed line on top of a feature indicates that this feature may have
a parent feature. A dashed line below a feature indicates that this feature may have
additional subfeatures.

94

5.4.3 Unidirectional Refactorings

Next we propose some FM refactorings in order to solve Problem 1 (Section 5.2.1).
Refactoring 5 allows us to add a new node D and increase the alternative between B ,
C and D . This refactoring is the general version of the specific refactoring shown in
Figure 5.5. We can apply Refactoring 5 to the specific models depicted in Figure 5.5
by matching the variables A, B , C and D with the specific features Car , Black , White
and Blue, respectively.

Refactoring 5 add new alternative

Note that there is no dashed line below D in the RHS of this refactoring because it
only introduces a new feature without subfeatures. The other dashed lines of the RHS
are necessary to preserve the features matched by dashed lines in the LHS.

Refactoring 5 is sound because the resulting model contains all configurations from
the original one, also allowing a configuration containing A and D in the absence of B
and C . Therefore, this transformation improves a model by increasing its configurability.

A slight variation of Refactoring 5 considers the case when the left-hand side template
has only one direct subfeature of A that is not already matched by fsA. The right-hand
side template then adds another subfeature as an alternative to this one, thus enlarging
the configurability and preserving soundness:

Refactoring 5 add new alternative (variant)

Another general refactoring, Refactoring 2, collapses an optional feature and an or

95

Table 5.1: Summary of Unidirectional Feature Model Refactorings
Refactoring Name
1 Convert Alternative to Or
2 Collapse Optional and Or
3 Collapse Optional and Alternative to Or
4 Add Or Between Mandatory
5 Add New Alternative
6 Convert Or to Optional
7 Convert Mandatory to Optional
8 Convert Alternative to Optional
9 Pull Up Node
10 Push Down Node
11 Remove Formula
12 Add Optional Node

relation into a general or relation encompassing all features. We can propose a similar
refactoring for more than two child feature nodes.

Note that Refactoring 2 cannot be applied from right to left because the RHS model
can select features A and B (not selecting C and D), which is not possible on the
LHS model. Therefore, the resulting model does not contain all valid configurations
of the original FM, hence it is not a refactoring. This counter-example illustrates that
there are non-trivial configurability-improvement issues in the SPL context, thus further
motivating the need for FM refactorings.

Refactoring 2 collapse optional and or

Our catalog of refactorings is summarized in Table 5.1 and explicitly listed in Sec-
tion 5.6. For instance, we have refactorings for pulling up (Refactoring 9) or pushing
down (Refactoring 10) feature nodes. Another example, removing a formula (Refactor-
ing 11), is a refactoring since the resulting model is less constrained, hence increasing
configurability. Refactoring 12 allows us to introduce an optional feature. In fact, there
are additional refactorings, since most of them can be applied similarly in contexts with
more than two features, such as Refactorings 2 and 5.

By composing the refactorings, we can derive other valuable refactorings. For in-

96

stance, by composing Refactorings 1 and 2, we derive Refactoring 3. This is possible
because starting from the LHS of Refactoring 3, we can first apply Refactoring 1, thus
turning the alternative relationship between C and D into an or-relationship; at this
point B is still optional, but we can now apply Refactoring 2 to group B together with
C and D into an or-relationship.

Refactoring 3 collapse optional and alternative to or

So far we focused on refactoring single FMs. However, as we described in Section 5.2,
we may deal with previously existing products or SPLs, each one having its own FM.
Accordingly, during extractive SPL adoption strategy, we may want, for instance, to
merge these products and SPLs into a single new SPL. In this case, we give support to
FMs in the merging refactoring notion presented in Section 5.2, by defining refactoring
between more than two FMs.

For example, the subsequent refactoring (which we call Extractive) allows us to merge
optional and alternative relations. The resulting FM refactors the initial ones if and only
if the resulting FM refactors each FM on the left side of the arrow. We can actually
model an extractive refactoring as a sequence of single-FM refactorings applied to both
original FMs separately.

Extractive 1 〈merge optional and alternative〉

Suppose that fm1, fm2 represent the two LHS FMs, and fm3 the RHS FM, re-

97

spectively, of the Extractive 1 refactoring. fm3 improves the configurations of fm1 by
applying Refactoring 12 in order to introduce the optional feature node C . Moreover,
fm3 improves the configurations of fm2 by applying Refactoring 8 in order to convert an
alternative to option. Therefore, fm3 refactors both fm1 and fm2. Using the refactorings
from Table 5.1, we can derive other refactorings between more than two FMs.

5.4.4 Bidirectional Refactorings

A bidirectional refactoring is a special case of FM refactoring that maintains the con-
figurability of a model. In this section, we propose a set of bidirectional refactorings
(B-Refactorings) for FMs. In other words, if two FMs have the same configurability
(semantics), we can always relate them by applying B-Refactorings.

B-Refactorings also define two FM templates, although being applicable in both
directions. B-Refactoring 1 relates the alternative and or relations. Applying B-
Refactoring 1 from left to right allows us to convert an alternative to an or relation
along with two formulas establishing the same constraints. Similarly, by applying the
transformation from right to left, we can convert an or to an alternative relation.

B-Refactoring 1 〈replace alternative〉

B-Refactoring 2 relates an or relation and optional nodes. Moreover, B-Refactorings 1
and 2 can be applied when there are more than two child features.

Next, B-Refactoring 3 relates a mandatory feature with an optional feature with a
formula stating the same fact, whereas B-Refactoring 4 removes an optional feature and
states the same fact in a formula.

The root of a FM always appears in all valid configurations. B-refactoring 5 removes
a root and includes a formula stating that the root is always present. B-refactoring 6
removes a feature that can never be selected. Similarly, this one allows us to add a
set of nodes if we add a formula stating that the nodes cannot be selected. Finally,
B-refactoring 7 allows us to add or remove formulas deducible from the model. Since it
is a deducible formula, the configurability is maintained.
Properties of B-Refactorings. Some of the previous transformations may not be
useful in practice since they convert a valid FM to another that is not a tree, such as
B-Refactoring 4. However, they are important for theoretical reasoning, as we discuss

98

B-Refactoring 2 〈replace or〉

B-Refactoring 3 〈replace mandatory〉

in the following. In practice, developers should only be aware of the FM refactoring
catalog.

The set of seven B-Refactorings is sound, minimal and complete. Since each B-
Refactoring defines two simple localized transformations, we can verify that they are
sound. These transformations are minimal since each one deals with one different con-
struct each time. Therefore, one transformation cannot be derived from another.

With respect to completeness, if two FMs are equivalent (have the same configura-
tions), we can always reduce one model to another by applying B-Refactorings. Suppose
that two FMs fm1 and fm2 have the same configurations (semantics(fm1)=semantics(fm2)).
Next we show how we can relate them by applying our B-Refactorings.

1. Remove all features from fm1 and fm2 that cannot be selected (applied in the pres-
ence of a formula negating the corresponding features) by applying B-Refactoring
6 from left to right;

2. Replace all graphical relations by equivalent formulas expressed in propositional
logic by applying B-Refactorings 1-5 from left to right. These B-Refactorings
present no conditions for applications. As a consequence, fm1 and fm2 are reduced
to models containing only features and formulas (without relations).

99

B-Refactoring 4 〈replace optional〉

B-Refactoring 5 〈remove root〉

3. Since fm1 and fm2 have the same semantics, they present the same features
(features(fm1)=features(fm2)). However, fm1 and fm2 may have syntactically-
different formulas, although equivalent. Since the propositional logic calculus
is complete, we can always prove that forms(fm1)=forms(fm2) by applying B-
Refactoring 7 for introducing deduced formulas.

Therefore, we have shown that we can relate fm1 and fm2 using our B-Refactorings,
whenever they have the same semantics. Figure 5.6 summarizes the completeness proof,
and Figure 5.7 illustrates its reduction strategy.

The completeness result is very important for this kind of work. It shows that our
catalog of B-Refactorings is representative enough to derive any kind of refactoring that
maintains configurability. In practice, the developer will not need any other transforma-
tion when the initial and final FMs have the same configurability. Contrasting, another
work [53] proposes a comprehensive set of program refactorings, but it does not show
that this set is complete. As a consequence, we may have some situations where we
would like to apply a program refactoring but the catalog does not have it.

5.4.5 Discussion

In practice, the developer may choose between semantics based reasoning and reasoning
with our catalog of sound refactorings in order to apply a FM refactoring. Our catalog of
sound refactorings can be seen as a high level API, which is much easier to use (based on
template matching), whereas semantics based reasoning is similar to using no API at all,
as illustrated in Figure 5.8. Additionally, as shown in Section 5.4.3, the refactorings can

100

B-Refactoring 6 〈remove node〉

B-Refactoring 7 〈add formula〉

be composed to achieve even coarser-grained transformations and they are also extended
to handle more than one feature model in the left-hand side template.

Furthermore, we note that, once a refactoring is used and variability of a feature
model increases, there is no incurred constraint on the relationship among the instances
of the improved feature model. Such constraints are established during the definition of
the configuration knowledge. The precise definition of such constraints are outside the
scope of this work. Nevertheless, we illustrate these in Chapter 6.

We emphasize the difference between FM refactoring, which we introduce here, and
FM specialization, formalized by Czarnecki [46]: FM refactoring is a transformation that
either maintains or increases the set of all FM configurations, whereas FM specialization
is a transformation that decreases the set of all FM configurations.

5.5 Case Study

In this section, we evaluate the extended refactoring notion for SPLs. First, we describe
the context of the case study (Section 5.5.1); next, in Section 5.5.2, we describe our
approach for verifying the correctness of the case study refactorings in terms of FMs
discussed in Sections 5.4.3 and 5.4.4.

101

Figure 5.6: Completeness proof of B-refactorings. B-R stands for B-Refactorings.

5.5.1 Context

This case study focuses on FM refactoring and is based on a simplified version of the case
study presented in Section 6.1. It combines the extractive and the reactive SPL adoption
strategies [81] in the mobile games domain. As explained in Section 2.3, J2ME games
are mainstream mobile applications of considerable complexity in comparison with other
mobile applications [13, 2]. The major variability issues within these products are as
follows: optional images, alternative image loading policies, proprietary API, application
size limit, screen dimensions, and additional keys [13, 2]. It is essential to note that these
features are not independent. Indeed, application size constrains other features, such as
optional images and additional keys.

Figure 5.9 depicts our case study, focusing on the source code. We started from a
scenario in which the same game ran in two devices, thus having two initial applications,
Product1 and Product2. Both applications have the same core functionality, but differ
in some features, since Device 1 is not a resource-constrained device and, for instance,
can afford enough heap and application size for Product1 to have the croma feature
of clouds scrolling in the background and the simple image loading policy of loading
all images at game startup. On the other hand, Device 2 is resource-constrained and
thus Product2 does not have the croma feature implemented. Instead, Product2 has an
optimized image loading policy of loading images on demand during changing screen
events. From this initial scenario, we have two goals:

• bootstrap the existing products (Product1 and Product2) into a new SPL (named
SPL1-2);

• during this process, react the emerging SPL SPL2 to encompass another product,
which should be the game with a partially (hybrid) optimized image loading policy.

102

Figure 5.7: Reduction strategy for completeness proof. B-R stands for B-Refactorings.
All B-Refactorings are applied from left to right.

Figure 5.8: Semantics-based reasoning versus catalog-based reasoning.

5.5.2 SPL Refactoring

We apply program and FM refactorings for achieving those goals using our extended
definition for SPLs presented in Section 5.2.2. Although confidence in program refactor-
ings can be increased with a mechanics added by compilation and tests [53], variability
improvement is hard to ensure, and tests may not easily uncover such inconsistencies.
These problems can usually be detected on the problem space, with FMs. We use
the refactorings presented in Section 5.4.3 for ensuring correctness of FM refactorings
by analyzing their application on corresponding FMs after program refactoring steps.
We assume that the FM associated with each product is determined from the product
documentation or by code examination.

Program Refactoring

In this step, we apply program refactorings in order to ensure the behavior preservation.
In order to accomplish our first goal from Section 5.5.1, we first started applying a

103

sequence of program refactorings to Product1 with the aim of modularizing the croma
and the image loading policy features. In Figure 5.9, the + symbol in Product1 indicates
that the implementation of such features is scattered and tangled with the application
core. Accordingly, we apply a sequence of refactorings from Section 4.1.3 in order to
extract such features into aspects Clouds and Startup, respectively (since the focus of this
chapter is on feature modeling refactoring, details of applying such program refactorings
are found in Section 6.1.3). The result is SPL SPL1.

Similarly, we apply those refactorings in order to modularize the OnDemand loading
image feature of Product2. After that, we accomplish our second goal, evolving the
product into a new SPL (named SPL2) by adding a new kind of image loading policy
(Hybrid).

Finally, in order to avoid code duplication, our aim is to integrate SPL1 and SPL2,
due to their similar core. As SPL1 and SPL2 must have exactly the same core for
merging both SPLs, we apply adjustment refactorings (such as renaming) to the core of
SPL1. We can now apply our merge program Refactoring SPL 1, which was presented
in Section 5.2.2, in order to merge SPL1 and SPL2 into SPL1-2.

Feature Model Refactoring

Besides dealing with programs, we must ensure that the resulting transformations im-
prove the configurability of the SPL. For that, some configuration knowledge [45] must
be used for defining the correspondence between features and components (for instance,
classes and aspects). In the example, we adopt a convention in which features may be
tangled with core functionality or implemented as separate aspects; their optionality
can be implemented by configuration scripts used for building SPL instances. Other
configuration knowledge choices may be used likewise.

Our approach consists in generating FMs for the initial and resulting product or
SPL, investigating the use of the proposed FM refactorings for verifying the configura-
bility improvement between both models. If a sequence of refactorings can be applied,
additional confidence on the safety of the SPL refactorings is provided. The original
and resulting FMs corresponding to the refactoring applied in Product1 are shown in
Figure 5.10. For making Clouds optional, we can apply Refactoring 7 resulting into SPL
SPL1. In a later step, as we applied program refactorings to start preparing SPL1 for
an extractive refactoring, it demands no changes on the FM (a reflexive step).

In the source code for Product2, the image loading policy feature was isolated into
OnDemand aspect. As OnDemand feature is maintained mandatory, no changes are
needed in the FM. At this point in the program, we use the reactive approach for
creating SPL2, adding the alternative Hybrid aspect. The variant of Refactoring 5,
presented in Section 5.4.3, adds the Hybrid feature, which verifies this step on the FM.

The final step in the source code was an extractive refactoring merging SPL1 and
SPL2. The resulting SPL (SPL1-2) thus encompasses SPL1 and SPL2. At the FM level,
we can generate SPL1-2 (Figure 5.10), which includes the three alternative features for
image loading (Startup, OnDemand and Hybrid) and an optional feature (Clouds). With
the two intermediate FMs for SPL1 and SPL2, we can now generate a single FM, based
on the definition of extractive refactoring given in Section 5.4.3. We ensure correctness
by applying refactorings to both FMs, as shown in following statement:

104

SPL1→ SPL1-2 [by applying 2x Refactoring 5]
SPL2→ SPL1-2 [by applying Refactoring 5 and 12]

In the first branch, SPL1→ SPL1−2, the variant of Refactoring 5 was used, then its
general form was used. In the second branch, only the general form of such refactoring
was used. Our approach shows the application of FM refactorings in a real scenario.
Besides ensuring confidence on correct transformations, this approach may also help
identifying incorrect steps in a refactoring application, usually not easily detected when
inspecting or testing source code. The impossibility of applying certain refactorings
may be a consequence of such errors, more easily uncovered at the FM level. It must
be stressed that, although some synchronism between FMs and programs with code
is important, it is not the focus of this chapter. Rather than monitoring source code
refactoring, the chapter proposes a complementary transformation level: FM refactor-
ings, for aiding refactoring soundness for SPLs. More ambitious accomplishments, such
as, a completely model-driven approach to SPL refactoring, require a formal notion of
conformance between FMs and programs, which is regarded as future work.

5.6 Unidirectional Refactorings Catalog

In this section, we present the unidirectional refactorings proposed that were listed in
Table 5.1 but not explicitly defined in Section 5.4.3. In each case, we argue that the
transformation is sound by showing how configurability increases. The f and forms
variables used in Refactoring 11 denote a formula and a set of formulas, respectively.

In Refactoring 1, an alternative feature relation is subsumed by an or-feature relation.
Configurability then increases, since features B and C can both appear in a configuration
of the resulting feature model. Refactoring 4 replaces mandatory features with or-
features, which increases the configuration. New possible configurations now include
either feature B or feature C . In Refactoring 6, an or-relation is changed to optional
features. The configurability increases, since now a configuration of the resulting feature
model can lack both features B and C . Refactoring 7 turns a mandatory feature B into
a optional feature. The resulting feature model can have, in addition to the initial
configurations, a new configuration lacking feature B .

In Refactoring 8, an alternative relation is changed to optional features. The con-
figurability increases, since now a configuration of the resulting feature model can lack
both features B and C . Another possible configuration has both features. Refactor-
ings 9 and 10 are actually equivalences; we just list them separated to ease referring
to them. The configurability is maintained because B is mandatory. Refactoring 11
removes a formula from the feature model, thereby decreasing logical constraints on it,
which in turn increases its configurability. Finally, in Refactoring 12, an optional feature
B is added. As a result, the configurability of the resulting feature model increases, by
allowing a configuration having such feature.

105

Figure 5.9: Case Study Program Refactorings

106

Figure 5.10: Case Study Feature Model Refactorings

107

Refactoring 1 〈convert alternative to or〉

Refactoring 4 〈add or between mandatory〉

Refactoring 6 〈convert or to optional〉

108

Refactoring 7 〈convert mandatory to optional〉

Refactoring 8 〈convert alternative to optional〉

Refactoring 9 〈pull up node〉

109

Refactoring 10 〈push down node〉

Refactoring 11 〈remove formula〉

Refactoring 12 〈add optional node〉

Chapter 6

Case Studies

This chapter evaluates the method described in Chapter 4 in the context of industrial-
strength mobile game SPLs. As explained in Section 2.3, mobile games are mainstream
mobile applications of considerable complexity in comparison with other mobile ap-
plications and represent a highly variant domain due to portability requirements. By
describing some case studies, we identify the variabilities addressed in these SPLs, the
refacotings employed to manage them, and the resulting configurability. In particular,
the goals of the case studies are the following:

• describe the method in industrial-strength applications;

• evaluate its application, using analytical and quantitative data;

• identify possible enhancements to the method.

The remainder of this chapter is organized as follows. Sections 6.1 and 6.2 each
describe a case study, evaluating the proposed method in Chapter 4. Next, Section 6.3
presents and addresses some open issues of the method. Finally, Section 6.4 compares
the results of both case studies.

6.1 Rain of Fire

Rain of Fire (RoF) is a classic arcade-style game where the player protects a village from
different kinds of dragons with catapults. Figure 6.1 illustrates its main screen. The
game is a commercial product currently offered by service carriers in South America and
Asia. Although it is less than 5K LOC, LOC is neither a necessary nor sufficient condi-
tion for complexity. In fact, complexity in the mobile game domain arises mostly due to
variability. In general, the mobile game domain is highly variant due to a strong porta-
bility constraint: applications have to run in numerous platforms, giving rise to many
variant products [34, 5], which are under a tight development cycle, where proactive
planning is often unfeasible to achieve.

RoF was developed for 12 different devices. Although the game itself is based on a
game engine framework, the process of developing a new version of the game was based
on copying it from a previously developed version.

110

111

Figure 6.1: Platform variation of Rain of Fire.

6.1.1 Study Setting

In this case study, we evaluated the extractive and reactive steps of our method (Fig-
ure 4.1). Although the SPL that actually exists in our industrial partner encompasses 12
members, in this case study we investigated how RoF was adapted to run in 3 platforms
(P1, P2, and P3), which encompass most variability issues in this SPL. P1 relies solely
on MIDP 1.0, whereas P2 and P3 rely on MIDP 1.0 and a proprietary API. Some of the
variability issues within these products are as follows: optional images, proprietary API
for flipping images, screen sizes, and image loading policy. After applying our approach
(details shortly ahead), the resulting SPL has the feature model of Figure 6.2, and the
following instances, as described by the selection of features.

Figure 6.2: Variability within Game Product Line

P1 = {Dragon, Bonus Weapon, Levels, Optional Image, At startup, Flip, 176x208};

P2 = {Dragon, Bonus Weapon, Levels, On demand, Flip, 120x160};

P3 = {Dragon, Bonus Weapon, Levels, Optional Image, At startup, 128x128};

Although this case study has focused only on 3 instances, the feature model shows
that other configurations are also possible: the feature model has a total of 24 configu-
rations.

112

In order to evaluate our approach, we created a SPL implementation of the three
products and then compared the SPL version with the original implementation of these
products. To create and evolve the SPL, we first identified the variabilities (such as
optional images). Those variabilities were then extracted. We also describe the config-
uration knowledge impact. The changes in the feature model were described according
to the FM refactorings of Chapter 5, which also illustrates them in a simplified version
of the model (Figure 5.10).

6.1.2 Variability Identification

In order to better identify and understand some variations, we could, for instance, use
concern graphs [109]. Concern graphs localize an abstracted representation of the pro-
gram elements contributing to the implementation of a concern, making the dependen-
cies between the contributing elements explicit. Such graphs are created iteratively by
querying a model of the program, and by determining which elements (class, methods,
and fields) and relationships returned as part of the queries contribute to the imple-
mentation of the concern. The querying process starts with a seed [109], usually a class
found with a lexical tool. From this class, the remaining elements are added with tool
support. For example, the concern graph C for the optional images concern (oi) in P1

would be as follows:

Cp1,oi = (Vp1,oi ,V
∗
p1,oi ,Ep1,oi),V

∗
p1,oi = ∅

Vp1,oi =

{
Resources ,GameScreen,Resources .dragonRight ,
Resources .loadImages(),GameScreen.wakeEnemy()

}
,

Ep1,oi =

(reads ,GameScreen.wakeEnemy(),Resources .dragonRight),
(writes ,Resources .loadImages(),Resources .dragonRight),
(declares ,Resources ,Resources .dragonRight),
(declares ,Resources , loadImages()),
(declares ,GameScreen,wakeEnemy())

 ,

The set Vp1,oi describes the vertices (classes, methods, attributes) partially imple-
menting the concern. Set V ∗

p1,oi consists of vertices (classes, methods) solely dedicated
to the concern implementation. Finally, set Ep1,oi groups edges relating elements from
the previous sets.

6.1.3 Extraction

After identifying variabilities, we then moved their definition to aspects using the Extract
Resource to Aspect refactoring. In another step, we addressed method body variability
within the platforms. Accordingly, we made extensive use of the Extract Method to
Aspect refactoring. The Extract After Block and Extract Before Block refactorings were
used when the variant code appeared at the end or beginning of the method body. On
the other hand, the Extract Context refactoring was used when the variation surrounded
common code, representing a context to it. The Extract Argument Function refactoring
was used when variation appeared as an argument for a method call. Finally, we used
the Change Class Hierarchy refactoring to deal with class hierarchy variability.

113

During the evolution of the SPL to include P3, we had to deal with the load images
on demand concern. This concern was specific to this platform, as it had constrained
memory and processing power. To implement this concern, we had to define a method
for each screen that could be loaded. Before a screen was loaded, the corresponding
method was called. In contrast, in P1 and P2 implementations, the images were loaded
only once, during game start-up. In this case, there was only one method that loaded
all the images into memory. This situation illustrates the scenario in Figure 4.3.

We addressed this by applying a sequence of Extract Method refactorings in the core
to break the single method loading all images into finer-grained methods loading images
for each screen; the call of this single method was then moved from the core to P1’s and
P2’s aspects, and the calls to such smaller methods were moved to P3’s aspect by the
Extract Before Block refactoring.

Another evolution scenario took place when we realized that some commonality
existed between P1 and P2 with respect to the Flip feature (proprietary graphic API
allowing an image object to be drawn in the reverse direction, without the need for
an additional image): these two platforms are from the same vendor and share this
feature, which is not shared by P3, from another vendor. Therefore, the Flip feature is
isolated in the corresponding aspects of P1 and P2, but it would be useful to extract
this commonality into a single module. In fact, we were able to factor this out into a
single generic aspect (AspectFlip) with the Extract Aspect Commonality refactoring,
thus illustrating the scenario in Figure 4.4.

Table 6.1 reports the occurrence of each refactoring for achieving the resulting SPL.
According to this table, Extract Method to Aspect was the most frequently employed,
since variability within method body was common for extracting most features. As the
SPL evolves, we expect to employ Extract Aspect Commonality more frequently.

For the resulting the SPL, we also employed the Move Field to Aspect programming
law from Section 4.2.1. This law was used 28 times. This is consistent with the results of
Table 6.1, since we do not claim these to be complete (the argument in Section 4.2 is on
soundness). Additionally, if we had only used the programming laws themselves instead
of the refactorings (composition of the programming laws), we would have to apply
approximately twice as many programming laws. In general, the method can combine
the refactorings and the programming laws themselves. As the set of refactorings evolve
closer to completeness, the direct use of the fine-grained programming laws is expected
to decrease and the proportional use of the coarse-grained refactorings is expected to
increase.

Table 6.1: Occurrence of each refactoring
Refactoring Name Occurrence

1 Extract Resource to Aspect - after 5
2 Extract Method to Aspect 41
3 Extract Context 1
4 Extract Before Block 2
5 Extract After Block 10
6 Extract Argument Function 1
7 Change Class Hierarchy 1
8 Extract Aspect Commonality 1

114

6.1.4 Configuration Knowledge

The resulting configuration knowledge maps sets of features to implementation artifacts:

{Levels, Dragon, Bonus Weapon} -> CoreClasses

{Flip} -> AspectFlip

{176x208, Optional Image, At startup} -> AspectP1

{120x160, On demand} -> AspectP2

{128x128, Optional Image, At startup} -> AspectP3

where CoreClasses is a set of core assets thatt comprises classes common to all products;
AspectFlip is a core asset aspect dealing with the Flip feature; AspectP1, AspectP2,
and AspectP3 deal partially with specific products features of products P1, P2, and
P3, respectively. The arrow notation means that the set of features to its left, which
are from the feature model represented in Figure 6.2, map to the aspects or classes to
its right. According to this configuration knowledge and to the configuration of each
product presented previously, the SPL instances are synthesized by

P1 = CoreClasses • {AspectP1, AspectFlip};

P2 = CoreClasses • {AspectP2, AspectFlip};

P3 = CoreClasses • {AspectP3};

where • denotes composition. According to this derivation of the SPL members, the
SPL core assets consist of the following: 1) eighteen classes in CoreClasses ; 2) one
core aspect (AspectFlip). P1 and P2 each comprise CoreClasses and two product-
specific aspects; P3 consists of CoreClasses and one product-specific aspect. Indeed,
the configuration knowledge is coarse-grained: there are few reusable aspects across
different SPL instances. In fact, AspectFlip is the only reusable aspect. The case
study in Section 6.2 identifies more reusable aspects and configurations.

6.1.5 Analysis

After creation and evolution of the SPL, we analyzed code metrics. Table 6.2 shows
the number of Lines of Code (LOC) for each product in the original implementation, in
contrast with the SPL implementation. We calculate the LOC of a SPL instance as the
sum of the core’s LOC and the LOC of all aspects necessary to instantiate this specific
product.

According to Table 6.2, LOC is slightly higher when comparing each SPL instance
with the corresponding product in the original implementation. This is caused by the
extraction of methods and aspects, which increase code size due to new declarations.
On the other hand, there is a 48% reduction in the total LOC of the SPL implemen-
tation, when compared to the sum of LOCs of the single original versions. This was
possible because of the core assets, which represent 57% of the SPL LOC. Although
there is considerable commonality between the three original products source code, it
is worth to consider it as different code, because it is repeated for each product and
tightly coupled with it. This code repetition increases the effort of program reasoning

115

Table 6.2: LOC in original and SPL implementations

Original Implementation SPL Implementation
P1 P2 P3 Total Core assets P1 P2 P3 Total

Core classes Core aspects
2965 2968 3143 9076 2477 72 3042 3047 3210 4405

Table 6.3: LOC of aspects in the SPL.

Aspect LOC
AspectP1 421
AspectP2 426
AspectP3 661
AspectFlip 72

and maintenance. A reduction due to the avoidance of code repetition could also be
obtained using a different product line approach or some modularization techniques, like
componentization. Another factor that contributes to the reduction in SPL LOC is the
existence of reusable aspects.

Table 6.3 shows the sizes of the SPL aspects. The only reusable aspect is considerably
smaller than the product-specific ones. The small size of this aspect is convenient for it
to be reusable across different SPL instances. With a more fine-grained configuration
knowledge, we expect that there would be a higher number of reusable aspects and the
relative size of the product-specific ones would decrease. Eventually, it could happen
that, for some SPL instances, no product-specific aspect would be necessary, in which
case such instance would be derived solely by reusing different combinations of core
aspects.

Analyzing Table 6.3 in conjunction with the configuration knowledge presented pre-
viously, we can infer that the relative size of aspect code in the SPL members ranges
from 16% for P1 and P2 to 20% for P3.

Another analyzed metric was the packaged application (jar files) sizes of the origi-
nal and of SPL implementations (Table 6.4). Jar files, that are released to final users,
include not only the bytecode files, but also every resource necessary to execute the
application, such as images and sound files In the case study products, additional re-
sources represents, on average, 45% of the total jar file size. To measure the impact of
our approach on bytecode size, we are considering, in Table 6.2, the jar files containing
only the class files, excluding other resources. The jar file size is a very important factor
in games for mobile devices, due to memory constraints.

We can notice a jar size increase from original versions to SPL instances. The reason
for this is the overhead generated by the AspectJ weaver on the bytecode files. We also
noticed that very general pointcuts intercepting many join points can lead to greater
increases in bytecode file sizes. This considerably influenced us in the definition and use

116

Table 6.4: Jar size (kbytes) in original and SPL implementations

Original Implementation SPL Implementation
size reduced size size reduced size

P1 32,4 29,0 67,5 38,4
P2 33,2 28,8 69,1 33,3
P3 56,1 52,4 93,5 56,7

Total 98,1 86,6 206,6 104,8

of the refactorings. Moreover, we can gain a significant reduction in the jar size when
using a bytecode optimization tool [128]. The reduced size of each original version and
SPL instance are shown in Table 6.4.

Although in this case study the SPL implementation offers to the user of our approach
the same functionality but with a higher application size, our approach is useful mostly
because of the benefits that the SPL approach brings to the development process: reuse
and maintenance are improved, code replication is minimized, and derivation of new
products is faster and less costly. Further, the increase on bytecode size can be minimized
by further advances in optimization tools. Our initial results show that, in cases where
pointcuts matches few join points, by inlining the body of the advice in the base code,
we can already reduce bycode size.

6.2 Best Lap

Best Lap is a casual race game where the player tries to achieve the best time in one
lap and qualify for the pole position. In order to do that, the player has to succeed at
several time trial mini games. The better the performance at the games, the better the
time for the lap. Player score is dependent on lap time and bonuses acquired during
the games. The best scores are saved in high scores tables. Optionally, user socres are
posted in a server and ranked against each other. Figure 6.3 illustrates its main screen.
The game is a commercial product developed by Meantime Mobile Creations/CESAR
(which granted access to such game under collaborative research projects) and currently
offered by service carriers in South America, Europe, and Asia.

The game is deployed in 65 devices. These devices are logically grouped into families,
where each family represents a set of compatible devices running the same game code.
The game is developed as a SPL with a number of 16 instances, where each instance
corresponds to such a family of devices. Best Lap has approximately 15 KLOC and
its variability is implemented using condition compilation in J2ME with the Antenna
preprocessor. The decision model is implemented by Ant scripts reading property files
specifying values for the conditional compilation tags and then using those values as
arguments for calling the Antenna preprocessor to generate the instances. These tags
are related to variability issues such as screen sizes, and correspond to leaf features of
the game feature model, whose diagram is shown in Figure 6.4. One example of instance
of this SPL are configured as follows:

117

Figure 6.3: Best lap’s main screen

MOT1 = {device_screen_128x117, device_keys_motorola, device_graphics_canvas_midp2,

device_graphics_transform_midp2, game_sprite_api_midp2, device_sound_play_thread,

device_sound_api_mmapi, device_sound_ctype_midi, device_sound_policy_preallocate,

general_debug_mode, feature_arena_enabled, known_issue_sound_prefetch,

known_issue_set_media_time, sku_id_mot1}

In addition to the diagram, there is a also a constraint in the feature model: feature
Arena affects feature Screen. The former provides support for posting user results after
the game ends and also for ranking users accordingly. Therefore, the selection of such
feature affects the latter by providing coordinates and sizes of fields in the specific device
screen for handling such posting and ranking information. This constraint in the feature
model also reflects at the configuration knowledge level, as discussed in Section 6.2.4.

6.2.1 Study Setting

In this case study, we evaluate the migration step of our method (Figure 4.1). Accord-
ingly, we migrate the SPL implementation of Best Lap from conditional compilation to
aspects and then compare both versions. In this study, since the we only migrated the
SPL implementation, the FM remained the same. Therefore, we the Refactor FM
step of our method is not performed here. The remaining steps were carried out and
are described and analyzed in the following sections.

6.2.2 Variability Identification

In order to migrate the implementation technique, we first identified the variabilities.
Since we are in the migration context, these variabilities were already partially exposed
in the original variability implementation mechanism, in particular by pre-compilation
tags from the Antenna preprocessor. In order to help locating these tags in the imple-
mentation, we used a tool provided by our industrial partner. Such tool is an Eclipse
plug-in extending the Eclipse search view feature to locate preprocessing tags in the
code. Figure 6.5 illustrates its user interface:

The results of using this tool are summarized in Tables 6.5 and 6.6. Table 6.5 lists
the occurrences of each of the 10 most frequently employed preprocessing tags (out of a
total of 54 different tags). The number of classes in which each tag occurs illustrates the
scattering of that variation (Best lap has 14 classes in its implementation). For example,

118

feature arena enabled (representing Arena feature) occurs in 7 classes, with a total
of 26 occurrences.

Table 6.5: Occurrence of the top 10 most frequently used preprocessing tags in Best
Lap

Tag Total Occurrence Classes involved
device screen 128x128 33 7
device screen 128x149 32 6
device screen 128x117 32 7
device screen 128x160 32 7
device screen 132x176 32 7
feature arena enabled 26 7
device sound api nokia 12 2
device graphics canvas midp2 8 2
device graphics canvas siemens 7 2
known issue no softkeys 6 2

Additionally, by examining a specific class, we notice that it tangles different kind
of variations, as Table 6.6 shows. This is similar to metrics like concern diffusion over
LOC [56], but now in the SPL context for variability implemented with conditional
compilation.

Table 6.6: Occurrence of preprocessing tags in Best Lap classes
Class Number of tags in class

GameScreen 29
MainScreen 3
GameMenu 4

LevelManager 1
MainCanvas 4

MidletController 1
NetworkFacade 3

Resources 9
SoundEffects 8

Screen 2

Locating these tags then drove the migration process, as described in the following
subsection.

6.2.3 Migration

Once the variabilities were identified, we applied the migration patterns from Sec-
tion 4.1.4 in order to implement such variabilities as aspect constructs. From the
variability identification step performed previously, we note that the Arena feature is
considerably crosscutting. In order to extract it, we performed suitable strategies from
Section 4.1.4.

For example, since feature Arena uses network service to post players scores and
this variation point is present in the conditional compilation version at the end of a
method for computing game score, the strategy used was Variability in method call. Also,

119

before creating the game screen, some initialization settings in the network component is
necessary, using also a variant of the same strategy, handling variation at the beginning.
The aspect then interacts with the network service.

When loading resources according to the screen mode, feature arena implies the
existence of variation points within methods for starting the loading process of differ-
ent images for the menu, thus Variability in method call was also used. Additionally,
we applied the Variability in method body strategy to move methods using those con-
stants/fields to ArenaAspect. Then we applied the Variability in constant declaration
to move Arena related constants from classes such as Resources to the aspect imple-
menting the Arena feature (ArenaAspect).

Lastly, we also note that in the conditional compilation version, variation points
relating to feature Arena are frequently nested with variation points for screen sizes.
This means that Arena interferes with the screens features, both at the implementa-
tion level and at the configuration knowledge level, which is described in Section 6.2.4.
Accordingly, we applied strategy Feature dependency from Section 4.1.4.

Table 6.7 reports the occurrence of the migration strategies applied. The strate-
gies Variability in constant declaration and Field extraction together account for the
high number of occurrences, since the variation points within the conditional compila-
tion version were mostly static. The Feature dependency strategy was also extensively
applied, mainly in the context where the Arena feature was the outer feature of an in-
ternal dependent feature, which could be either screen features, as describe previously,
or product-specific features. The Super class variation strategy was used in the context
of coarser-grained variability: the game had to adhere to a device-specific behavior by
having its canvas extend vendor-specific API or by declaring that a class implements a
vendor specific-API interface (for example to signal, the sound of the game should be
played in a different thread). The remaining strategies were used for handling variability
within methods.

Table 6.7: Occurrence of migration strategies
Migration Strategy Name Occurrence

1 Variability in constant declaration 9
2 Field extraction 3
3 Super class variation 4
4 Variability in method call 4
5 If condition variation 4
6 Variability in method body 5
7 Feature dependency 6

As discussed in Chapter 4, the migration strategies are based on the refactorings
and thus ultimately consist of sequential application of possibly different programming
laws. Table 6.8 reports the overall usage of programming laws after complete migration
of Best Lap. According to this table, law Move Field to Aspect was the most frequently
used, since the variation points within the conditional compilation version were not
only static, but also considerably fine-grained. In fact, the occurrence of this law was
due to the use of the Variability in constant declaration and Field extraction strategies.
The high number of the Add new aspect law was also due to the fine granularity of
the variations. Section 6.2.4 discusses the impact of such granularity. In general, the

120

SPL developer performing the migration should rely on the strategies rather than on
the programming laws directly, since the strategies are high-level guide for applying the
chunks of low-level programming laws. We also note that some variabilities could not be
migrated with the strategies and programming laws. These are discussed in Section 6.3.

Table 6.8: Occurrence of programming laws in each refactoring
Law Name Occurrence

1 Make aspect privileged 1
2 Add before execution 2
3 Add before call 1
4 Add after-execution 6
7 Add around-execution 1
18 Move Field to Aspect 193
19 Move method to aspect 18
22 Add new aspect 68
23 After-call 2
22 Around call 1
22 Move implements declaration 16
- Non-defined strategy/refactoring/law 10

6.2.4 Configuration Knowledge

With the migration process, the variability implementation mechanism was changed.
Although the feature model itself did not change, we had to update the resulting con-
figuration knowledge, so that features are then related to aspects instead of compilation
tags. Table 6.9 shows the resulting configuration knowledge:

In Table 6.9, the left column shows features and the right column shows aspects.
Features on the left column are grouped into clusters, where each cluster denotes a set
of more related features, by preceding each feature name with its path from the root of
feature model. The aspects are also shown with their fully qualified names.

Some mappings are 1–1. For example, all features in clusters device/keys, de-
vice/sound/policy, device/sound/content, device/sound/api, device/sound/thread are each
mapped to only one aspect and those aspects are mapped to only those features. This
reflects the low granularity of these features.

Differently, mappings in clusters device/graphics/canvas and device/screen are 1–n,
thus reflecting the coarse-grained nature of corresponding features. Additionally, for
the latter cluster, aspects such as LowEndScreen and HighEndScreen are reused across
mappings of multiple features. This occurs because in the original implementation with
conditional compilation some variation points were related not to only one preprocessing
tag, but rather to a disjunction for tags. Such disjunction actually reflected a feature
cluster and thus the variation point should occur for any feature in the cluster. Ac-
cordingly, during the migration process, such variability was extracted to more general
aspects, being reused across cluster features.

For features in the knownIssues cluster and for general/multilanguage, features are
mapped to a single aspect; however, if the feature is not selected in the SPL instance,
then another aspect should be included in the instance. This shows that mapping

121

Table 6.9: SPL configuration knowledge
Feature Aspect
device/graphics/canvas/Midp2Canvas device.graphics.canvas.Midp2CanvasAspect.aj

device.graphics.canvas.PaintCanvasGraphics.aj
device.graphics.canvas.Midp2 SiemensCanvasAspect

device/graphics/canvas/NokiaCanvas device.graphics.canvas.NokiaCanvasAspect.aj
device.graphics.canvas.RepaintCanvasAspect.aj

device/graphics/canvas/SiemensCanvas device.graphics.canvas.SiemensCanvasAspect.aj
device.graphics.canvas.PaintCanvasGraphics.aj

device/keys/KeysNokiaSonyEricsson device.keys.DeviceKeysNokiaSonyEricsson.aj
device/keys/KeysMotorola device.keys.DeviceKeysMotorola.aj
device/keys/KeysSiemens device.keys.DeviceKeysSiemens.aj

device/screen/Screen128x117 device.screen.Screen128x117.aj
Screen128x117 128x160 128x149 128x128
device.screen.LowEndScreen

device/screen/Screen128x128 device.screen.Screen128x128.aj
Screen128x117 128x160 128x149 128x128
device.screen.LowEndScreen

device/screen/Screen128x149 device.screen.Screen128x149.aj
Screen128x117 128x160 128x149 128x128
device.screen.LowEndScreen

device/screen/Screen128x160 device.screen.Screen128x160.aj
Screen128x117 128x160 128x149 128x128
device.screen.LowEndScreen

device/screen/Screen132x176 device.screen.Screen132x176.aj
Screen128x117 128x160 128x149 128x128
device.screen.LowEndScreen

device/screen/Screen176x205 device.screen.Screen176x205.aj
Screen176x205 176x208
device.screen.HighEndScreen

device/screen/Screen176x208 device.screen.Screen176x208.aj
Screen176x205 176x208
device.screen.HighEndScreen

device/screen/Screen176x220 device.screen.Screen176x220.aj
device.screen.HighEndScreen

device/sound/policy/SoundOnDemand device.sound.policy.SoundOnDemand.aj
device/sound/policy/SoundPreallocation device.sound.policy.SoundPreallocation.aj

device/sound/content/TypeMID device.sound.content.TypeMID.aj
device/sound/content/TypeMIDI device.sound.content.TypeMIDI.aj
device/sound/content/TypeXMID device.sound.content.TypeXMID.aj
device/sound/content/TypeXMIDI device.sound.content.TypeXMIDI.aj

122

device/sound/api/PlayerMMAPI device.sound.api.SoundPlayerMMAPI.aj
device/sound/api/PlayerNokia device.sound.api.SoundPlayerNokia.aj
device/sound/api/PlayerSiemens device.sound.api.SoundPlayerSiemens.aj
device/sound/api/PlayerSamsung device.sound.api.SoundPlayerSamsung.aj

device/sound/thread/ThreadedSound device.sound.thread.ThreadedSoundAspect.aj
device/sound/thread/BlockingSound device.sound.thread.BlockingSoundAspect.aj

Multiplayer/arena feature.arena.ArenaAspect.aj
ArenaScreenXY

knownIssues/Garbage collector knownIssues.MemoryHasGC.aj
[if not selected] knownIssues.MemoryNoGC.aj

knownIssues/Softkey knownIssues.HasSoftkeyAspect.aj
[if not selected] knownIssues.NoSoftkeyAspect.aj

general/multilanguage general.multilanguage.MultiLanguageEnabled.aj
[if not selected] general.multilanguage.MultiLanguageDisabled.aj
general/debug general.debug.DebugMode.aj

in this cluster is not compositional, which arises due to the intimate dependency be-
tween the game core and aspects implementing extension behavior. A compositional
mapping would be one in which, for example, if feature knownIssues/softkey were not
selected, then aspect HasSoftKeyAspect would not be selected and no other aspect –like
NoSoftkeyAspect– would be included in the instance for that feature. Principles such
as XPIs [120, 64] and EJPs [84] can control lack of compositionality, but in general this
might constrain functional approaches such for feature composition, such as stepwise
refinement [23].

Feature Arena is mapped to a pair of aspects. The second aspect depends on the spe-
cific feature selected under the device/screen cluster. We noted this by ArenaScreenXY
in the configuration knowledge, since for each screen dimension XY, there is one such
aspect, according to migration strategy Feature dependency. This reflects feature de-
pendency/constraint between these features, which was already present in the feature
model, as mentioned in the beginning of Section 6.2. Tools like pure::variants [121] can
express dependencies both at the feature model level and at the configuration knowledge.

Each of the 16 Best Lap SPL instances are synthesized according to this configuration
knowledge and to the feature configuration of each product presented previously in
Section 6.2. For example, the MOT1 instance, whose feature configuration was presented
previously, can be synthesized as follows:

MOT1 = CoreClassesCC •

{SoundPreallocation, ThreadedSoundAspect, DeviceKeysMotorola, LoopVariablesCommonInitialization,

SoundPlayerMMAPI, StopPrefetchedSound, ContentTypeMID, Midp2CanvasAspect,

Midp2_SiemensCanvasAspect, Screen128X117, LowEndScreen, Screen128x117_128x160_128x149_128x128_notS40,

ArenaAspect, ArenaScreen128x117, BuildIdMOT1, HasSoftkeyAspect, DebugMode, MultiLanguageDisabled,

NoLowHeap, MemoryHasGC}

123

Table 6.10: Reuse of aspects in BestLap SPL
aspects # instances % of SPL code

Product specific aspects 29 1 11
Core aspects 17 [10,16] 6

20 [2,9] 15
Total 66 [1,16] 32

where • denotes composition. CoreClassesCC denotes the core of the SPL consisting
of 14 classes and still some variability with conditional compilation. CoreClassesCC was
not mentioned in Table 6.9, since it was used for all mandatory features. Also, such core
still contains some conditional compilation tags as remarked in Section 6.3 , since some
variability could not be extracted with the the migration strategies. The other elements
of MOT1 are aspects necessary for instantiating this particular instance.

Each Best Lap SPL instance consists of CoreClassesCC and 18 aspects on average.
The instances having fewer aspects are SAM2 and S40, each with 13 aspects and lacking
aspects for features such as Arena and Multi-language support. In contrast, the instances
having higher number of aspects are SIEM4 and MOT3, each with 21 aspects, including
those supporting those features.

Additionally, by analyzing the configuration equations for each of the 16 SPL in-
stances, we can assess the reuse degree of aspects across the SPL. Table 6.10 breaks up
the number of aspects according to intervals representing the number of instances in
which such aspects are used. Accordingly, 26% of the aspects are used in 10 or more
instances, and 30% are used in 2 to 9 instances. However, 44% of them are used in spe-
cific instances. Nevertheless, these device-specific aspects represent only 11% of the SPL
LOC. Further, the SPL core contains not only CoreClassesCC– as already mentioned
previously–, but also reusable aspects, i.e., aspects that are used in at least 2 instances
(core aspects). Therefore, according to Table 6.10, the core aspects consists of 56% of
the total aspects and 21% of the SPL LOC. This shows that the fine granularity of the
mapping enabled tangible reuse of aspects across SPL instances.

6.2.5 Analysis

After the migration process, we also analyzed code metrics. Table 6.11 shows the LOC
for each SPL in the internal columns and the LOC for each corresponding build in the
outer columns. As we did for RoF, we calculate the LOC of a SPL instance as the
sum of the core’s LOC and the LOC of all aspects necessary to instantiate this specific
product.

According to Table 6.11, LOC is slightly higher in the AO version than in the CC
(Conditional Compilation) version. The same holds for each corresponding SPL in-
stance. This is caused by the extraction of methods and aspects for each variation
point, thereby increasing code size due to new declarations. Nevertheless, the AO ver-
sion outperforms the CC version in terms of higher reusability, locality, adaptability,
plugability, and independent development.

Indeed, in the CC version, variability is implemented by unnamed context-dependent
code snippets, whereas in the AO version, variability is implemented by product-specific
aspects as well as core aspects. Some core aspects are reused in some instances and not in

124

others. On the other hand, with CC, even if a code snippet is used in another instance, it
has to be repeated in verbatim, which complicates adaptability and maintenance. Even
product-specific aspects could eventually become core aspects during SPL evolution.
Further, each aspect handles locally a specific concern, which as previously scattered and
tangled in the CC version, as described in Section 6.2.2. As a consequence, adaptability
is also improved. Finally, the fine granularity of the configuration knowledge involving
the aspects allows enhanced plugability in instantiating the SPL.

Table 6.11: Sizes of Best Lap SPL. Exterior columns show sizes for instances; interior
columns show sizes of the SPL for both the conditional compilation version and the AO
version.

LOC
instance OO SPL CC SPL OA AO
mot1 10102 10227

mot2 10102 10279

mot3 10104 10232

s40m2 9974 10182

S40m2v3 10000 10189

s40 9894 10103

s60m1 9965 10254

s60m2 9974 10263

sam1 8781 14516 14848 8930

sam2 8700 8827

se02 9949 10174

se03 10009 10147

se04 10001 10186

siem02 9937 10169

siem3 9924 10229

siem4 9925 10235

Table 6.12 shows the application sizes collected for both SPL implementations. We
can notice a jar size increase from the CC version to the AO version. This occurs both
in the optimized versions (14% on average) and in the non-optimized versions (64%
on average). As in the RoF case, the reason for this is the overhead generated by the
AspectJ weaver on the bytecode files. Moreover, we can gain a significant reduction in
the jar size when using a bytecode optimization tool [128].

125

Table 6.12: Application (jar) Sizes of Best Lap SPL
CC SPL AO SPL

optimized size size optimized size size
MOT1 71.5 80.7 82.6 130
MOT2 83.6 92.8 94.7 142
MOT3 71.5 80.7 82.6 130

S40 64.1 73.5 74.7 121
S40M2 74.6 80.8 82.1 129

S40M2V3 71.1 80.3 82.5 130
S60M1 83.9 93.3 95.1 143
S60M2 82.8 91.9 94 141
SAM1 65.3 73.4 72.7 110
SAM2 78.9 87 84.5 120
SE02 82.7 91.8 92.7 138
SE03 71.2 80.4 81.7 128
SE04 71.1 80.3 82.2 129

SIEM02 80.3 80.3 83 129
SIEM03 71.8 81 83.1 130
SIEM04 71.1 80.2 83.1 131

6.3 Open Issues and Possible Extensions

In the Best Lap case study, there were some variations for which we could not define
a migration strategy using AspectJ. In this section, we address those by showing how
AspectJ’s current implementation does not support them. In some cases, we provide
alternative solution using other approaches; in others, we present candidate extensions
to the AspectJ language.

6.3.1 Import Variation

In the performed case study, there are variations between device families that use dif-
ferent APIs. These APIs define types with the same name and the same interfaces to
facilitate the porting task. However, those types are defined in different name spaces,
since each API has its own package name. For instance, the following piece of code
depicts an example of such variation. The code originally written with conditional com-
pilation tags imports a Sprite type from javax.microedition.lcdui.game package
or from com.meantime.j2me.util.game depending on the MIDP version it uses. The
latter is used when generating a release to device families that use MIDP 2.0, and the
former otherwise.

//#ifdef game_sprite_api_midp2
//# import javax.microedition.lcdui.game.Sprite;
//#elif
//# import com.meantime.j2me.util.game.Sprite;
//#endif
...

Since the AspectJ language in its current version (1.5) does not handle variability
at the import clauses granularity, there is not a solution to migrate this conditional

126

compilation code to AspectJ code. One alternative for such kind of variations would be
extending AspectJ with inter-type declarations that insert an import clause in a type.
Another possibility would be using a transformation system [98] that uses generative
techniques allowing to control such kind of elements in the source code.

This concrete example can be generalized to variations that demand different imports
clauses, regardless of the types’ name. The form of such problem is presented in the
following piece of code.

...
//#if TAG_1
//# import I_1;
//#elif TAG2
//# import I_2;
...
//#elif TAG_n

import I_n;
//#endif
...

where TAG 1, TAG 2, and TAG n are conditional compilation tags that define variation
code and I 1, I 2, and I n are the imports expressions.

6.3.2 Superclass Constructor Call

Another example of conditional compilation code that could not be migrated to AspectJ
is a call to a superclass constructor. In this example, two variants demand calling the
superclass constructor with the parameter false if the device uses MIDP 2.0 or if it is
a Siemens device; otherwise, no explicit super call is needed, thus implying an implicit
to the empty superclass constructor.

...
public MainCanvas() {

//#if device_graphics_canvas_midp2 ||
//# device_graphics_canvas_siemens
//# super(false);
//#endif

...
}

...

AspectJ does not support such migration since an advice cannot call a constructor
using neither super nor this. In fact, it is possible to write code that prevents the
superclass constructor to execute, but not a code that executes one constructor instead
of another.

A possible solution would be extending AspectJ to allow writing an advice that
executes first in a constructor call and can call the superclass constructor or another
constructor in the same class, or using the transformation system mentioned before to
add such constructor call.

127

This issue can be generalized to any variation that demands a different superclass
constructor call:

...
CONSTRUCTOR(PARS) {

//#if TAG
//# super(ARGS);
//#endif

...
}

or a change in the inline calls of class constructors.

...
CONSTRUCTOR(PARS) {

//#if TAG
//# this(ARGS);
//#endif

...
}

where PARS is the constructor parameter list, which can be empty, and ARGS is the
argument list, possible empty, of the class or superclass constructor call.

6.3.3 Adding an else-if Block

Another migration issue occurs when a variation demands the insertion of new else-if

blocks in a conditional statement. This case is common with feature variations that add
new screens to the game. The code that paints the current screen must check the type
of the current screen in a long if-else-if structure; therefore, new screen type checks
are added as else-if’s to the end of this structure.

...
if (this.screenMode ==

Resources.MAIN_SCREEN_MODE_SPLASH) {
//code

} else if (this.screenMode ==
Resources.MAIN_SCREEN_MODE_LOGO) {

//code
}

//#ifdef feature_arena_enabled
//# else if (this.screenMode ==
//# Resources.MAIN_SCREEN_MODE_ARENA_WELCOME) {
//# //code
//# } else if (this.screenMode ==
//# Resources.MAIN_SCREEN_MODE_ARENA_LOGIN) {
//# //code
//# }
//#endif

128

There is no construction in AspectJ that deals with conditional statements or any
similar that would address this issue. The alternative would be again using the transfor-
mation system to generate the code to be added. An AspectJ extension that intercepts
conditional statements does not seam very useful, since the conditional statements are
not named, which leads to ambiguity when a method has more than one conditional
statement.

This issue can be generalized by the following form:

...
if(EXP_1) {

// code
} else if (EXP_2) {

// code
}
...

//#ifdef TAG
else if(EXP_n) {

// variation
}

//#endif

where EXP 1, EXP 2, and EXP n are boolean expressions.

6.4 Case Studies Synthesis

After performing both case studies, we compare their results. The RoF case study as-
sessed the extractive/reactive approach of our method, whereas the Best Lap case study
assessed the migration strategies of our approach. The latter game was approximately
three times bigger in LOC than the first game and also encompassed significantly more
variability. Lastly, 3 instances were handled in the first case, whereas 16 were handled
in the latter case.

Variability in RoF was identified using concern graphs, whereas in Best Lap we relied
on identifying existing preprocessing tags. In both case, we relied on tool support, which
partially automated the task. Manual intervention was necessary in the first case for
setting the seed and evaluating proposed edges in the graph, since the tool actually
provides an approximation of the actual graphs (due to dynamic binding). In the latter
case, the Eclipse-plugin used allowed fast identification of the preprocessing tags.

During extraction in the RoF case, refactoring and programming laws were employed
to extract/react variability from the code guided by the identified concern graphs. In
Best Lap, migration strategies were used to migrate variability from identified occur-
rences of preprocessing tags. Refactorings and migration strategies play a similar role, as
already mentioned in Section 4.1.4: both provide a higher-level guide for either extrac-
tion or migration. Nevertheless, direct use of the programming laws may be necessary.
In Best Lap, some variabilities could not be migrated, as discussed in Section 6.3; nev-
ertheless, some extensions to AspectJ other mechanisms have been proposed to handle
them.

129

The configuration knowledge in RoF is coarse-grained and relates sets of features
to classes and aspects. There is only one reusable aspect and this represents a reduce
fraction of the SPL LOC. In contrast, The configuration knowledge in Best Lap is fine-
grained, relating each aspect to one aspect and to a set of aspects. This fine granularity
is associated with a significant number of reusable aspects, and these compose a tan-
gible amount of SPL LOC. Additionally, the configuration knowledge in Best Lap has
constraints and some non-compositional mappings.

Regarding LOC sizes, in RoF, considerable reuse was achieved, which as expected
since a SPL was extracted from existing applications. In Best Lap, the LOC of each SPL
implementation is approximately the same, but the AO implementation has improved
reusability, locality, adaptability, plugability, and independent development. Additionally,
in both cases, increase on Jar size was noticed, but that has not prevented installation
of the games in the phones and their proper functioning. We are currently studying how
optimization techniques can further minimize this potential issue.

130

Figure 6.4: Variability within Best Lap

131

Figure 6.5: Plug-in for identifying variability in the conditional compilation SPL.

Chapter 7

Conclusion

Software Product Line is a promising process framework for developing a set of products
scoped within a market segment and based on common artifacts. Potential benefits
are large scale reuse and significant boost in productivity. An incurred key challenge,
however, is handling adoption strategies, whereby an organization decides to start the
SPL from scratch, bootstrap existing products into a SPL, or evolve an existing SPL.
Our research brings contributions in this context.

First, we reviewed existing SPL processes and adoption strategies and identified that
the extractive and reactive adoption strategies, which are very useful in practice, lack
suitable support at the implementation and at the feature model level. In either case,
variability management is a central issue. Accordingly, we presented an original state-of-
the-art on the implementation of software product line variability. We set a comparison
framework based on domain analysis of the solution space and then evaluated a number
of techniques for implementing product line variability according to this framework.
We also compared these against each other, assessing their relative advantages and
drawbacks. Some of these techniques are already in widespread use in industry, whereas
other are still more academic.

Next, we presented an original method for creating and evolving product lines. Con-
trary to the proactive adoption strategy, our method relies on a combination of the
extractive and the reactive approaches. Our method first bootstraps the SPL and then
evolves it with a reactive approach. Initially, there may be one or more independent
products, which are refactored in order to expose variations to bootstrap the SPL. Next,
the SPL scope is extended to encompass another product: the SPL reacts to accom-
modate the new variant. During this step, refactorings are performed to maintain the
existing product, and a SPL extension is used to add a new variant. The SPL may
react to further extension or refactoring. Alternatively, there may be an existing SPL
implemented with a variability mechanism from which we may want to migrate. During
such activities, the feature model as well as the configuration knowledge evolve and need
to be handled.

The method is systematic because it relies on a collection of provided refactorings
at both the code level and at the feature model level. Such refactorings are described in
terms of templates, which are a concise and declarative way to specify program trans-
formations. In addition, refactoring preconditions (a frequently subtle issue) are more
clearly organized and not tangled with the transformation itself. Furthermore, the refac-

132

133

torings can be systematically derived from more elementary and simpler programming
laws or feature model transformation laws. These laws are appropriate because they
are considerably simpler than most refactorings, involving only localized changes, with
each one focusing on a specific language construct. Therefore, they are easier to reason
about than the refactorings, increasing correctness confidence in such extractive trans-
formations. This is specially relevant because it reduces the burden on testing, which is
extremely expensive in the SPL scenario.

Our program refactorings rely on AOP to modularize crosscutting concerns, which
often occur in SPLs. Furthermore, in order to perform extractive and reactive tasks at
the feature model, we extended the traditional concept of refactoring to encompass not
only code, but also feature model transformations. Such transformations should either
preserve or increase variability, which can be checked with the catalogs of corresponding
transformations we provided.

We evaluated our method in existing industrial-strength mobile games, which are
highly variant, a key issue in SPLs. The program refactorings were evaluated in two
case studies, whereas the feature model transformations were evaluated in one case
study. The evaluation shows that, in the extractive adoption strategy, we can benefit
from extensive code reuse and that, in the reactive scenario, we can evolve the SPL
to encompass other products while still maintaining code reliability. The method also
provided useful in migrating a SPL implemented with one variability mechanism to
another variability mechanism, which resulted in improvement of reusability, locality,
adaptability, plugability, and independent development. It also shows that the sequence
of applied refactorings must be strategically chosen. Although increase on binary appli-
cation size was noticed, that has not prevented installation of the games in the phones
and their proper functioning. Further, optimization techniques can reduce this potential
issue.

Although the evaluation is in the mobile game domain, we argue that the method
and the issues addressed here are valid for mobile applications in general, of which
mobile games are representative. We also suspect that other highly variant domains
could benefit from our method.

One limitation of our method is that, since it relies on AOP, it does not handle all
variability issues. For example, it does not handle very fine-grained variability, which
is better addressed by conditional compilation. Nevertheless, the crosscutting variabil-
ity addressed by AOP is quite representative from the SPL approach. Additionally, in
the cases in which variability issues cannot be addressed by AOP, we could rely on al-
ternative techniques surveyed in our comparative analysis of variability implementation
mechanisms. Furthermore, we also considered how to enhance AOP to handle additional
variability issues.

Another limitation is that AOP languages still lack more semantic pointcut lan-
guages. Indeed, these are too syntactic and thus bring some complexity to our refac-
torings: as they are used to evolve the SPL, previously existing aspects may have to be
adapted. Although this is an undesirable side effect, there is tool support from current
IDEs that alleviates this problem, by showing the aspects affecting the SPL core.

Lastly, in order to apply our approach in constrained-resources domains, like the
mobile game domain, we need to provide more optimized implementations for AOP
weaving, since current implementations have a code bloat issue for some expressive

134

pointcuts.
In addition to the benefits of the method outlined above, which are the core con-

tributions of this work, we have also designed and implemented a prototype of a tool
for supporting variability management in the SPL context [14]. Currently, the tool
aims at extracting variations from existing products, by isolating such variations into
aspects, which in turn customizes the incrementally emerging SPL core. The tool is
an Eclipse plug-in and currently implements a subset of the refactorings discussed in
Chapter 4. The prototype is being extended in the context of research projects with
which we collaborate.

7.1 Future Work

Our method relies on the existence of a configuration knowledge mechanism. Although
such mechanism is not the focus of our work, we still illustrated how it can be used in
the case studies, where we identified some important issues that need to be considered
further in such mechanism. Issues include proper handling of feature interaction and
lack of compositionality. Additionally, such mechanism, as a tracing mechanism, should
also support explicit traceability among variations points of feature models and variation
points of implementation artifacts or variation points of whatever artifacts whose level
of abstraction is in between those two. This is important for enabling model-driven
development of SPLs and is, in fact, one of the goals of ongoing research [1].

In particular, establishing the traceability of variability between tests and other SPL
artifacts is of paramount importance. Indeed, managing variability in test artifacts in
the SPL context is very challenging and resource consuming [106]. For example, in
the Federated Database Domain [6], where one needs to develop wrappers to connect
one data source with another (invariably addressing complex issues such as transac-
tion control), different instantiations of the (coding) framework requires different test
scripts. Although there is great similarity among such scripts, these are still mostly
ported/adapted manually. Yet, little in-depth research has been conducted in this area.

Variability management should also encompass domain specific artifacts. In the
mobile games domain, for example, handling variability within art artifacts, such as
game soundtrack and images, is time-consuming and requires specific techniques [15].
Some of these can be drawn on analogy with architectural design capabilities such as
composition. However, considerably more research needs to be done in this area.

Although we argue that the method and the issues addressed here are valid for SPLs
in general, it is important to verify this with case studies and experiments in other
domains that might benefit from a SPL approach.

As a future work, we aim at applying our approach in more case studies, in order
to assess the benefits and limitations of this work in additional real projects. Moreover,
from these case studies we can propose more FM refactorings, and make considerations
on their usefulness.

Future work should also address the definition of metrics for SPLs. Although they
do exist for AOP [56], their goal focuses on traditional and relevant software engineer-
ing principles such as cohesion and coupling. Nevertheless, in the SPL context, these
concepts should be refined as well as complemented by others such as configurability

135

and plugability. Such refinement and extension could lead to the definition of a metric
suite for SPLs at different level of abstractions, involving architecture, code, and tests,
for example. To the best of our knowledge, the SPL community still lacks a clear vision
of this issue.

Moreover, another point for further research is extending the prototype supporting
variability management which we have developed. In order to support fully support our
method, the prototype should also be integrated with a feature model tool. Our initial
investigation has shown that this is feasible, for example with pure::variants [121]. In
a typical scenario, the developer using the tool during the extractive talks would select
variability points in the code, execute a corresponding refactoring provided by the too
and then evaluate the effect at the feature model level, in a feature model view.

7.2 Related Work

Our research is in the convergence of a number of areas involving SPLs, AOP, refactoring,
programming laws, model refactoring, and portability of mobile games. In the next
sections, we compare our work to research in recurring combinations of these areas.

7.2.1 AOP and SPLs, and Refactoring

Prior research also evaluated the use of AOP for building J2ME product lines [16].
We complement this work by considering the implementation of more features in an
industrial-strength application, explicitly specifying the refactorings to build and evolve
the SPL, and raising issues in AspectJ that need to be addressed in order to foster
widespread application in this domain. Additionally, we rely on concern graphs [109] to
identify variant features. Concern graphs provide a more concise and abstract descrip-
tion of concerns than source code. Once the concern is identified, we extract it into an
aspect and may further revisit it during SPL evolution.

AOP refactorings have also been described elsewhere [95, 68]. The former proposes
a catalog for object-to-aspect and aspect-to-aspect refactorings, whereas the latter pro-
vides an abstract representation of object-to-aspect refactorings as roles. However, their
use in the SPL setting is not explored, and the refactorings format follows the imper-
ative style [53]; in contrast, our approach is template-oriented, abstract, concise, and
thus does not bind a specific implementation, which could be done, for instance, with a
transformation system receiving as input refactoring templates.

In another approach, a language-independent way to represent variability is provided,
and it is shown how it can be used to build J2ME game SPLs product lines [130]. Our
approach differs from such work because, although ours relies on language-specific con-
structs, it has the advantage of not having to specify join points in the base. Moreover,
their approach, despite language-independent, considerably complicates understanding
the source code due to the tags introduced to represent variability.

A recent work [129] reports the AOP refactoring of a middleware system to modu-
larize features such as client-side invocation, portable interceptors, and dynamic types.
Nevertheless, such work does not describe the refactorings abstractly and does not at-
tempt to express them in terms of simpler programming laws as a way to guarantee

136

behave preservation, as we do.
Colyer et al [42] present principles for creating flexible, configurable, and aspect-

oriented systems. These principles are illustrated in a SPL in the middleware domain. In
particular, that work assumes that features added to a base system should be orthogonal
to the base system. However, unlike our work, those principles do not provide explicit
guidelines at the implementation level and at the feature model level for extracting and
reacting a SPL. Further, we do not assume that features added to a base system should
be orthogonal, since the variability may dictate some contract between the base and
extensions. Also, the non-compositionality identified in the configuration knowledge
of the case study in Section 6.2.4 suggest that feature interactions may violate their
assumption. In this respect, the work by Kulesza et al [84] build on the notion of
crosscutting interfaces [120, 64] to define contracts such that both aspects, representing
SPL extensions, and the SPL core evolve independently.

7.2.2 Programming Laws and Model Refactoring

Previous work [40] presented 30 aspect-oriented programming laws and showed how
these could derive some aspect-oriented refactorings. In our work, we have explored
the usefulness of such approach in validating extractive and reactive refacotorings for
building product lines in the mobile game domain. Additionally, this task prompted
not only an extension of the number of laws initially proposed, but also a more careful
description of some subtle issues of these laws, such as handling AspectJ’s precedence
semantics, which were skipped in the original work. Finally, the experience in using the
laws during derivation suggested that these be organized in a more concise notation,
which could lead to the implementation of a generative library.

The process of defining programming laws and showing how these can be used to
derive refactorings has also been addressed for for object-oriented languages [31]. Such
research additionally formally proves not only the completeness of such set of laws, but
also the correctness of each law, by relying on a weakest precondition semantics [37]. Our
work, despite not formally proving the laws, still benefits from understanding coarse-
grained transformations in terms of simpler ones.

In a related work, Gheyi et al. encoded a semantics for FMs in the Prototype
Verification System (PVS) [103], which is a formal specification language. Using the
PVS theorem prover, they proved all refactorings proposed with respect to a formal
semantics [57]. This experience in PVS was very important for proposing other FM
refactorings. Proving them increases the knowledge about other transformations that
do not improve configurability. The PVS prover gives insights of what need to be con-
sidered. The formalization and proofs are important in order to increase the reliability
when refactoring SPLs, as we present in Section 5.5.

In Chapter 5, we proposed the extension of the concept or refactoring to SPL so
that it also takes into account a transformation in the feature model level and argued
that such transformation preserves or increases an important property (configurability).
Similar work has been done for refactoring object models [58]. In such work, model
transformations have been defined for a formal object-oriented modelling language and
expressed in terms of elementary laws. An equivalence notion [59] was established and
such laws have been proved [60, 61] sound with respect to it using PVS [102], which

137

encompasses a formal specification language and a theorem prover.

7.2.3 Refactoring Product Lines

A related approach proposes [85] Feature Oriented Refactoring (FOR), which is the
process of decomposing a program, usually legacy, into features. Such work focuses on
configuration knowledge, specifying the relationships between features and their imple-
menting modules, backed by a solid theory. Also, the authors present a semi-automatic
refactoring methodology to enable the decomposition of a program into features. How-
ever, FOR focuses so far on bootstrapping a SPL from an existing application, rather
than two or more existing products, as we explore in our work. Further, our approach
of verifying SPL improvement addresses this requirement by allowing us to evaluate the
impact of SPL refactorings based on our theory for reasoning on feature models. Never-
theless, we believe that their theory for relating features and implementation modules
may be complementary to ours for more ambitious applications of FM refactorings: given
a systematic way of mapping FM constructs to software components, we can infer SPL
refactorings on programs from analogous refactorings on corresponding feature models.
Therefore, a model-driven approach to SPL refactoring would thus become feasible.

Another work [44] explores the application of refactoring to SPL Architectures. They
present metrics for diagnosing structural problems in a SPL Architecture, and introduce
a set of architectural refactorings that can be used to resolve those problems. These
metrics can be useful for detecting bad smells. In contrast to our work, they apply the
traditional notion of refactoring. Also, they do not propose a set of refactorings for FMs
as in our work. A similar work [80] shows a case study in refactoring legacy applications
into SPL implementations. They defined a systematic process for refactoring products,
in order to define SPLs. However, configurability of the resulting SPLs are only checked
by testing; we believe that our approach for verifying configurability with FM refactor-
ings can be useful in this process, especially when extracting a SPL from more than
one product or SPL, improving reliability in the process. Also, they do not deal with
refactoring in reactive contexts.

Batory [21] presents a semantics for FMs, connecting it to grammars and proposi-
tional formulas. The connection between FMs and propositional formulas enables the
use of SAT solvers to perform a finite number of analysis. We specified a similar seman-
tics for FM considering the same propositional formulas. We additionally argued for the
correctness of a number of refactorings. As mentioned by such author, FMs do not have
unique representations as feature diagrams. By using our bidirectional refactorings, we
show a reduction strategy (completeness result) that relates any two FM semantically
equivalent. He is concerned with building a tool for FMs for checking specific properties;
In our case, we can specify and prove not only specific but any kind of general property
that holds for FMs.

Extensions to cardinality-based FMs can be found elsewhere [46], including a formal
semantics to FMs with these features, translating FMs into context-free grammars. Our
semantics could also be extended similarly, and new FM refactorings can be proposed
for dealing with such cardinality. We also note that their formal treatment of FM
specialization could be seen as the opposite of our notion of FM refactoring, except for
the fact that our refactoring notion also relates multiple FMs.

138

Another work [122] proposes a textual language for describing features. Their lan-
guage is similar to ours, but do not consider propositional formulas. They propose a
notion of FM semantics that is equivalent to ours. Also, a set of fifteen rules relating
equivalent FMs are proposed, which are very similar to our bidirectional refactorings.
All proposed rules can be derived using our bidirectional refactorings following the re-
duction strategy (completeness result). These rules are not proven to be complete, as in
our work. Moreover, we show that our set of bidirectional refactorings is minimal. So,
one B-Refactoring cannot be derived using another B-Refactoring. If they had proposed
a more general rule, similar to a refactoring for introducing or removing formulas, their
Rules 1-4, for instance, would be derived from this more general rule. So, our set of
B-Refactorings is more concise (minimal) and contain less transformations. Moreover,
they do not use their FM refactorings to apply refactorings in SPL, as in our work.
Their work also presents an option for configuration knowledge, mapping features to
classes; our approach for verifying configurability improvement in Section 5.5 can be
used in the presence of such option.

Another work [25] extends FMs in order to include constraints. They can automat-
ically analyze five properties in this language, such as number of instances of a FM.
However, they do not propose a set of refactorings for FM and use them to refactor
SPL.

If high-level algebraic specification of products were available, as described in [86],
an efficient optimization algorithm could be applied in order to extract the product line
core from these specifications with the Shared Class Extractor operator [86]. However,
the hypothesis of having this high-level specification may not be met in practice, in such
a way that the domain engineer would need to address handling legacy software directly
at the design or at the implementation level.

Chen et al [38] propose a purely extractive approach to constructing feature models
based on requirements clustering, which automates the activities of feature identifica-
tion, organization, and variability modeling to a great extent. The underlying idea of
this approach is to analyze the relationships between individual requirements and clus-
ter tight-related requirements into features. Algorithms are presented for constructing
a feature diagram from requirements and for merging application feature diagrams into
a SPL feature diagram. However, their FM meta-model does not encompass alternative
feature like ours; further, our approach also handles implementation assets.

7.2.4 Portability of Mobile Games

Current approaches to porting can be classified in the following categories: preprocess-
ing tools, general guidelines, specific guidelines, semi-automatic services, and formal
approaches.

Tools like Antenna [126] and J2ME Polish [127] provide a preprocessing feature
by which guidelines define a conditional compilation of the source code (written to
comprise several platforms) according to the device in question. Besides that, J2ME
Polish contains a device database (described with their peculiarities), which is used in the
process of instantiating a specific variation. However, the use of compilation directives
may compromise source code legibility, as we described in Section 3.7. Also, it solves
variability at pre-compilation time, whereas our approach with AOP has compilation

139

binding time. Accordingly, another significant disadvantage with preprocessing is that
refactoring tools may not be applied with it.

Some approaches are specific to source and target devices, and consist of a descrip-
tive document of their characteristics [97]. They specify the direction (source/target
devices) of portability, but are more descriptive in terms of device features than pre-
scriptive in terms of actually carrying out the porting. Other approaches offer broader
guidelines [49], involving a research of the target device, an architecture reorganization
and source code transformation, but underestimate the effort necessary for this last task.
On the other hand, our approach could be applied to porting games across different de-
vices; additionally, it provides concrete guidelines for the porting process by relying on
a refactoring catalog.

A more recent approach [124] consists of specifying reference devices and specific
guidelines to programming for these devices, and then generating the code for the tar-
get device with tool support. This approach is described as automatic, but demands
that the game be coded according to the guidelines, which may itself be a resource
demanding task. Similar guidelines may also be required in our case, before we apply
our refactorings. These guidelines could be useful, for instance, for minimizing very-fine
grained variability, which otherwise would have to be handled with conditional compi-
lation.

Some formal approaches [54, 36, 70] propose an abstract specification of the elements
of Graphical User Interface (GUI), devices characteristics, and user interface usage sce-
narios. Based on these, they generate code for different types of GUI. Unfortunately,
such approaches depend on hypotheses which restrain the GUI’s organization, have a
considerable specification effort and address only GUI, not taking into consideration
issues like heap memory and maximum application size constraints, which we use to
evaluate our approach.

In previous work, a language-independent way to represent porting-related variabil-
ity is provided, and it is shown how it can be used to port J2SE applications to a J2ME
product line [131]. This is similar to the program transformation approach we describe,
but differs in that ours relies on language-specific constructs and variation points are
identified in the program transformation language, whereas the latter is language inde-
pendent, but requires the developer to explicitly specify the variation points in the base
code.

Bibliography

[1] AMPLE Project. http://www.ample-project.net/, March 2007.

[2] Vander Alves. Identifying variations in mobile devices. Journal of Object Tech-
nology, 4(3):47–52, April 2005.

[3] Vander Alves and Paulo Borba. An Implementation Method for Distributed
Object-Oriented Applications. In XV Brazilian Symposium on Software Engi-
neering, pages 161–176, Rio de Janeiro, Brazil, October 2001.

[4] Vander Alves and Paulo Borba. Aspects and software product lines. In Brazilian
Workshop on Component-Based Development - Tutorial (in Portuguese), Joao
Pessoa, Brazil, September 2004.

[5] Vander Alves, Ivan Cardim, Heitor Vital, Pedro Sampaio, Alexandre Damasceno,
Paulo Borba, and Geber Ramalho. Comparative analysis of porting strategies
in J2ME games. In Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 123–132, Budapest, Hungary, September
2005. IEEE Computer Society.

[6] Vander Alves, Curt Cotner, Mary Roth, Morgan Tong, and Daniel Wolfson. Sys-
tems, methods, and computer program products to integrate user-defined operations
into a database transaction. http://www.uspto.gov/, 2005. US Patent Application
number 20050108255.

[7] Vander Alves, Ayla Dantas, and Paulo Borba. AOP-driven variability in product
lines of pervasive computing applications. In GPCE’03 - Poster Session, Erfurt,
Germany, September 2003.

[8] Vander Alves et al. Tool and Process for Porting Mobile Games (in Portuguese).
FACEPE-funded project.

[9] Vander Alves et al. Tools for Developing Mobile Game Software Product Lines (in
Portuguese). FINEP-funded project.

[10] Vander Alves et al. Investigating the Development of Mobile Application Software
Product Lines (in Portuguese), 2005. CNPq-funded project.

[11] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
Lucena. Refactoring product lines. In Proceedings of the 5th ACM International
Conference on Generative Programming and Component Engineering (GPCE’06).
ACM Press, Oct 2006.

140

http://www.ample-project.net/

Bibliography 141

[12] Vander Alves, Pedro Matos Jr., and Paulo Borba. An incremental aspect-oriented
product line method for J2ME game development. In Workshop on Managing
Variability Consistently in Design and Code at OOPSLA’04, Vancouver, Canada,
October 2004.

[13] Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba, and Geber Ra-
malho. Extracting and evolving mobile games product lines. In Proceedings of
the 9th International Software Product Line Conference (SPLC’05), volume 3714
of Lecture Notes in Computer Science, pages 70–81, Rennes, France, Sep 2005.
Springer-Verlag.

[14] Vander Alves, Pedro Matos Jr, Leonardo Cole, Alexandre Vasconcelos, Paulo
Borba, and Geber Ramalho. Extracting and evolving code in product lines with
aspect-oriented programming. Transactions on Aspect-Oriented Software Devel-
opment (TAOSD): Special Issue on Software Evolution, 2007. Accepted for pub-
lication, to appear.

[15] Vander Alves, Gustavo Santos, Fernando Calheiros, Vilmar Nepomuceno, Davi
Pires, Alberto Costa Neto, and Paulo Borba. Beyond code: Handling variability
in art artifacts in mobile game product lines. In Managing Variability for Software
Product Lines: Working With Variability Mechanisms Workshop, in conjunction
with the 10th International Software Product Line Conference (SPLC 2006), Bal-
timore, USA, Aug 2006.

[16] M. Anastasopoulos and D. Muthig. An evaluation of aspect-oriented programming
as a product line implementation technology. In Proceedings of the International
Conference on Software Reuse (ICSR), 2004.

[17] Michalis Anastasopoulos and Cristina Gacek. Implementing product line variabil-
ities. In Symposium on Software Reusability. ACM Press, May 2001.

[18] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Overview of
caesarj. Transactions on AOSD I, LNCS, 3880:135 – 173, 2006.

[19] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laiten-
berger, Roland Laqua, Dirk Muthig, Barbara Paech, Jurgen Wst, and Jorg Zettel.
Component-based Product Line Engineering with UML. Addison Wesley, 2002.

[20] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhotk, Ondej Lhotk, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: an extensible aspectj compiler. In AOSD ’05: Proceed-
ings of the 4th international conference on Aspect-oriented software development,
pages 87–98, New York, NY, USA, 2005. ACM Press.

[21] Don Batory. Feature models, grammars, and propositional formulas. In Proceed-
ings of the 9th International Conference of Software Product Lines, volume 3714
of Lecture Notes in Computer Science, pages 7–20. Springer, 2005.

Bibliography 142

[22] Don Batory and Sean O’Malley. The design and implementation of hierarchical
software systems with reusable components. ACM Trans. Softw. Eng. Methodol.,
1(4):355–398, 1992.

[23] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refine-
ment. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 187–197, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[24] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refine-
ment. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 187–197, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[25] David Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on fea-
ture models. Proceedings of the 17th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE), 3520:491–503, 2005.

[26] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Control-
ling the scope of change in Java. In Proceedings of 20th International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’05), pages 177–189. ACM Press, 2005.

[27] Alexandre Bergel, Robert Hirschfeld, Siobhàn Clarke, and Pascal Costanza. As-
pectboxes – controlling the visibility of aspects. In Markus Helfert Joaquim Filipe,
Boris Shiskov, editor, In Proceedings of the International Conference on Software
and Data Technologies (ICSOFT 2006), pages 29–38, September 2006.

[28] Grady Booch. Object-oriented development. IEEE Trans. Software Eng.,
12(2):211–221, 1986.

[29] Grady Booch. The limits of software, 2002. Software Development Forum,
PARC,Palo Alto,CA.

[30] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language
— User’s Guide. Addison-Wesley, 1999.

[31] Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio. Algebraic
reasoning for object-oriented programming. Science of Computer Programming,
52:53–100, oct 2004.

[32] Jan Bosch. Design and use of software architectures: adopting and evolving a
product-line approach. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

[33] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. A System of Patterns: Pattern-Oriented Software Architecture. John Wiley
& Sons, 1996.

Bibliography 143

[34] Tarcisio Camara, Rodrigo Lima, Rangner Guimaraes, Alexandre Damasceno, Van-
der Alves, Pedro Macedo, and Geber Ramalho. Massive mobile games porting:
Meantime study case. In Brazilian Symposium on Computer Games and Digital
Entertainment - Computing track, Recife, Brazil, 2006.

[35] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.

[36] Richard Cardone, Adam Brown, Sean McDirmid, and Calvin Lin. Using mixins
to build flexible widgets. In AOSD ’02: Proceedings of the 1st international con-
ference on Aspect-oriented software development, pages 76–85. ACM Press, 2002.

[37] Ana Cavalcanti and David Naumann. A weakest precondition semantics for refine-
ment of object-oriented programs. IEEE Transactions on Software Engineering,
26(8):713–728, August 2000.

[38] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An approach to construct-
ing feature models based on requirements clustering. In Proceedings of the 13th
IEEE International Conference on Requirements Engineering (RE’05), pages 31–
40, Paris, France, September 2005. IEEE Computer Society.

[39] Paul Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[40] Leonardo Cole and Paulo Borba. Deriving refactorings for AspectJ. In AOSD
’05: Proceedings of the 4th International Conference on Aspect-oriented software
development, pages 123–134. ACM Press, 2005.

[41] Leonardo Cole, Paulo Borba, and Alexandre Mota. Proving aspect-oriented pro-
gramming laws. In Foundations of Aspect-Oriented Languages Workshop at the
4th International Conference on Aspect-oriented software development, pages 1–9.
Iowa State University Technical Report, 2005.

[42] Adrian Colyer, Awais Rashid, and Gordon Blair. On the separation of concerns in
program families. Technical Report COMP-001-2004, Lancaster University, 2004.

[43] James O. Coplien. Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel,
2000.

[44] Matt Critchlow, Kevin Dodd, Jessica Chou, and André van der Hoek. Refactoring
product line architectures. In IWR: Achievements, Challenges, and Effects, pages
23–26, 2003.

[45] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[46] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software Process: Im-
provement and Practice, 10(1):7–29, 2005.

Bibliography 144

[47] Ayla Dantas, Paulo Borba, and Vander Alves. Using aspects to structure small
devices applications. In First Workshop on Reuse in Constrained Environments
(RICE’03) at the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2003), Anaheim,
CA, USA, October 2003.

[48] Edsger Dijkstra. Notes on structured programming. In Structured Programming.
Academic Press, 1968.

[49] X. Facon. Porting Your MIDlets to New Devices. World Wide Web, http://www.
microjava.com/articles/techtalk/, 2004.

[50] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quan-
tification and obliviousness. In Mehmet Akşit, Siobhan Clarke, Tzilla Elrad,
and Robert E. Filman, editors, Aspect-Oriented Software Development. Addison-
Wesley, Reading, MA, 2004.

[51] Nokia Forum. Developing Java Games for Platform Portability. Case Study:
Miki’s World. World Wide Web, 2004.

[52] Nokia Forum. Develop/Optimize Case Study: Macrospace’s Dragon Island. World
Wide Web, http://www.forum.nokia.com/main/1,,040,00.html?fsrParam=2-3-
/main.html&fileID=5412, 2004.

[53] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[54] Krzysztof Gajos and Daniel S. Weld. Supple: automatically generating user in-
terfaces. In IUI ’04: Proceedings of the 9th international conference on Intelligent
user interface, pages 93–100. ACM Press, 2004.

[55] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[56] Alessandro Garcia, Cláudio SantAnna, Eduardo Figueiredo, Uirá Kulesza, Carlos
Lucena, and Arndt von Staa. Modularizing design patterns with aspects: A quan-
titative study. Transactions on Aspect-Oriented Software Development (TAOSD),
pages 36–74, 2006.

[57] Rohit Gheyi, Vander Alves, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
Lucena. Theory and proofs for feature model refactorings. Technical Report TR-
UFPE-CIN-200608027, Federal University of Pernambuco, 2006.

[58] Rohit Gheyi, Tiago Massoni, and Paulo Borba. Basic laws of object modeling.
In Third Specification and Verification of Component-Based Systems (SAVCBS),
affiliated with ACM SIGSOFT 2004/FSE-12, pages 18–25, Newport Beach, United
States, oct 2004.

http://www.microjava.com/articles/techtalk/
http://www.microjava.com/articles/techtalk/

Bibliography 145

[59] Rohit Gheyi, Tiago Massoni, and Paulo Borba. An abstract equivalence notion
for object models. Elsevier’s Electronic Notes in Theoretical Computer Science,
Proceedings of Brazilian Symposium on Formal Methods, 130:3–21, may 2005.

[60] Rohit Gheyi, Tiago Massoni, and Paulo Borba. A rigorous approach for proving
model refactorings. In 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages xx–yy, Long Beach, United States, nov 2005.

[61] Rohit Gheyi, Tiago Massoni, and Paulo Borba. Type-safe refactorings for alloy.
In Eight Brazilian Symposium on Formal Methods (SBMF), Porto Alegre, Brazil,
nov 2005.

[62] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specifica-
tion, Second Edition: The Java Series. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[63] Martin Griss, John Favaro, and Massimo d’Alessandro. Integrating feature mod-
eling with the rseb, 1998.

[64] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design with cross-
cutting interfaces. IEEE Softw., 23(1):51–60, 2006.

[65] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability in
software product lines. In Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WISCA’01), pages 45–54, Amsterdam, The Netherlands,
August 2001.

[66] Oberschulte C. Hanenberg S. and Unland R. Refactoring of aspect-oriented soft-
ware. In Net.ObjectDays, Erfurt, Germany, September 2003.

[67] Jan Hannemann and Gregor Kiczales. Design pattern implementation in java and
aspectj. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 161–
173, New York, NY, USA, 2002. ACM Press.

[68] Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based refactoring
of crosscutting concerns. In AOSD ’05: Proceedings of the 4th international con-
ference on Aspect-oriented software development, pages 135–146, New York, NY,
USA, 2005. ACM Press.

[69] Charles Antony Richard Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W.
Roscoe, J. W. Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of
programming. Commun. ACM, 30(8):672–686, 1987.

[70] Hao hua Chu, Henry Song, Candy Wong, Shoji Kurakake, and Masaji Kata-
giri. Roam, a seamless application framework. Journal of Systems and Software,
69(3):209–226, 2004.

Bibliography 146

[71] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

[72] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley, 1997.

[73] Stan Jarzabek and Li Shubiao. Eliminating redundancies with a ”composition
with adaptation” meta-programming technique. In ESEC/FSE-11: Proceedings
of the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering, pages
237–246, New York, NY, USA, 2003. ACM Press.

[74] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA ’92:
conference proceedings on Object-oriented programming systems, languages, and
applications, pages 63–76. ACM Press, 1992.

[75] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

[76] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. Form: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng., 5:143–168, 1998.

[77] Gregor Kiczales. Aspect–oriented programming. ACM Computing, 28(154), De-
cember 1996.

[78] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. Getting Started with AspectJ. Communications of the
ACM, 44(10):59–65, October 2001.

[79] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In European Conference on Object-Oriented Programming,
ECOOP’97, LNCS 1241, pages 220–242, Finland, June 1997. Springer-Verlag.

[80] Ronny Kolb, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi. A case study
in refactoring a legacy component for reuse in a product line. In Proceedings of
the 21st IEEE International Conference on Software Maintenance, pages 369–378.
IEEE Computer Society, 2005.

[81] Charles Krueger. Easing the transition to software mass customization. In Proceed-
ings of the 4th International Workshop on Software Product-Family Engineering.,
pages 282–293, Bilbao, Spain, October 2001.

[82] Charles Krueger. Variation management for software production lines. In Proceed-
ings of the 2nd International Software Product Line Conference (SPLC’02), pages
37–48, San Diego, California, August 2002. Lecture Notes in Computer Science
(LNCS).

Bibliography 147

[83] Charles Krueger. Towards a taxonomy for software product lines. In Proceedings
of the 5th International Workshop on Software Product Family Engineering, Siena,
Italy, November 2003.

[84] Uirá Kulesza, Vander Alves, Alessandro Garcia, Carlos J. P. de Lucena, and Paulo
Borba. Improving extensibility of object-oriented frameworks with aspect-oriented
programming. In Proceedings of the 9th International Conference on Software
Reuse (ICSR-9), Lecture Notes in Computer Science, pages 231–245. Springer-
Verlag, Jun 2006.

[85] Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of
legacy applications. In Proceedings of the 28th International Conference on Soft-
ware Engineering, pages 112–121. ACM Press, 2006.

[86] Jia Liu and Don S. Batory. Automatic remodularization and optimized synthesis
of product-families. In GPCE, pages 379–395, 2004.

[87] Cristina Lopes and Gregor Kiczales. Recent developments in AspectJ. Workshop
on Aspect–Oriented Programming at ECOOP’98, July 1998.

[88] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disciplined
approach to aspect composition. In PEPM ’06: Proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program manip-
ulation, pages 68–77, New York, NY, USA, 2006. ACM Press.

[89] Roberto E. Lopez-Herrejon, Don Batory, and William R. Cook. Evaluating sup-
port for features in advanced modularization technologies. In Proceedings of the
19th European Conference on Object-Oriented Programming (ECOOP’05).

[90] L. Moura M. F. Fontoura, C. Braga and C. J. Lucena. Using domain specific
languages to instantiate object-oriented frameworks. IEE Proceedings - Software,
147(4):109–11, 2000.

[91] Tiago Massoni. A Software Process with Progressive Implementation Support (in
portuguese). Master’s thesis, Informatics Center (CIn) — Federal University of
Pernambuco (UFPE) — Brazil, February 2001.

[92] Mira Mezini and Klaus Ostermann. Variability management with feature-oriented
programming and aspects. SIGSOFT Softw. Eng. Notes, 29(6):127–136, 2004.

[93] Sun MicroSystems. J2ME Optional Packages. World Wide Web,
http://developers.sun.com/techtopics/mobility/midp/-
articles/optional/, 2004.

[94] Sun MicroSystems. Java 2 Platform, Micro Edition (J2ME). World Wide Web,
http://java.sun.com/j2me/, 2004.

[95] Miguel P. Monteiro and Joao M. Fernandes. Towards a catalog of aspect-oriented
refactorings. In AOSD ’05: Proceedings of the 4th international conference on
Aspect-oriented software development, pages 111–122, New York, NY, USA, 2005.
ACM Press.

Bibliography 148

[96] Motorola. Porting guide: Motorola i95cl to T720. World Wide Web, http://
www.microjava.com/articles/MJN, 2004.

[97] Motorola. Porting guide: Motorola i95cl to T720. World Wide Web,
http://www.microjava.com/articles/
-MJN Porting.Guide i95cl-T720.pdf, 2004.

[98] Federal University of Pernambuco. JaTS - Java Transformation System. World
Wide Web, http://www.cin.ufpe.br/~jats/, 2001.

[99] William Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

[100] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying suject–
oriented composition. TAPOS, 2(3):179–202, 1996. Special Issue on Subjectivity
in OO Systems.

[101] Harold Ossher and Peri Tarr. Using subject–oriented programming to overcome
common problems in object–oriented software development/evolution. In Interna-
tional Conference on Software Engineering, ICSE’99, pages 698–688. ACM, 1999.

[102] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. The PVS language
reference version 2.3. In SRI International, Technical Report, 1999.

[103] Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS: an expe-
rience report. In Applied Formal Methods—FM-Trends 98, volume 1641 of Lecture
Notes in Computer Science, pages 338–345, Germany, 1998. Springer-Verlag.

[104] David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications ACM, 15(12):1053–1058, 1972.

[105] David L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, 2(1):1–9, 1976.

[106] Klaus Pohl and Andreas Metzger. Software product line testing. Commun. ACM,
49(12):78–81, 2006.

[107] Wolfgang Pree. Design patterns for object-oriented software development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[108] Java Community Process. Mobile Information Device Profile 2.0. World Wide
Web, http://jcp.org/aboutJava/communityprocess/-
final/jsr118/index.html, 2004.

[109] Martin P. Robillard and Gail C. Murphy. Concern graphs: Finding and describing
concerns using structural program dependencies. In In Proceedings of the 24th
International Conference on Software Engineering, pages 406–416, May 2002.

[110] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware platform for ac-
tive spaces. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):65–67, 2002.

http://www.microjava.com/articles/MJN
http://www.microjava.com/articles/MJN
http://www.cin.ufpe.br/~jats/

Bibliography 149

[111] Pedro Sampaio, Alexandre Damasceno, Igor Sampaio, Vander Alves, Geber Ra-
malho, and Paulo Borba. Porting games in J2ME: Challenges, case study, and
guidelines (in portuguese). Scientia, 16(1):66–72, January/June 2005.

[112] Thiago Santos and André Santos. Parameterizing java software (in portuguese). In
Martin A. Musicante and Ricardo Massa F. Lima, editors, Proceedings SBLP’05
IX Brazilian Symposium on Programming Languages, pages 257–270, 2005.

[113] Douglas C. Schmidt and Frank Buschmann. Patterns, frameworks, and middle-
ware: their synergistic relationships. In ICSE ’03: Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 694–704, Washington, DC,
USA, 2003. IEEE Computer Society.

[114] Yannis Smaragdakis and Don S. Batory. Implementing layered designs with mixin
layers. In ECCOP ’98: Proceedings of the 12th European Conference on Object-
Oriented Programming, pages 550–570, London, UK, 1998. Springer-Verlag.

[115] Alan Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In OOPLSA ’86: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 38–45, New York, NY, USA, 1986.
ACM Press.

[116] Sérgio Soares. Progressive Develpoment of Object Oriented Concurrent Programs
(in portuguese). Master’s thesis, Informatics Center (CIn) — Federal University
of Pernambuco (UFPE) — Brazil, February 2001.

[117] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing Distribution
and Persistence Aspects with AspectJ. In Proceedings of the 17th ACM confer-
ence on Object-oriented programming, systems, languages, and applications, OOP-
SLA’02, pages 174–190. ACM Press, November 2002. ACM SIGPLAN Notices
37(11).

[118] Christopher Strachey. Fundamental concepts in programming languages. Lecture
notes for the International Summer School in Computer Programming, 1967.

[119] Bjarne Stroustrup. The C++ Programming Language (Special Edition). Addison–
Wesley, 2000.

[120] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Macneil
Shonle, Nishit Tewari, and Hridesh Rajan. Information hiding interfaces for
aspect-oriented design. In ESEC/FSE-13: Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 166–175, New York,
NY, USA, 2005. ACM Press.

[121] Pure Systems. Pure Variants. World Wide Web, http://www.pure-systems.
com/Variant_Management.49.0.html. Last accessed in February 2007.

[122] Arie van Deursen and Paul Klint. Domain-specific language design requires feature
descriptions. Journal of Computing and Information Technology, 10(1):1–17, 2002.

http://www.pure-systems.com/Variant_Management.49.0.html
http://www.pure-systems.com/Variant_Management.49.0.html

Bibliography 150

[123] David Weiss and Chi Lai. Software Product-Line Engineering: A Family-Based
Software Development Process. Addison Wesley, 1999.

[124] Tira Wireless. TiraJump. World Wide Web, http://www.tirawireless.com/
jump/, 2004.

[125] J. Withey. Investment analysis of software assets for product lines. Technical
Report CMU/SEI-99-TR-029, Software Engineering Institute, 1996.

[126] World Wide Web, http://antenna.sourceforge.net. Antenna Preprocessor,
2004.

[127] World Wide Web, http://www.j2mepolish.org. J2ME Polish, 2004.

[128] World Wide Web, http://proguard.sourceforge.net/. ProGuard, 2005.

[129] Charles Zhang and Hans-Arno Jacobsen. Resolving feature convolution in middle-
ware systems. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages, and applications,
pages 188–205, New York, NY, USA, 2004. ACM Press.

[130] Weishan Zhang and Stan Jarzabek. Reuse without compromising performance:
Industrial experience from RPG software product line for mobile devices. In Pro-
ceedings of the 9th International Software Product Line Conference (SPLC’05),
pages 57–69, 2005.

[131] Weishan Zhang, Stan Jarzabek, Neil Loughran, and Awais Rashid. Reengineering
a pc-based system into the mobile device product line. In Proceedings of the Sixth
International Workshop on Principles of Software Evolution (IWPSE’03), 2003.

http://www.tirawireless.com/jump/
http://www.tirawireless.com/jump/
http://antenna.sourceforge.net
http://www.j2mepolish.org

	Introduction
	Summary of Goals
	Organization

	Software Variability
	Historical Notes and Terminology
	Variability in Software Product Lines
	Domain Example: Mobile Games Product Lines
	Software Product Line Approaches
	Feature-Oriented Domain Analysis
	FAST
	KOBRA
	Adoption Strategies
	Scope

	Current Variability Implementation Approaches
	Object-Orientation and Polymorphism
	Design Patterns
	Frameworks
	Feature-Oriented Programming
	Deployment-Time and Run-Time Variability
	Program Transformation
	Java Transformation System
	XVCL

	Conditional Compilation
	Aspect-Oriented Programming
	AspectJ
	AspectBox
	CaesarJ

	Comparison Framework
	Instantiating the Variability Framework
	Design Patterns
	Frameworks
	AOP
	FOP
	JPEL
	JaTS
	XVCL
	Conditional Compilation

	Comparative Analysis

	Implementing Product Lines Adoption Strategies
	Method
	Extract SPL
	React SPL
	Refactoring Catalog
	Migrate SPL

	Formal Reasoning for AspectJ Refactorings
	Programming Laws
	Deriving Refactorings

	Refactoring Feature Models
	Motivation
	Refactoring Product Lines
	Issues in Product Line Refactoring
	Definition of Product Line Refactoring

	Formalizing Feature Models
	Feature Model Refactoring
	Motivation
	Refactoring Notation
	Unidirectional Refactorings
	Bidirectional Refactorings
	Discussion

	Case Study
	Context
	SPL Refactoring

	Unidirectional Refactorings Catalog

	Case Studies
	Rain of Fire
	Study Setting
	Variability Identification
	Extraction
	Configuration Knowledge
	Analysis

	Best Lap
	Study Setting
	Variability Identification
	Migration
	Configuration Knowledge
	Analysis

	Open Issues and Possible Extensions
	Import Variation
	Superclass Constructor Call
	Adding an else-if Block

	Case Studies Synthesis

	Conclusion
	Future Work
	Related Work
	AOP and SPLs, and Refactoring
	Programming Laws and Model Refactoring
	Refactoring Product Lines
	Portability of Mobile Games

	Bibliography

