

Universidade Federal de Pernambuco

Centro de Informática

Pós-Graduação em Ciência da Computação

Whole Program Optimizations of J2ME bytecode
by

Tarcisio Pinto Camara

Dissertação de Mestrado

Recife, agosto de 2004

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

TARCISIO PINTO CAMARA

 Whole Program Optimizations of J2ME bytecode

Este trabalho foi submetido à Pós-Graduação em Ciência

da Computação do Centro de Informática da

Universidade Federal de Pernambuco como requisito

parcial para obtenção do grau de Mestre em Ciência da

Computação

Orientador: Prof. Dr. André L. M. Santos

Co-orientador: Prof. Dr. Geber Lisboa Ramalho

Recife, 17 de agosto de 2004

�����������	
�����������	
�����������	
�����������	
��������

I thank God and my parents for my life and my education.

I thank a lot my teachers, André Santos and Geber Ramanho, for all dedication,

attention and motivation that make this work possible.

I could not miss to thank Cleber Zanchettin and Joel da Silva, two new brothers

that the life gave to me, for being my family during this journey. Thanks guys.

Finally, I would like to thank Eric Lafortune, for developing and publishing

ProGuard, as well as C.E.S.A.R/Meantime for opening the source code of some J2ME

applications and allowing us to publish results; and I also thank CNPq (Brazilian

Research Council) for supporting this research project.

������������������������

Aplicações para os dispositivos móveis, como telefones celulares e pagers,

implementadas em J2ME (Java 2 Micro Edition) são desenvolvidas sob severas

restrições de tamanho e desempenho do código. A indústria tem adotado ferramentas de

otimização, como obfuscators e shrinkers, que aplicam otimizações de programa inteiro

(Whole Program Optimizations) considerando que o código gerado não será estendido

ou usado por outras aplicações. Infelizmente, os desenvolvedores freqüentemente não

conhecem (ou não confiam) suficientemente nestas ferramentas e continuam

sacrificando a qualidade do código na tentativa de otimizar suas aplicações. Este

trabalho apresenta um estudo original identificando a efetividade das otimizações mais

comuns nos obfuscators. Este estudo mostra também que a otimização de Method

Inlining, conhecida pelos benefícios de desempenho, tem sido negligenciada por estas

ferramentas por normalmente esperar-se que ela tenha efeito negativo sobre o tamanho

de código. Assim, este trabalho contribui com uma implementação de method inlining

entre classes e fundada no princípio de otimização de programa inteiro, capaz de

melhorar tanto o tamanho do código como o desempenho da aplicação, ao remover

cerca de 50% dos métodos alcançáveis. Finalmente, na tentativa de ajudar os

desenvolvedores a tirar o melhor proveito destas ferramentas, o estudo inclui também

um guia de boas práticas de programação considerando as otimizações implementadas

pelos obfuscators.

��������������������������������

Applications for mobile devices, like cell phones and pagers, implemented in the

J2ME Platform (Java 2 Micro Edition) are developed under strong performance and

code size constraints. Industry has been adopting optimization tools, such as obfuscators

and shrinkers, which apply Whole Program Optimizations considering that the

generated code will not be extended or used by other applications. Unfortunately,

developers often don’t know (or don’t trust in) these tools enough and keep sacrificing

code quality in order to optimize their applications. This work presents an original study

identifying the effectiveness of the most common optimizations in the obfuscators. This

study has shown us that Method Inlining, an important optimization with known

performance benefits, has been disregarded by these tools since it often has negative

effects on code size. Thus, this work contributes with a cross-module whole-program

method inlining implementation that improves both performance and application code

size, while removing around 50% of the reachable methods. Finally, in order to help

developers to take the best advantage of these tools, we have also included a best

programming practices guide considering the optimizations implemented by

obfuscators.

��

1 INTRODUCTION...1

1.1 WORK DESCRIPTION ...1
1.2 DOCUMENT STRUCTURE ...1

2 JAVA 2 MICRO EDITION...1

2.1 J2ME HISTORY...1
2.2 J2ME ARCHITECTURE ..1
2.3 KVM/CLDC CONSTRAINTS ...1

3 WHOLE PROGRAM OPTIMIZATION ..1

3.1 WHOLE PROGRAM OPTIMIZATION IN J2ME ..1
3.2 WHOLE PROGRAM OPTIMIZATION IN OBFUSCATORS...1
3.3 METHOD INLINING IN OBFUSCATORS..1
3.4 FINAL REMARKS...1

4 METHOD INLINING AND THE PROBLEM OF CODE SIZE INCREASE ..1

4.1 INTERNAL STRUCTURE OF THE JAVA VIRTUAL MACHINE ..1
4.2 BYTECODE EXPANSION WHEN COPYING ...1

4.2.1 Creation of temporary variables ..1
4.2.2 Re-indexing variable instructions...1
4.2.3 Jump instructions..1
4.2.4 Replacing return by goto..1
4.2.5 Switches ..1
4.2.6 Accesses to the constant pool ...1

4.3 THE DECISION ALGORITHM...1
4.3.1 Call graph...1
4.3.2 Restrictions imposed by the Java Virtual Machine...1

5 PROPOSED METHOD INLINING TECHNIQUE ...1

5.1 IMPLEMENTATION DECISIONS...1
5.2 COPY AND MODIFICATION OF THE BYTECODE ..1
5.3 DECISION ALGORITHM ...1

6 EXPERIMENTAL RESULTS...1

6.1 EXPERIMENTS SETUP ..1
6.2 PARAMETERIZATION ..1
6.3 OPTIMIZATION OCCURRENCE ...1
6.4 EXECUTION MEMORY AND PERFORMANCE ...1

6.5 CODE SIZE REDUCTION BY OBFUSCATORS ..1

7 BEST PROGRAMMING PRACTICES ..1

7.1 SITUATIONS ALREADY RESOLVED BY OBFUSCATORS ...1
7.1.1 No identifier needs to be shorted ..1
7.1.2 Unused features in frameworks do not need to be suppressed ...1
7.1.3 Primitive type constant values do not need to be substituted by hand..................................1
7.1.4 Fields do not need to be made public to avoid field access methods (get and set)1
7.1.5 Long methods can be divided into small context methods called once.................................1

7.2 SITUATIONS NOT RESOLVED BY OBFUSCATORS ..1
7.2.1 Constant propagation is not still available...1
7.2.2 Dead code elimination is not still available ...1
7.2.3 Control flow analysis is not still available ...1
7.2.4 Devirtualization is not still available..1
7.2.5 Merging of adjacent superclass is not still available ...1
7.2.6 Call graph considers objects instantiated anywhere, not only locally1

7.3 SITUATIONS THAT JEOPARDIZE OBFUSCATORS ...1
7.3.1 Reflection API usage ..1
7.3.2 Relative resource addressing..1
7.3.3 Unnecessary code ...1
7.3.4 Throwing exceptions...1
7.3.5 Synchronization ..1
7.3.6 Switches ..1

7.4 OTHER RECOMMENDATIONS ..1
7.4.1 Do not initialize big arrays in line..1
7.4.2 Types byte, short, char and boolean are usually converted to int ..1
7.4.3 Avoid nested and anonymous classes ...1
7.4.4 Avoid reinvent API (Application Program Interface) already available..............................1
7.4.5 Reuse objects ..1

8 RELATED WORKS ...1

8.1 LANGUAGE-INDEPENDENT METHOD INLINING RESEARCHES...1
8.2 METHOD INLINING IN COMPILERS AND TOOLS ..1
8.3 RELATED WORKS OF BEST PROGRAMMING PRACTICES ...1

9 CONCLUSIONS ..1

9.1 CONTRIBUTIONS...1
9.2 FUTURE WORK ...1

REFERENCES..1

�����
����
����
����
�������

FIGURE 2-1: JAVA 2 EDITIONS AND THEIR TARGET MARKETS [KVMWP]...1
FIGURE 2-2: J2ME SOFTWARE LAYER STACK [KVMWP] ..1
FIGURE 2-3: VARIANTS OF THE JAVA PLATFORM FOR SMALL DEVICES [ORTIZ, 2002]1
FIGURE 3-1: BUILD PROCESS FOR J2ME APPLICATIONS. ...1
FIGURE 4-1: JVM RUNTIME DATA AREAS. ..1
FIGURE 4-2: EXAMPLE OF METHOD INLINING WITH TEMPORARY VARIABLES. ...1
FIGURE 4-3: RTA EXAMPLE. ...1
FIGURE 5-1: MAKE ABSTRACT EXAMPLE...1
FIGURE 5-2: EXAMPLE OF METHOD INLINING WITHOUT TEMPORARY VARIABLES..1
FIGURE 5-3: FORMULAE OF CODE SIZE INCREASE ESTIMATION..1
FIGURE 6-1: CODE SIZE REDUCTION BY OBFUSCATORS. ..1

������������������������

TABLE 3-1: OPTIMIZATIONS IMPLEMENTED BY ANALYZED OBFUSCATORS..1
TABLE 3-2: OPTIMIZATIONS OCCURRENCE IN OBFUSCATORS. ...1
TABLE 3-3: OPTIMIZATION MECHANISMS USED BY OBFUSCATORS. ...1
TABLE 6-1: BYTECODE SIZE REDUCTION BY ALGORITHM PARAMETERIZATION. ..1
TABLE 6-2: NUMBER OF INLINED METHODS. ...1
TABLE 6-3: NUMBER OF INLINED CALL SITES. ...1
TABLE 6-4: REDUCTION ON TOTAL MEMORY ALLOCATED...1
TABLE 6-5: APPLICATION PERFORMANCE IMPROVEMENT. ..1

1

���� ��������	����������	����������	����������	����������

This new century is witnessing a new trend in computer science research:

ubiquitous or pervasive computing. According to it, computation will be increasingly

embedded in mobile devices (such as cell phones and pagers), providing to users

relevant information and services anytime and anywhere. A myriad of applications from

which users can daily benefit are being developed, ranging from simple e-mail systems

to complex applications, such as intelligent Personal Digital Assistants, interactive

multiplayer games, e-commerce location-sensitive transactions systems, and so on

[Hansmann, 2003].

The main platform used by the industry for programming mobile devices is Java

2 Micro Edition (J2ME), a smaller version of the Java Standard Edition (J2SE) in order

to fit it into the strong execution memory and processing constraints of these devices1.

These constraints often force J2ME developers to sacrifice the object-oriented benefits

and software quality recommendations, such as code legibility and ease of maintenance,

in order to reduce the number of classes, methods and fields of the application and

consequently its processing requirements.

A solution to face these constraints is to employ Whole Program Optimizations

[Dean, 1996], where the application is globally transformed, considering that the

optimizing tool knows the entire application code, this is the generated code will not be

extended or used by other applications. The industry has been increasingly adopting this

approach, using tools like obfuscators or shrinkers.

Obfuscators were originally implemented to make reverse engineering difficult,

while applying some automatic transformations like reducing names of class, package

and member (methods and fields). As a side effect, these optimizations also make the

programs smaller. Nowadays, some of these tools, sometimes called shrinkers, have

included other optimization techniques specifically aiming at reducing application size,

like: removal of unused classes and members; and flattening the class hierarchy.

1 The J2ME applications must be very small (often up to 50 kilobytes) [Knudsen, 2002b] and they have to

consider processing capacity as low as that of 25 MHz processors [KVMds].

 Introduction

2

In spite of obfuscators being very popular in the J2ME community, we have

observed that developers often don’t know (or don’t trust) these tools enough and keep

sacrificing code quality in order to optimize their applications.

��� �����	����������
This work presents an original study identifying what optimizations are most

common in the most popular obfuscators and where their implementations differ. It also

identifies new optimizations being implemented and gives guidelines about what else

could be taken into account to choose a tool.

This study highlighted that method inlining optimization has been neglected by

these tools for often having as a side effect the increase of the code size. Method

inlining, a well-known optimization, consists basically in choosing a certain set of call

sites and replacing them by the code of the called method. This optimization presents a

proved performance gain [Dean & Chambers, 1994] and it is a good solution for

automatically resolving many situations the programmers try to avoid handly.

This work introduces a novel cross-module and whole-program technique for

implementing method inlining optimization for the Java Virtual Machine, which both

improves the performance of the application and still tries to assure some code size

reduction, while removing around 50% of the reachable methods. This was possible by

exploring, on one side, the low level characteristics of the Java Virtual Machine, in

particular the way a method body is copied, and, on the other hand, considering the

possibility of removing methods when all their call sites have been replaced.

For more than three years, our research team has been providing consulting

services on J2ME for industrial scale applications [CESAR/Meantime]. This

experience, combined with the knowledge acquired in this work concerning the internal

structure of obfuscators, shown us that using the best optimizations is not enough to

assure code quality of the J2ME applications. It is essential for programmers to know

the capabilities of the adopted tool in order to avoid unneeded design sacrifices and to

improve optimization results. A lot of effort is wasted avoiding situations already dealt

with automatically, while other practices may confuse the optimization algorithms.

In order to reduce this problem, this work also introduces best practices for

programming J2ME applications considering the optimizations implemented by

obfuscators. To our knowledge, the technical literature has not covered these issues so

far. The practices are organized so that we highlight situations not resolved by

 Introduction

3

obfuscators, as well as situations handled by them and practices that jeopardize their

usefulness. These best practices have been used by an industrial software development

team in CESAR/Meantime [CESAR/Meantime], our partner.

��� 	�����������������
The next chapters lead the discussions in the rest of the work.

Chapter 2 presents the state of the art of the J2ME Technology, including its

importance as a Java Technology, its architecture and constraints. This is important to

justify extreme developers care about application size and performance.

Chapter 3 discusses the whole program optimizations and introduces our

empirical study identifying which ones are most common in obfuscators and where their

implementations differ. The chapter also comments why the J2ME platform benefit this

kind of optimization.

Chapter 4 details the method inlining optimization and the problem of the code

size expansion. This chapter contributes with a full analysis of low level factors of the

Java Virtual Machine involved in the increase of code size during the optimization.

Chapter 5 introduces our proposed technique for implementing method inlining

optimization, while detailing how we have combined a low level approach and the

whole-program assumption to face each factor of code expansion.

Chapter 6 discusses our experiments to evaluate the impact of the proposed

technique on the application code size, execution performance and memory, as well as

the surprising reduction in the number of methods and calls after optimization.

Chapter 7 presents a best programming practices guide, developed considering

our study about the optimizations available by obfuscators and our experience while

extending one of them.

Chapter 8 lists the most important related work, including method inlining

language-independent researches, and method inlining implementations in compilers

and tools. The chapter also presents some works on best programming practices guides.

Finally, Chapter 9 discusses some conclusions of the work, presenting the most

important contributions of this research and some future works.

5

���� ��	�����	�����	�����	���������

The main platform used by the industry for programming mobile devices is Java

2 Micro Edition (J2ME). Some of the main benefits of using Java in these devices are:

• Hardware-independence: standardizing resources provided by the virtual
machine allows applications to be executed in several different devices, since
they share the same virtual machine.

• Dynamic content: new applications and application versions can be installed
and configured in the devices, allowing better adequacy to user needs.

• Developer community: the application developing is not limited to device
manufacturers. Any Java developer can, with some effort, implement
applications to devices unavailable before.

• Security: applications security and validation can also be found in J2ME.
Language constraints forbid illegal access to critical device resources,
avoiding wrong or malicious instructions.

This chapter presents the state of the art of the J2ME Technology, including its

importance as a Java Technology, its current architecture and possible trends.

��� �������������
The first version of the Java language was developed as part of the Sun’s Green

Project [Green] in order to create products to small computers and devices. Due to its

strong portability, its potential for more complex computer environments was evident,

and each new version added more and more features (Applets, AWT, RMI, JDBC,

Serialization, Reflection, etc).

Soon, the number of required classes and resources made it unavailable to be

implemented by simpler devices, like cell phones, pagers, PDAs (Personal Digital

Assistance), radios, televisions, home applicants, etc. The software development to this

emergent business domain was kept limited to manufacturer laboratories, often using

hardware-dependent low level programming.

In the first four years of the Java platform, the language became the main choice

for internet applications. Sun has introduced some other technologies addressed to small

devices, but some of them did not have the expected acceptance:

 Java 2 Micro Edition

6

• The JavaCard platform (1996) [JavaCard] defines a very small Java
environment for smart cards e Java rings [Cameron & Day, 1998]. This
platform is still well used by interested community, but it is too small to
cover the needs of applications for larger devices, like cell phones.

• The PersonalJava platform (1997) [PersonalJava] implements an
environment just a little smaller than the traditional one, used in personal
computers (PC’s). It addresses devices like portable computers and advanced
PDA’s. Unfortunately, the environment was too large to be embedded in cell
phones, pagers and some simple PDA’s.

• The EmbeddedJava platform (1998) [EmbeddedJava] was addressed towards
embedded systems manufacturers, so that they could define which resources
would be provided by the device’s virtual machine. This flexibility made
applications hardware-dependent and its development limited to the
manufacturers themselves.

Recognizing that the Java architecture needed some radical reorganization

[CLDC 1.0; Appendix1], Sun regrouped Java technologies in three editions, each one

addressed to a specific business range:

• Java 2 Platform Enterprise Edition (J2EE) [J2EE]: For enterprises needing
to provide Internet business server solutions.

• Java 2 Platform Standard Edition (J2SE) [J2SE]: For the desktop market,
where applications do not need advanced features.

• Java 2 Platform Micro Edition (J2ME) [J2ME]: For consumer and
embedded device manufacturers, as well as service providers who wish to
deliver content to these devices.

Each edition defines a set of development tools, like libraries and APIs

(Application Programming Interfaces), together with a Java virtual machine properly

scaled for the execution environment. Figure 2-1 presents the three Java editions and

their relations with available virtual machines.

Since its initial versions, the J2ME Platform was well accepted by the Java

community. Actually, each new feature or API is identified as a Java Specification

Request (JSR) and produced by a consortium of big industrial partners, including device

manufacturers, service and content providers and software companies. In the end, the

J2ME Platform has been a successful return to the initial goal of the Green Project,

while making Java available for pervasive computing.

 Java 2 Micro Edition

7

Figure 2-1: Java 2 editions and their target markets [KVMwp]

��� ������������������
Due to the wide range of hardware and execution environments that J2ME

targets, its architecture was designed to be modular and scalable, allowing flexibility

while defining which features must be available for each device class. These

requirements were modeled in three software layers that must be built on the Host

Operating System of the device:

• Java Virtual Machine Layer: This layer is an implementation of a Java
virtual machine that is customized for a particular device’s host operating
system and supports a particular J2ME configuration.

• Configuration Layer: The configuration layer defines the minimum set of
Java virtual machine features and Java class libraries available on a category
of devices and market segment. A device can support only one configuration.

• Profile Layer: The profile layer defines the minimum set of APIs available
on a particular “family” of devices. Profiles are implemented upon a
particular configuration. Applications are written for a particular profile and
are thus portable to any device that supports that profile. A device can
support multiple profiles.

Figure 2-2 presents a graphical representation of the J2ME architecture layers:

 Java 2 Micro Edition

8

Figure 2-2: J2ME software layer stack [KVMwp]

The implementations of the configurations and virtual machines are always very

closely aligned. Together they are designed to capture just the essential capabilities of

each category of devices. Any differentiation into devices families must be specified in

the profile layer. Nowadays, there are only two available configurations:

• Connected Device Configuration (CDC) [CDC 1.0]: The CDC uses a virtual
machine named CVM (Compact Virtual Machine), with all classical
resources and features, but with some constraints about memory usage. This
configuration targets devices that provide at least a few megabytes of
memory to the Java environment.

• Connected Limited Device Configuration (CLDC) [CLDC 1.0] [CLDC 1.1]:
The CLDC uses a limited virtual machine named KVM (Kilobyte Virtual
Machine or K Virtual Machine) and targets devices with several processing
and memory constraints, making available only a few kilobytes of memory
to Java.

Figure 2-1 also presents these two configurations and their relations with each

virtual machine.

As the profiles address market segments, the number of profiles currently

available and being developed are much wider than the number of configurations and

they are continuously being reorganized. Figure 2-3 resumes the current relationship

among all Java technologies for small devices, including profiles and configurations.

Personal Profile stack, composed by CDC [CDC 1.0], Foundation Profile [FP

1.0] Personal Basis Profile [PBP 1.0] and Personal Profile [PP 1.0], is being developed

upon CDC in order to provide an environment similar to the PersonalJava Technology

[PersonalJava].

 Java 2 Micro Edition

9

Figure 2-3: Variants of the Java Platform for small devices [Ortiz, 2002]

Mobile Information Device Profile (MIDP), the first and most popular profile,

was developed upon CLDC addressed to Mobile Information Devices (MIDs), like cell

phones, pages and some simple PDAs. It is already in the second version [MIDP 2.0]

and there are a number of compatible devices being sold in the world. Besides, MIDP

has been used as basis for other profiles, like Personal Digital Assistant Profile (PDAP)

that only provides some optional packages specifically for PDA applications [PDAP].

Thus, CLDC and MIDP standard are assumedly a key part of the J2ME

Technology [PDAP] and they can be considered the most basic, popular and well-

established J2ME stack. However, they are also one of the most limited Java execution

environments, imposing several critical constraints. These constraints, which justify and

require aggressive optimizations, will be discussed in the next section.

��� ������	������������
In order to allow J2ME developers to create portable applications, the profile,

configuration and virtual machine specifications must require minimal resources and

libraries that devices must make available to be compatible.

The high-level design goal for the KVM was to create the smallest possible

“complete” Java virtual machine that would maintain all the central aspects of the Java

programming language [KVMwp]. However, KVM was designed for small devices that

typically contain 16-bit or 32-bit processors, clocked as low as 25 MHz, and a minimum

total memory footprint of approximately 128 kilobytes [KVMds]. Regarding these

requirements, KVM implementation has currently only 50-80 kilobytes of object code

and needs only a few tens of kilobytes of dynamic memory to run [KVMwp]. In spite of

its reduced size in memory, not much memory is left for the applications. It is easy to

 Java 2 Micro Edition

10

find devices that reject applications larger than 50 kilobytes [Knudsen, 2002b]. Such

small execution environment justifies extreme developer care about application size and

performance.

The CLDC specification has currently two versions [CLDC 1.0] [CLDC 1.1].

Each one defines the subset of the Java programming language and virtual machine

features that the device must provide. CLDC Specification version 1.0 defines that the

supported KVM must be fully compatible with the standard Java Virtual Machine

Specification [Lindholm & Yellin, 1999], except for the following differences:

• No floating point support

• No user-defined class loaders

• No thread groups and daemon threads

• No finalization of class instances (method Object.finalize())

• Many exception and error classes are not available

• No native methods (Java Native Interface - JNI)

• No reflection (package java.lang.reflect)

• No weak references (class java.lang.ref.WeakReference)

The CLDC Specification version 1.1 was recently released and consists in an

incremental release that is intended to be fully backwards compatible with CLDC

Specification version 1.0 but also to address slightly bigger devices. It does not include

any new major changes, just adding requirements for some features, like floating-point

support and some minor library changes to make it more compatible with J2SE.

Except for these constraints, the KVM supporting each CLDC specification must

be fully compatible with the standard Java Virtual Machine Specification [Lindholm &

Yellin, 1999], including the standard classfile format. In fact, there is not a specific

compiler for J2ME. The application is compiled on the same way, however, before

being installed in the device, it is submitted to a pre-verification process which checks if

the constraints imposed by the configuration were satisfied. That procedure still inserts

some marks in the classfile to ease the class loading and validation tasks of the device’s

operating system.

 Java 2 Micro Edition

11

Finally, both versions of the MIDP Specification [MIDP 1.0] [MIDP 2.0] were

designed assuming only CLDC 1.0 features, so that they will also work on top of CLDC

1.1, and presumably any newer versions. This means that, even considering the probable

MIDP stack evolution, J2ME developers must expect a severely constrained execution

environment, when compared with standard Java platform. In such an environment,

aggressive optimizations are unavoidable, not only to improve the application

performance, but also to reduce the application size.

13

���� ������������
�������������������
�������������������
�������������������
���������������������������������������

Whole Program Optimizations consider that the optimizing tool knows the entire

application code and transform it based on this assumption. They assume that the

generated code will not be extended or used by other applications. This chapter

discusses the state of the art of whole program optimizations focusing on demand of

J2ME for optimization. Section 3.1 discusses why we can safely apply this kind of

optimizations on most of the J2ME applications. Sections 3.2 and 3.3 present our

empirical study, identifying what optimizations are most common in the most popular

obfuscators and where their implementations differ. Section 3.4 discusses some final

remarks about this chapter.

��� ���������
�������������������������
Whole program optimizations can be safely applied on most J2ME applications

because the security model defined in the CLDC Specification [CLDC 1.0] [CLDC 1.1]

and the application model defined in the MIDP Specification [MIDP 1.0] [MIDP 2.0]

forbid that applications interact with each other after downloaded and installed in the

device. Unfortunately, the total amount of code devoted to security in Java 2 Standard

Edition far exceeds the memory budget available for a Java virtual machine supporting

CLDC. Therefore, some compromises and simplifications were necessary.

CLDC application-level security model uses a metaphor of a closed “sandbox”

that ensures the system libraries are closed and predefined by CLDC, profiles (such as

MIDP) and manufacturer-specific classes specifications. This security model still

specifies that a Java application can load application classes only from its own Java

Archive (JAR) file. These restrictions (about system and application classes loading)

mean the application programmer can consider that no class will be dynamically loaded

in execution time other those considered in design time.

The MIDP application model even allows multiple applications to be delivered

in one JAR file, called MIDlets Suite. In these cases, each application, called MIDlet,

can interact with each other sharing data and code, however the set of system and

 Whole program optimization

14

classes of all applications are still predefined in the context of the JAR file, on the same

way as described by CLDC security model.

Note that dynamic class loading is still available in J2ME, through the method

Class.forName(String className). This method allows that programmers access a

class by its name (for example, to instantiate it). Even in this case, the loaded class must

be inside the application JAR file or it must be one of the system classes. However, the

optimizing tool is not able to automatically identify these classes as part of the

application, because they are not directly referenced and the class name can be

programmatically built in the execution time. In this case, optimizing tools use to make

available some way to programmers indicate which classes are accessed using this

mechanism. This will be better discussed in Section 7.3.1

��� ���������
������������������������������
Obfuscators were originally developed to make reverse engineering difficult,

replacing human-readable identifiers inside the Java classfile with meaningless short

strings, making the resulting applications more difficult to understand through

decompilation1. As a side effect, these obfuscators also made the programs smaller

[RetroGuard]. Soon, industry noticed it was possible to employ other optimizations in

order to reduce even more the application size and to improve the execution time.

In this work, we use the term obfuscator for any tool that automatically employs

Whole Program Optimizations, so that the submitted program is globally transformed,

considering other programs will not use the generated code.

Obfuscators are often included in the build process between the compilation and

pre-verification steps, acting directly over the already compiled bytecode. Thus,

optimizations previously performed by the compiler are automatically kept in the final

version of the application. Figure 3-1 introduces a graphic representation of the

applications build cycle in J2ME.

1 Decompilation is a process that generates the source code while interpreting the application bytecode.

 Whole program optimization

15

App.java App.class App.class javac preverifier obfuscator App.class

runtime
preverifier interpreter

Download...

Workstation

Device
(KVM runtime)

Figure 3-1: Build process for J2ME applications.

There are many available tools that can be classified as obfuscators. We studied

some of the most popular tools, such as RetroGuard [RetroGuard], DashO [DashO],

Jshrink [Jshrink], Jax [Jax] and ProGuard, identifying the optimizations they announced

as implemented or as future work. Table 3-1 presents the name and a short description

of the optimizations we found, grouped by its main goal.

Optimizations Description
Optimizations against reverse engineering

Classfile recreation It removes unused constant pool entries and attributes used
to store compiler information, such as line number of the
source code and local variables names.

Class and member names compression It replaces the class, field and method names with short
names (often one letter). Overloading (methods with the
same name) is used whenever possible.

Package name compression It replaces all or part of the package name with short names
(often one letter), so that the grouping of classes is kept.

Class package relocation It moves all optimized classes to the default package, which
has no name. If the moved class accesses some package
or protected member in an unmoved class, these
members must be made public to prevent access
violation.

Optimizations for program size reduction
Removal of unused elements It traces and removes classes, fields and methods not

referenced directly or indirectly from some start method,
such as startApp().

Removal of write-only fields It traces and removes fields that are only written but never
read. The instructions that wrote to the field are removed
too, but the instructions that evaluated to the assigned value
are kept, because they can include some side effect.

Removal of unused method body It makes a method abstract if its body is never executed but
the method cannot be removed for any reason. For example,
if the method implements some interface and it is called
virtually, but it does not belong to an instantiated class.

Merging adjacent superclass It removes intermediate classes in the class hierarchy,
moving all methods and fields of a class to its superclass. In
order to keep the resulting objects size, either the superclass
is not instantiated or the subclass has no fields.

Optimizations for execution performance improvement
Devirtualization It replaces slower virtual call instructions with faster static

call instructions. In order to do that, methods are made static
and private when possible.

Method inlining It replaces some method calls with the code of the called
method. It is only possible for calls that reach only one
method (non-polymorphic).

 Whole program optimization

16

Intra-procedural optimizations Optimizations inside the method body, such as constant
folding (evaluation of constant expressions in compile time)
or dead code elimination (removal of write-only variables
and unreachable branches) [Nullstone, 2002]. Some other
optimizations, like method inlining, can create opportunities
for these optimizations.

Table 3-1: Optimizations implemented by analyzed obfuscators.

RetroGuard [RetroGuard] was developed by Retrologic as an open source

project with the main goal of making applications harder to reverse engineering. It

became popular because it is pre-installed in the Sun’s J2ME Wireless Toolkit

[J2MEwtk 1.0.4]. We used the version 1.1.9.

Jshrink [Jshrink] is a commercial tool developed by Eastridge Technology and

includes a good graphical user interface for configuration and reverse engineering. It is

listed by ProGuard as one of the commercial alternatives tools. We used version 2.19

and an evaluation license for the experiments.

ProGuard [Lafortune] was developed by Eric Lafortune as an open source

extension of RetroGuard with the main goal of making applications smaller. It became

popular because it is also pre-installed in the Sun’s J2ME Wireless Toolkit [J2MEwtk

1.0.4]. We used version 1.7.2 for the experiments but ProGuard has new versions

published frequently.

Jax [Jax] is a research project developed by IBM [Tip et all, 1999] [Tip &

Palsberg, 2000], implementing additional complex optimizations, like merging adjacent

superclasses. Unfortunately, its source code is not public. Nowadays the Jax project is

being discontinued and integrated to the IBM development environment. We have

tested the version 7.3a then available for download and free for use.

DashO [DashO] is a commercial tool developed by preEmptive Solutions that

also has similar tools for .NET architecture. We used a copy of DashO Embedded

Edition version 1.0 with an evaluation license for the experiments.

For each of the optimizations, we prepared an example application that was

submitted to all evaluated tools, even if not mentioned in the tools’ documentation.

Then, we decompiled the resulting applications in order to validate the effect over the

bytecode. Table 3-2 presents the list of the actual optimizations implemented in the

obfuscators. We noted that there is a trend to implement optimizations for execution

performance improvement. Our analysis of the generated bytecode showed that almost

all optimizations have insignificant differences when implemented by different

 Whole program optimization

17

obfuscators (marked with “X”). The only two interesting exceptions are package name

compression and method inlining, which presented different results (marked with “?”).

Optimizations

R
et

ro
G

ua
rd

JS
hr

in
k

Pr
oG

ua
rd

 2
.1

Ja
x

7.
3

D
as

hO
 E

E

Classfile recreation X X X X X

Class and member names compression X X X X X

Package name compression ? ? ?

Class package relocation X X X

Removal of unused elements X X X X

Removal of write-only fields X X

Removal of unused method body X

Merging adjacent superclass X

Devirtualization X

Method inlining ? ?

Intra-procedural optimizations

Table 3-2: Optimizations occurrence in obfuscators.

Package name compression was implemented in different ways by the tools.

RetroGuard implemented it so that only each word of the package path is compressed,

keeping the number of levels of the package tree. Jshrink opted for replacing the whole

package path with one letter, but keeping the groupings of classes of each package.

ProGuard optionally allows all optimized classes to be moved to one user-specified

package, similar to class package relocation optimization, but if so the groupings of

classes are lost.

Method inlining results were even more distinct. Actually, the DashO

documentation does not identify method inlining as having been implemented, however

we found some indications of inlined method in reports generated by the tool, but only

for trivial instance field access methods (non static get and set). Jax method inlining was

mentioned briefly in some articles as being only a secondary goal and applied for

methods whose only function is to set or retrieve a field’s value [Tip et all, 1999].

Understanding that method inlining is a very important optimization, we refined its

analysis, as presented in the next section.

 Whole program optimization

18

��� �����	��������
��������������
In order to identify the scope of the existing implementations, we opted for

exploring experimentally the results of the tools (in this case DashO and Jax) when

applied to carefully controlled situations.

Initially, we prepared some simple programs representing opportunities we

consider promising to method inlining optimization, and we submitted them to the tools,

investigating how far each tool already optimizes them.

For the experiments performed here, we used the version 7.3 of Jax and an

evaluation copy of the DashO Embedded Edition. Both of them were configured so that

all optimizations over method names were disabled, allowing the reverse engineering

process of the resulting programs. Table 3-3 presents the sample methods, the number

of times they were called and what tools dealt with them in any way, analyzing the

generated bytecode.

Trivial field access methods 3
public int getIndex () {
return this.index; } X

Array field access methods 3
public int getItem (int i) {
return this.items[i]; }

Empty methods 1
public void doNothing () {
}

Methods called once 1
public void doSomething () {
... }

Trivial field access methods 3
public static int getIndex () {
return this.index; } X

Array field access methods 3
public static int getItem (int i) {
return this.items[i]; } X

Empty methods 1
public static void doNothing () {
} X

Methods called once 1
public static void doSomething () {
... }

Oportunities/Obfuscators

In
st

an
ce

S
ta

tic

Examples

Ja
x

7.
3

D
ah

sO
 E

E

N
um

be
r

of
 c

al
ls

Table 3-3: Optimization mechanisms used by obfuscators.

While elaborating the examples, we noticed that, apparently, the tools handle

static and instance methods differently. We then created additional versions of the

examples, also exploring this factor.

 Whole program optimization

19

Trivial field access methods is an example that recovers the value of a field or

sets a value to it, being a good example of optimization opportunity without creating

temporary variables, even if they have been called several times. Notice that a simple

additional comparison or exception thrown can make the code non-trivial, demanding

the creation of temporary variables.

Array field access methods, either one-dimensional or multidimensional, are

good examples of small not trivial methods where generation of temporary variables is

needed. However, even if the methods have been called several times, the removal of

its header can compensate for the code expansion during the copying of the bytecode.

Empty methods, since they aren't part of interfaces implementation or a

polymorphic call, they also can be removed. In this case, the optimization simply

removes the method and all its call sites.

Methods called only once usually can be optimized and removed, regardless of

their size.

In our experiments, Jax dealt many examples including non-trivial methods but

we were unable to obtain any effect over instance methods, only static ones. DashO

dealt only trivial field access methods and only its instance version. Anyway the

obfuscators seem to have neglected method inlining while tried to apply it only where it

surely does not increase the application size.

��� �������������
Our results should not be used to classify the obfuscators or identify the best

one. We are only interested in (i) identifying what optimizations are more common and

(ii) identifying what is the trend of new implementations. There are many other factors

that must be taken into account to choose a tool, as presented above:

• Configuration flexibility: all obfuscator must provide some way for the user
to identify which pieces of the code (classes and members) must not be
optimized and the start point of the application, used to construct the call
graph. Usually, this is done by configuration script for each application being
optimized. However, a flexible configuration script language can allow the
user to reuse the scripts in applications with the same architecture.

• Graphical user interface: many obfuscators provide a graphical user
interface at least to help the user in the construction of the configuration
scripts. However, this interface can be very powerful, including even reverse
engineering tasks to allow the user to choose the unchanged code elements
graphically.

 Whole program optimization

20

• Development environment integration: in a software production
environment, it is usual to integrate the obfuscator with the IDE (Interactive
Development Environment) or some build tool, like ANT [Ant Project], so
that it can be automatically executed through the development lifecycle.
Some obfuscators have plug-ins to the most popular IDEs or they provide
command line interfaces to easy integration.

• Project continuity: see if the project is really alive and its delivery of new
versions and bugs fixes, as well as if there is user support available. It is
always possible to choose another tool, but this can impose some work to
retrain the developers and to update configuration scripts and the integration
with the development environment.

• Documentation: check if the obfuscator has good documentation about how
to use it, how to write configuration scripts and how to integrate it with the
development environment. We propose the documentation should include
best programming practices too, as described in Chapter 7.

• Price/License: of course, pay attention to the license agreement and what is
needed to get new versions of the tool. Many obfuscators are GNU projects
that grant free rights for use and modification. For commercial tools, they
use to publish trial version free for use but often with expiration deadlines.

21

���� ��������	�����	�����	�����	�����������
���	���������������
���	���������������
���	���������������
���	������������������	���������������	���������������	���������������	������

��������������������������������

Method inlining essentially consists of two parts: (i) a decision algorithm that

chooses a set of method calls (call sites) to be optimized and (ii) a copy mechanism that

replaces the selected call sites with the code of the method being called [Serrano, 1997].

This optimization usually brings a direct improvement on the performance of the

application, since it removes the overhead for method call and return. In other words, it

potentially removes all the activities related to managing the call context stack (frames).

Another important method inlining benefit is to open opportunities for other intra-

procedural optimizations, like constant folding and dead code elimination, since they

usually can only work on continuous code blocks between calls.

Unfortunately, this technique also has a direct impact over application code size,

since inlining a method replicates its code in all replaced call sites, causing code

expansion. This can also degrade application performance, because it can cause

“thrashing” on demand-paged virtual-memory systems1. In other words, if the

executable size is too big, the system can spend most of its time going out to disk to

fetch the next piece of code [Cline, 2003].

We believe that in order to overcome properly the problem of the increase in the

application code size it is necessary to take into account the features of the underlying

implementation of the programming language. In our case, this means that we should

explore the runtime and bytecode features of the Java Virtual Machine. In principle, it is

more powerful than the source code approach, since it is easier to trace and to control

the exact impact of the changes performed by the optimization over the application size.

However, intra-procedural optimizations already implemented in compilers cannot be

reused. They must be implemented again on bytecode level, and performed after method

inlining.

1 It is not clear if thrashing is really a problem for J2ME platform, because the memory management

policy is implementation-dependent and it can be specially designed for small devices [CLDC 1.0,

Section 5.4.5] [Knudsen, 2002b].

 Method Inlining and the problem of code size

22

On the same way, we should consider features of the applications to be

optimized, like the possibility of relying on whole program analysis and optimization in

J2ME. Thus, we can be much more aggressive, implementing cross-module inlining and

removing methods when all their call sites have been replaced. In fact, we included the

removal method benefit as a parameter of the decision algorithm.

Most results presented in the literature explore the decision algorithm with the

objective of maximizing the performance of the application while trying to control code

expansion. However, as far as we know, they usually do not take fully advantage of the

removal method benefit as a parameter of the decision algorithm, since without the

whole program assumption, only few methods, like private methods, can be removed.

As we consider we know all application code, we were able to remove even public and

cross-module methods if all their calls had been inlined.

In Section 4.1 we explain some of the internal structures used by the Java Virtual

Machine (JVM) to keep the stack of method calls. Section 4.2 presents an extensive list

of low level details of the JVM related to the size of the bytecode to be copied during

inlining. We then present in Section 4.3 the factors that must be considered in any

decision algorithm, discussing the influence of the call graph and the restrictions

imposed by the virtual machine.

��� ��
The specification of the Java Virtual Machine [Lindholm & Yellin, 1999]

defines many data structures to manage the execution of applications. Among these

structures we are particularly interested in those related to controlling method calls,

notably frames, operand stack, local variables array and invoke instructions. Figure 4-1

shows a graphical representation of these JVM runtime data areas, as defined in JVM

Specification [Lindholm & Yellin, 1999].

The frames are managed by each thread. They are used to store the call context

of a method. Each frame contains its own array of local variables and its own operand

stack. The maximum size of these two structures is defined in the method code.

The array of local variables stores the value of the parameters and local variables

of the method. If it is an instance method (non static), the zero index position stores a

reference to the this object. The positions next to it store the values of the parameters

followed by the values of the local variables, in a way that variables of type double or

long use two positions in the array, while the other basic types use a single position.

 Method Inlining and the problem of code size

23

Heap

Objects
Arrays

Classfiles

Fields descriptors
Constant Pool []
Methods code
 Invoke instructions

Threads

Current classfile
Current method
Current frame

Frames

Local variables array[]
Operand stack[]

Local variables array[]
Operand stack[]

Figure 4-1: JVM Runtime data areas.

The operand stack stores the partial values resulting from the execution of the

instructions. Each instruction takes its parameter(s) from the top of the stack, uses them

according to the instruction semantics and eventually pushes back on the top of the

stack its result. For instance, the family of load_n instructions is responsible for

copying the value of variable n to the top of the stack. Similarly, store_n instructions

are responsible for assigning to variable n the value on the top of the operand stack.

Invoke instructions are responsible for method calls. The instruction takes the

method arguments from the top of the operand stack, including the reference to the

called object (for non-static methods), and initializes a new frame and its array of local

variables. When returning from the execution of the method, the virtual machine

removes the frame and places the result returned by the method on the top of the stack.

The constant pool is also an important characteristic of the Java Virtual Machine

for our work, since it is one of the structures that most contributes to application size.

The constant pool is a table, present in every Java class file, containing symbolic

information of all the elements accessed by the class, such as constant values (e.g.

strings) and references to methods and fields from the class itself of from other classes it

references. The self-sufficiency of the classfile has historical reasons: it was designed

this way to ease class distribution over a network (Java applets). But this creates a

significant amount of duplication of entries in the constant pools in the classes of an

application. For example, if many different classes access a method from a class, each

“client” class will have an entry in the constant pool referencing (naming) the method,

 Method Inlining and the problem of code size

24

including its name, type descriptor and the name of the class where it is defined. Notice

that calls to a same method in a given classfile share a single entry in the constant pool.

The removal of methods through inlining, therefore, produces a direct impact over this

structure, since it also removes entries in the constant pool related to the declaration and

calls to the method.

��� ������	��� ������������������
�
In general, the copied bytecode needs to be modified before being inserted in the

code of the calling method, and many of these changes may also increase the

application size.

The following sections describe these and other changes that impact on the size

of the copied code, of the modified caller method code and, consequently, of the entire

application. To illustrate the discussion, Figure 4-2 presents a simple example of

method inlining.

void caller() void callee(int i, int value) void caller()

Source code Variables Source code Variables Source code Variables

if (1 > 0) { 0 this this.f[i] = value; 0 this if (1 > 0) { 0 this

callee(2, 0); 1 i Class v1 = this; 1 v1

} 2 value int v2 = i; 2 v2

int v3 = value; 3 v3

v1.f[v2] = v3;

}

Bytecode Op.Stack Bytecode Op.Stack Bytecode Op.Stack

0 iconst_1 1 0 aload_0 this 0 aload_1 1

1 iconst_0 1; 0 1 getfield #3 f 1 iconst_1 1; 0

2 if_icmple 11 4 aload_1 f; i 2 if_icmple 19

5 aload_0 this 5 iload_2 f; i; value 5 aload_0 this

6 iconst_2 this; 2 6 iastore 6 iconst_2 this; 2

7 iconst_0 this; 2; 0 7 return 7 iconst_0 this; 2; 0

8 invokevirtual #2 8 istore_3 this; 2

11 return 9 istore_2 this

10 istore_1

11 aload_1 this

12 getfield #3 f

15 aload_2 f; i

16 iload_3 f; i; value

17 iastore

18 return

Caller Callee Modified caller

Figure 4-2: Example of method inlining with temporary variables.

 Method Inlining and the problem of code size

25

The first column represents the caller method, the second, the callee, and the

third, the modified caller after expansion due to inlining. The variables indicated in

each column include, beside their names, the indexes used by variable instructions.

Each column also shows the state of operand stack after each instruction.

In this example, it was necessary to create a temporary variable for each

parameter, to re-index the instructions that access the variables, and to adjust the offset

of the jump instructions in the modified caller method (if_icmple instruction). These

and other transformations will be detailed in the next sections.

����� �!"#$%&'�&(�$")*&!#!+�,#!%#-."/�
To create the local temporary variables, it is necessary to insert store

instructions before the copied code in the array, in order to transfer the method

arguments in the operand stack to the array of local variables. The size of each store

instruction depends on the index of the variable it refers to, and it can use from one to

four bytes [Lindholm & Yellin, 1999].

It may be necessary to generate an additional checkcast instruction before the

store instruction that stores the reference to the called object, guaranteeing that the

type of the created variable is compatible with the type of the object this expected by

the callee code. This is necessary when the callee method is reachable through

polymorphism. Notice that the call graph must also guarantee that only one method is

reachable.

����� �"0%'1"2%'3�,#!%#-."�%'/$!45$%&'/�
Once the parameters and local variables of the callee method are mapped into

temporary variables in the modified caller method, all instructions accessing variables in

the copied bytecode must be re-indexed to access the new variables.

Since the size of the instructions that access variables (such as load and

store) depends on the index of the variable, the size of the modified bytecode may

become bigger than the original bytecode. In the example in Figure 4-2 this did not take

place, but since the frequency of these instructions is very high, the impact may be

significant.

 Method Inlining and the problem of code size

26

����� �4)*�%'/$!45$%&'/�
The offsets of the jump instructions in the caller code and in the copied code

must be adjusted to take into account the new inlined code.

In the example of Figure 1, the instruction if_icmple of the caller method

had to be adjusted; now referring to a new offset (19). In theory it might be necessary to

replace instructions like goto (3 bytes), by a bigger instruction, like goto_w (5 bytes),

depending on the new offset. But the current version of the specification of the Java

Virtual Machine imposes a restriction on the maximum size of a method bytecode

[Lindholm & Yellin, 1999] that removes the need to use instructions like goto_w.

In short, the re-indexation of the jump instructions has no impact in code size.

����� �"*.#5%'3�!"$4!'�-+�goto�
In case there are return instructions (1 byte) in the copied code, they must be

replaced by goto instructions (3 bytes), redirecting the flow to the instruction

following the copied code.

In the example of Figure 4-2 this did not happen. We even applied a small

improvement on the copied code, removing the last return in the code, since the

value returned by the method would be already in the operand stack.

����6 7%$58"/�
The tableswitch and lookupswitch instructions can vary their size

depending on the place where they are in the bytecode. Their offset tables must be

aligned to an address that is a multiple of 4 [Lindholm & Yellin, 1999].

Thus switches in the copied code need to be modified to fit their new location in

the modified caller method. In the same way, switches in the caller method may be

moved if some method inlining is done before its location in the code, inserting new

code. In both cases these modifications may end up increasing the size of the switches’

code.

����9 �55"//"/�$&�$8"�5&'/$#'$�*&&.�
Method inlining is often performed between methods of different classes. In this

case, all entries in the constant pool accessed by the copied code must also be copied to

the class that declares the caller method, if they don’t exist yet.

 Method Inlining and the problem of code size

27

Entries in the constant pool are one of the main factors contributing to the size of

a classfile. The replication of these entries can generate a significant impact in the

global size of the application. The precise measure of this impact is difficult because it’s

possible to share them in the scope of each classfile.

��� ����	���������
�������
The implementation of the decision algorithm, responsible for the choice of

which method calls will be inlined, is the most complex part of method inlining

optimization [Serrano, 1997]. In general, if many calls are selected to be inlined, the

benefit over the performance of the application is bigger, but on the other hand each

inlined call has the potential of duplicating the copied code, increasing the size of the

application.

Although the algorithm demands a large set of specialized information for its

parameterization, the analysis uses a graph, namely the call graph, representing all the

possible method calls.

In Section 4.3.1 we present the construction of the call graph and its relevance

for method inlining optimization. Then the next section details the restrictions imposed

by the Java Virtual Machine itself that must be taken into consideration for any decision

algorithm, regardless of its objective or of the heuristics used.

����� �#..�3!#*8�
The major difficulty in the construction of the call graph is the identification of

virtual calls that can reach more than one method, through polymorphism. For example,

in a call to e.m() the algorithm must decide which of the possible implementations of

m may be executed from the evaluation of the expression e.

The call graph is particularly important for the method inlining optimization.

Polymorphic calls cannot be directly optimized, since it is not possible to define

precisely the implementation of the method that will be executed. There is also a

technique, named customization, able to transform polymorphic calls in sequences of

monomorphic calls, by inserting code to test the type of the expression before calling

each of the possibly reachable method [Whitlock, 2000]. This technique is not explored

in the context of this work since it results in an even longer code sequence.

There are many algorithms for the construction of the call graph available in the

literature. Some of the most relevant ones are CHA [Dean et all, 1995], RTA [Bacon,

 Method Inlining and the problem of code size

28

1997], XTA and k-FCA [Tip & Palsberg, 2000]. All of them start from the entry point

of the application and traverse recursively the bytecode of the methods, analyzing the

instructions that invoke methods. At each call, the method is tagged as reachable and its

bytecode will be analyzed later. Methods that are never called are left tagged as

unreachable.

The CHA (Class Hierarchy Analysis) is the simplest algorithm. It takes into

account only the class hierarchy to determine the possible executions of a method call.

However, most of the whole program tools rely on the RTA (Rapid Type Analysis)

algorithm [Bacon, 1997] for this task, since its implementation is relatively

straightforward and it also presents an acceptable approximation of the accesses that

will occur during execution. RTA extends the CHA algorithm also taking into account,

besides the class hierarchy, the class instances (new instructions) to determine

reachable methods. Therefore, according to RTA, if a method is reachable and there is a

call to the method e.m() in its body, then only implementations of methods with a

signature compatible with m(), belonging to any instantiated subclass of the static type

of the expression e are tagged as reachable.

Figure 4-3 shows a simple example where RTA can find unreachable methods.

In the example, as only the class B is instantiated, RTA marks the method C.m()as

unreachable, even the method A.m()have been called. In the same example, the CHA

algorithm would fail and would mark C.m()as reachable.

 main() {
 A a = new B();
 a.m();
}

A

m()

C

m()

B

Reachable

Unreachable
Figure 4-3: RTA example.

Other algorithms, such as XTA and k-FCA, are variations and extensions of

RTA. They vary in the precision of the resulting graph, the implementation difficulty,

and the amount of memory and processing time they need.

 Method Inlining and the problem of code size

29

����� �"/$!%5$%&'/�%)*&/"1�-+�$8"��#,#��%!$4#.��#58%'"�
Besides calls considered polymorphic by the call graph, the decision algorithm

should reject many other situations, due to characteristics of the Java Virtual Machine

itself [Lindholm & Yellin, 1999].

Abstract methods, by definition, cannot be optimized, since they have no code

associated to them. Usually, the call graph not even identifies an abstract method as

reachable. Similarly, native methods are rejected for not having Java bytecode, since

their code is external to the virtual machine. Synchronized methods are also usually

rejected, since they implement an implicit lock.

Constructors are considered in the same way as methods at the bytecode level.

They would be excellent candidates for method inlining, since they can’t be

polymorphic. But a security mechanism of Java (the preverifier in the case of J2ME)

does not allow an object to be initialized directly by the constructor of its superclass.

Therefore only constructors implemented with the directive this may be optimized.

Methods that catch exceptions cannot be optimized because, when entering the

catch block, the operand stack is emptied. Therefore, if the exception is caught only in

the modified caller method, its behavior may be affected. On the other side, methods

that throw exceptions can be optimized with no problem to the application execution;

however they will ends up changing the exception tracing info while debugging the

application, since the real method that throws the exception in execution time becomes

different from that written in the source code.

Methods that access special elements, such as non-public fields or methods

declared in the same class or inherited from other classes, or even calls to methods of

the superclass (using the directive super), must be handled specially, since it may

happen that the caller method doesn’t have enough permission to access these elements.

In an environment that allows whole program optimization, such as in J2ME

applications, some of these elements may be made public, like fields and methods

defined in classes of the program. But many situations, like methods that contain calls to

superclass methods or that access non-public fields or methods inherited from libraries

can’t be adequately resolved and cause the rejection of some or all of the calls to the

method from the list of methods that may be inlined.

Methods that have direct or indirect recursive calls also need to be handled

specially, since they can lead the decision algorithm to a loop.

31

6666 ���������	������	������	������	���������	�����	�����	�����	�����������
�������
�������
�������
����������:�������:�������:�������:������

After this study of low level factors that impact method inlining optimization,

we formulated our approach supported on two activities: (1) we defined some

techniques and heuristics to minimize the code expansion when copying the code; and

(2) we selected only the methods and call sites that, when copied, do not increase the

total size of the application, considering that the method will be excluded later if all its

call sites are optimized. Thus, we often manage to inline small methods, such as get and

set methods, as well as methods called only once, common in many applications

Before we detail our technique, Section 5.1 presents some implementation

decisions. Then, Section 5.2 defines how we handle bytecode copy problems. Section

5.3 details our proposed decision algorithm.

6�� ���������������	�������
In order to implement our solution we decided to extend ProGuard [Lafortune],

one of the most popular obfuscators in the J2ME community, often cited in technical

articles and development environments of Sun Microsystems [Klemm, 1999] [Knudsen,

2002a] [J2MEwtk 1.0.4]. It is also an open source project. Other tools and

environments evaluated either did not provide a minimum support for a complete

obfuscator [RetroGuard] [Dahm, 2002] [JikesBT] or did not publish their code [Jax]

[DashO] [Jshrink].

Version 1.7.2 of ProGuard already implemented some basic optimizations like

classfile recriation, name compression and unused members elimination. For this last

optimization, ProGuard implemented a variant of the CHA (Class Hierarchy Analysis)

algorithm, to trace the call graph. But it didn't build an explicit data structure for that.

The CHA algorithm is efficient enough for unused member detection, the initial

goal of ProGuard, but it fails to detect non-polymophic calls since it does not consider

which classes were instantiated, generating an imprecise call graph [Bacon, 1997].

Therefore, the first change we did was the implementation of an extension of the RTA

(Rapid Type Analysis) algorithm. In spite of not being the most sophisticated algorithm,

 Proposed Method Inlining Technique

32

RTA is well known for being fast and very efficient for detecting non-polimorphic calls

[Tip & Palsberg, 2000], a highly important feature for method inlining optimization.

Our RTA implementation is able to detect virtual calls where, even if there are

several methods overriding the referenced method, only one of them belonged to an

instantiated class, being marked as uniquely reachable. In this case, the referenced

method can be made abstract if its body will never be executed. Figure 5-1 shows a

simple example where our RTA implementation makes a method abstract. In the

example, as only the class B is instantiated and it has its own implementation of m(),

RTA marks the method C.m()as unreachable and makes A.m() abstract, so that the

call a.m() becomes monomorphic.

 main() {
 A a = new B();
 a.m();
}

A

m()

C

m()

B

m()

Made abstract

Unreachable Reachable
Figure 5-1: Make abstract example.

Besides the call graph construction, another auxiliary implementation needed

was a bytecode handling mechanism able to modify and copy the JVM instructions. We

considered to use or to integrate some bytecode toolkits already available [Dahm, 2002]

[JikesBT], but in the end we decided to develop our own mechanism keeping the

programming style already found in ProGuard.

After these preliminary changes, we could implement the method inlining

optimization itself, presented in the next two sections.

6�� �������	���	�����������������������	��
In order to minimize code expansion during the copy of the bytecode, initially

we identified a special but very frequent situation where the first instructions of the

body of the method only loads its parameters, reproducing the state of the operand stack

before the call to the method.

In this case, we can copy and modify only part of the code, avoiding the creation

of temporary variables and taking advantage of the previous state of the operand stack.

To do that, some constraints should be satisfied, in particular parameters must not be

 Proposed Method Inlining Technique

33

used again in the callee method and there must be no jumps to the region of the initial

load instructions. It may seem too restrictive, but this situation handles most of the field

access methods (get and set), simple functions and delegations. We named this

mechanism “stack binding”, since it uses the operand stack to connect the copied code

and the caller method context, against the “variable binding” mechanism, which uses

temporary variables as described in the Section 4.2. Figure 5-2 shows a graphic

representation of a method inlining using the stack binding mechanism.

Notice that while using the stack binding, it is often the case that the copied

bytecode has the same size of the invoke instruction, keeping the same size of the

code for each inlining operation. The variable binding is still needed for those cases

where it is not possible to use the stack binding, or when it is required to include some

checkcast instruction to match the type of the called object and the type of the

parameter this, as described in the Section 4.2.

void caller() void callee(int value) void caller()

Source code Variables Source code Variables Source code Variables

if (1 > 0) { 0 this this.f = value; 0 this if (1 > 0) { 0 this

callee(1); 1 value f = 1;

} }

Bytecode Op.Stack Bytecode Op.Stack Bytecode Op.Stack

0 iconst_1 1 0 aload_0 this 0 iconst_1 1

1 iconst_0 1; 0 1 aload_1 this, value 1 iconst_0 1; 0

2 if_icmple 10 2 putfield #4 2 if_icmple 10

5 aload_0 this 4 return 5 aload_0 this

6 iconst_1 this; 1 6 iload_1 this; 1

7 invokevirtual #2 7 putfield #4

10 return 10 return

Caller Callee Modified caller

Figure 5-2: Example of method inlining without temporary variables.

The impact of re-indexing variable access instructions was minimized by sharing

the indexes of temporary local variables, as if they had been defined inside a block in

the modified caller method. Thus, the variables’ indexes tend to be kept low even if

many call sites are optimized in the same caller method. To do that, the piece of code to

be copied is modified and prepared when the callee method is visited, not the caller,

being attached to the respective caller site for effective insertion later in the modified

caller method, when this is visited. Therefore, all callee methods are prepared for

copying considering only the original variables of the caller method.

 Proposed Method Inlining Technique

34

The relocation of switches in the modified caller method, in cases when a

previous call site has been replaced, was handled by inserting nop instructions after the

copied code for each of those call sites. Thus the switch instructions that follow them

keep their alignment in an address that is a multiple of 4, removing the need for any

correction of these instructions.

The presence of switch instructions in the copied code was not handled, causing

the rejection of the method as candidate for the optimization. This decision results from

the need to modify the bytecode beforehand, without effectively inserting it in the caller

method. It prevents the definition of the exact location where the switch is going to be

inserted in the modified code. In fact, we preferred to privilege the handling of

instructions that access variables, because they are much more frequent than switch

instructions.

The replacement of return instructions by goto instructions, the removal of the

last return instruction and the handling of the constant pool entries were implemented as

described in Section 4.2.

6�� 	���������
�������
The decision algorithm was designed in order to reduce the code size

considering the possibility of excluding the method when all of its call sites have been

optimized. Thus, in many cases, it will only be worth optimizing the calls to the method

if it will be excluded after the optimization.

The algorithm visits the reachable methods of the application in an arbitrary

order, deciding (a) which calls to the method will be optimized and (b) if it will be

possible to remove it after the optimization. After visiting the method, and having

decided to optimize part or all its call sites, this decision will never be reverted,

guaranteeing that each method will be visited up to once. This concern with the

performance of the algorithm itself is very important, with specific research work in this

area [Dean & Chambers, 1994].

During the evaluation of each method, the algorithm calculates an estimate of

the application size expansion and verifies whether the resulting value is smaller than

a certain limiting factor. This factor is the main parameter of the algorithm, named

MAX_EXPANSION. If that limiting factor is zero, it means the algorithm doesn't

tolerate any size increase. Higher values allow more methods to be optimized,

improving the application performance, but with a smaller percentage of code reduction,

 Proposed Method Inlining Technique

35

as shown in Chapter 6. Figure 5-3 details the parameters considered in the calculation of

that estimate.

NCS : number of call sites to be optimized
CDL : length of the code array to be modified
CSL : length of the code array occupied by all

invoke instructions of the call sites to
be optimized

RMV : flag indicating if the method will be
removed

MDL : total size of the method, including its
header

CUST = (NCS*CDL) – CSL – (RMV? MDL: 0)

Figure 5-3: Formulae of code size increase estimation.

Of course, the method can only be removed (indicated by flag RMV) if all its

call sites were selected to be inlined. However, it may still be worthwhile to inline only

a subset of the call sites, depending on the length of the copied code array (CDL) and

size occupied by replaced invoke instructions (CSL).

Additionally, notice that in the formulae of Figure 5-3 the value MDL is defined

as the total size used by the method, including its header. Since the header is formed by

constant pool entries, the exact determination of which entries will be able to be

excluded is not a simple task, due to the possibility that they are being shared by other

elements of the classfile. Therefore, the estimation of the code size expansion cannot be

fully exact. We tried to make it as closer as possible, predefining a fixed average size to

method headers.

Initially, the evaluation of each method considers an ideal situation where all

calls to the method will be optimized, enabling the exclusion of the method. It also

considers that it is possible to apply the stack binding mechanism, reducing the code

size to be copied (CDL). The estimate is then performed successively, while the

evaluation of the method validates each part of this initial hypothesis, in order to reject

it as soon as possible. For example, if the algorithm detects that not all the calls to the

method are monomorphic, or that it is not really possible to perform the stack binding

mechanism, the estimation is performed again, and it could reject the optimization on

the method.

In the context of the estimative of the Figure 5-3, the size of the copied code is

considered the same for all the optimized calls. However, several factors presented in

 Proposed Method Inlining Technique

36

the Section 4.3.2 show that this is not true. Therefore, at the end of the analysis of each

method, a last verification is still performed considering all the real parameters,

including the total size of modified bytecode for each call site. This is the last situation

where the optimization of the method being visited may still be rejected.

Besides these considerations about the impact on the application size, the

constraints imposed by the virtual machine, shown in the Section 4.3.2, should also be

taken into account. They could influence in the number of call sites to be optimized or

even reject the whole method.

Thus, abstract, native, synchronized and constructor methods are rejected, as

well as methods that catch exceptions or that contains direct recursive calls. For

indirect recursive calls, the first method where the cycle is detected is rejected,

allowing the rest of the methods in the cycle to be optimized, merging them into the first

method and generating direct recursive calls.

Methods that throw exceptions are inlined normally, assuming the behavior

change over exception tracing due to the fact that the real method that throws the

exception in execution time becomes different from that written in the source code.

When accessed by an inlined method, non-public members (fields and methods)

declared in the same class or inherited from other classes are often made public. This is

supported by the whole program optimization. Exceptions to this rule refer to members

inherited from library classes, which can't be made public; and private methods, which

are not made public because the invoke instruction used for private methods

(invokespecial) is faster than the one used for public methods

(invokevirtual) [Lindholm & Yellin, 1999].

In all situations where the accessibility problem is not resolved, that is, members

that can't be made public and methods with special super calls, the algorithm does not

reject the method immediately, but it goes ahead considering only calls in the same

class, then it evaluates again the expansion estimative and the possibility of rejecting the

inlining of the method.

In spite of these restrictions, this decision algorithm caught all example

opportunities introduced in Table 3-3. It is still able to remove almost all of the

optimized methods, as shown in Section 6.3.

37

9999 ���� ���������������� ���������������� ���������������� ��������������������

In order to evaluate our proposed method, we compared the original ProGuard

with our ProGuard version. For a given set of applications, to which the optimizations

should be applied, the evaluation criteria were percentage of the code reduction and the

execution performance gain.

Sections 6.1 and 6.2 present the experiment setup and the process of adjusting

our algorithm’s parameters, respectively. Then, Sections 6.3 shows the results

concerning the number of methods and calls excluded during the optimization, whereas

Section 6.4 discusses the optimization impact on performance and memory. Finally,

Section 6.5 compares our method inlining code size reduction with those ones found in

other obfuscators.

9�� � ��������������
Since there were no standard benchmarks for J2ME optimization, we have

chosen some real applications provided by C.E.S.A.R/Meantime [CESAR/Meantime], a

well established IT Brazilian company that works in J2ME applications since 2000. We

have also included three J2SE (Java Standard Edition) applications in some

experiments, to evaluate the proposed method results outside J2ME scope. The selected

applications are:

• Eight J2ME games (BreakOut, Ship, Istari, Atlantis, SpaceInvaders,
GoldHunter, Pacman and LightTenis) developed by C.E.S.A.R/Meatime, the
first two using the wGEM game engine (framework) [Pessoa, 2001];

• Three J2SE applications (Ant, JDepend and the original ProGuard), freely
available.

Games were chosen since this is typically a kind of application to which memory

and processing power are critical resources. In order to assess the generality of our

method, we have selected games with different styles, as well as the three non-J2ME

applications. All selected J2ME applications suffered previous strong manual

improvements, by a skilled software engineering team, in order to meet the processing

 Results

38

and memory restrictions of cell phones. Any kind of extra optimization in these

applications is thus a good result.

All code size measurements are based on compressed JAR files, containing only

the application classes, without resources (e.g., images and sounds). The impact on non-

compressed code is not so important because the applications are often distributed

compressed; for example, only JAR files can be installed in J2ME devices.

Concerning performance measurements, all J2ME case studies were tested on

the emulator DefaultGrayPhone, supplied with the J2ME Wireless Toolkit 1.0.4

[J2MEwtk 1.0.4]. Non-J2ME applications were executed with Java 2 Standard

Development Kit 1.4.1. The execution platform was a PC with an AMD Athlon 1.0

GHz processor and 256 Mb RAM memory, running Windows 2000 Professional. The

applications were automatically compiled and compressed with the Java 2 Standard

Development Kit 1.4.1.

9�� �����������������
Table 6-1 presents the size reduction results varying the MAX_EXPANSION

parameter in our algorithm. Columns 1 and 2 show, respectively, the applications

original size and its reduction percentage obtained with original ProGuard v1.7.2.

Column 3 exhibits the size reduction achieved with our Extended ProGuard with no

method inlining. Notice that Column 3 already improves slightly the size reduction

percentage compared with original ProGuard (Column 2), due to our new

implementation of the call graph, using RTA.

Columns 4 to 7 show the percentage of size reduction measured when applying

method inlining with several MAX_EXPANSION values, as indicated in parenthesis in

the column headers. Column 4, when MAX_EXPANSION is zero, indicates that the

algorithm tries to reject any code size increase when inlining. Columns 5 to 7 show

higher values that make the algorithm more tolerant to code size expansion. In the

extreme case, Column 7 shows the code size reduction when MAX_EXPANDED is

65536 (the maximum allowed method size), indicating the algorithm accept a great

number of method inlining, regardless to the code size expansion.

The bold values highlight the best code size reduction for each application.

Notice that sometimes (applications Istari and GoldHunter) the best value is not

acquired by the most conservative parametization (Column 4). That is because the

 Results

39

estimation of the code size reduction is not straightly exact. However, these best results

are always slightly better those ones found in Column 4.

1 2 3 4 5 6 7

Atlantis 26.317 28,09% 28,88% 31,27% 31,02% 31,02% 30,67%

BreakOut 31.326 48,18% 48,70% 51,40% 51,13% 50,75% 50,75%

Ship 41.841 41,02% 41,33% 44,07% 43,25% 42,38% 41,07%

Istari 37.432 38,00% 38,46% 42,31% 42,37% 41,52% 39,39%

SpaceInvaders 41.723 36,72% 37,29% 39,63% 39,21% 38,97% 38,62%

GoldHunter 42.243 31,85% 32,60% 34,86% 34,89% 34,46% 33,36%

Pacman 52.326 55,41% 55,63% 56,83% 56,67% 56,68% 56,09%

Tenis 52.587 55,41% 55,79% 57,73% 57,72% 57,61% 56,37%

Ant 1.5.1 707.376 88,81% 90,74% 90,95% 90,93% 90,89% 90,70%

JDepend 2.6 84.535 59,73% 62,34% 64,01% 63,79% 63,64% 62,89%

ProGuard 1.7 188.547 49,45% 49,57% 50,25% 49,92% 49,44% 47,04%

48,42% 49,21% 51,21% 50,99% 50,67% 49,72%

DEFAULT AGGRESSIVE

E
xt

en
de

d
Pr

oG
ua

rd

(M
A

X
_E

X
PA

N
SI

O
N

 =
 6

55
36

)

E
xt

en
de

d
Pr

oG
ua

rd

(M
A

X
_E

X
PA

N
SI

O
N

 =
 2

00
)

Applications

E
xt

en
de

d
Pr

oG
ua

rd

(M
A

X
_E

X
PA

N
SI

O
N

 =
 1

00
)

E
xt

en
de

d
Pr

oG
ua

rd

(w
ith

ou
t i

nl
in

in
g)

O
ri

gi
na

l s
iz

e

Pr
oG

ua
rd

 v
1.

7.
2

E
xt

en
de

d
Pr

oG
ua

rd

(M
A

X
_E

X
PA

N
SI

O
N

 =
 0

)

Average

J2
M

E
J2

S
E

Table 6-1: Bytecode size reduction by algorithm parameterization.

For our surprise, the algorithm often keeps improving of application code size

reduction, even when we extrapolate the value of the MAX_EXPANSION, allowing all

the possible methods to be optimized (Column 7). That is because the whole program

assumption allows a great number of methods to be removed after inlining in aggressive

approaches, as will be shown in Section 6.3. The underlined values in the bottom right

corner of the table (Columns 6 and 7) indicate the only two values when that aggressive

approach has generated some application code bigger than the original ProGuard result,

shown in Column 2. Even in these cases, there was no explosion of application size.

In the remaining experiments, we worked with only two versions of our method,

namely default and aggressive, respectively corresponding to columns 4 and 7 in Table

6-1.

 Results

40

9�� ������������������������
Table 6-2 presents the number of optimized methods for each parameterization,

classified in three categories: (i) inlined and kept, indicating the number and percentage

of methods that were inlined but could not be removed; (ii) inlined and removed,

indicating the number and percentage of methods that could be fully removed after

inlining; and (iii) not inlined, indicating the number and percentage of methods that was

not inlined at all. The average of optimized methods is grouped by application platform

(J2ME or J2SE), in order to help the analysis of the optimization impact for each one of

them.

Atlantis 122 0 52 70 2 54 66
0,00% 42,62% 57,38% 1,64% 44,26% 54,10%

Istari 246 0 143 103 3 175 68
0,00% 58,13% 41,87% 1,22% 71,14% 27,64%

Ship 220 0 100 120 5 113 102
0,00% 45,45% 54,55% 2,27% 51,36% 46,36%

BreakOut 164 0 79 85 4 85 75
0,00% 48,17% 51,83% 2,44% 51,83% 45,73%

GoldHunter 196 0 84 112 1 102 93
0,00% 42,86% 57,14% 0,51% 52,04% 47,45%

SpaceInvasors 179 0 70 109 5 84 90
0,00% 39,11% 60,89% 2,79% 46,93% 50,28%

Pacman 145 0 60 85 6 72 67
0,00% 41,38% 58,62% 4,14% 49,66% 46,21%

Tenis 173 0 89 84 2 104 67
0,00% 51,45% 48,55% 1,16% 60,12% 38,73%
0,00% 46,15% 53,85% 2,02% 53,42% 44,56%

Ant 1.5.1 414 0 108 306 9 130 275
0,00% 26,09% 73,91% 2,17% 31,40% 66,43%

JDepend 2.6 312 1 95 216 15 116 181
0,32% 30,45% 69,23% 4,81% 37,18% 58,01%

ProGuard 1.7.2 1.163 1 118 1.044 22 211 930
0,09% 10,15% 89,77% 1,89% 18,14% 79,97%
0,14% 22,23% 77,64% 2,96% 28,91% 68,13%

N
um

be
r

of

M
et

ho
ds

In
lin

ed
 a

nd

ke
pt

Average J2SE

J2
M

E

Application

Average J2ME

J2
S

E

Default Aggressive

In
lin

ed
 a

nd

ke
pt

N
ot

 in
lin

ed

In
lin

ed
 a

nd

re
m

ov
ed

N
ot

 in
lin

ed

In
lin

ed
 a

nd

re
m

ov
ed

Table 6-2: Number of inlined methods.

 Results

41

For our surprise, the optimization was able to remove around 50% of methods in

J2ME applications (46,15% in default parameterization and 53,42% in the aggressive

one) and around 25% of methods in J2SE workbench (22,23% in default and 28,91% in

aggressive).

We also highlight that only a few methods have been kept after inlining, usually

only in the aggressive approach. This result indicates that, in order to assure code

reduction, most of the method inlining opportunities seem only to be worth if the

method can be removed after inlining.

Table 6-3 shows a similar measurement for calls selected by the algorithm,

indicating the percentage of call sites that was inlined or not for each parameterization.

Atlantis 323 198 125 226 97
61,30% 38,70% 69,97% 30,03%

Istari 755 379 376 520 235
50,20% 49,80% 68,87% 31,13%

Ship 620 324 296 412 208
52,26% 47,74% 66,45% 33,55%

BreakOut 387 231 156 268 119
59,69% 40,31% 69,25% 30,75%

GoldHunter 691 279 412 479 212
40,38% 59,62% 69,32% 30,68%

SpaceInvasors 476 232 244 329 147
48,74% 51,26% 69,12% 30,88%

Pacman 433 179 254 281 152
41,34% 58,66% 64,90% 35,10%

Tenis 804 481 323 594 210
59,83% 40,17% 73,88% 26,12%
51,72% 48,28% 68,97% 31,03%

Ant 1.5.1 884 253 631 352 532
28,62% 71,38% 39,82% 60,18%

JDepend 2.6 721 289 432 383 338
40,08% 59,92% 53,12% 46,88%

ProGuard 1.7.2 4.081 191 3.890 989 3.092
4,68% 95,32% 24,23% 75,77%

24,46% 75,54% 39,06% 60,94%

J2
M

E

Average J2ME

J2
S

E

Average J2SE

AggresiveDefault

In
lin

ed

N
ot

 I
nl

in
ed

N
um

be
r

of

C
al

l S
ite

s

N
ot

 I
nl

in
ed

In
lin

ed

Application

Table 6-3: Number of inlined call sites.

 Results

42

As expected, the aggressive parameterization always optimizes more methods

and calls than the default one.

These optimization occurrences were possible due to the generalization power of

the algorithm, which was able to remove almost all field access methods (e.g. get, set

and is), simple functions and delegations, methods called only once, small methods

called few times, etc. All of these situations are very common in object-oriented

applications.

Of course, the results also depend on the programming style and architecture of

the application. For example, the ProGuard 1.7.2 (last application in Table 6-2 and

Table 6-3) had a bad result since it uses excessively the visitor design pattern [Gamma

et all, 1995], that produces many virtual and polymorphic calls that are not inlined by

our technique.

9�� � �����������������	�������������
We also evaluated the impact of the optimization on time and memory needed

for the execution of the applications. For that, we modified the source code of some of

the J2ME games, making them deterministic, i.e., simulating user input and removing

random behavior, timers and threads usage. Additionally, we modified the source code

of the ProGuard 1.7.2 to show the time and memory used while processing its own

code. These modified applications were submitted to the original ProGuard 1.7.2, and to

our Extended ProGuard with the default and aggressive parameterization. All

optimizations available by each ProGuard versions were enabled, in order to reproduce

real usage of the tools where the optimizations can interact each other.

Table 6-4 shows the total memory allocated by each modified J2ME application

as shown by the emulator output. For the J2SE application, the ProGuard 1.7.2 itself,

the presented value represents the instant memory allocated in the end of the execution.

All memory values were identical for all executions of the applications. Below

each memory values, we inform the percentage of reduction compared to the values

obtained with the non-optimized application.

The memory results were already expected. The method inlining optimization

presented a little influence on the amount of used memory, when compared with the

results already obtained by the original ProGuard 1.7.2.

 Results

43

SpaceInvaders 492.412 451.672 444.844 452.072
8,27% 9,66% 8,19%

Pacman 635.536 626.696 626.336 634.364
1,39% 1,45% 0,18%

Atlantis 393.432 363.144 355.988 359.884
7,70% 9,52% 8,53%

Tenis 1.476.828 1.440.028 1.431.244 1.449.092
2,49% 3,09% 1,88%

ProGuard 1.7.2 16.415.832 16.231.112 15.754.576 16.242.776
1,13% 4,03% 1,05%

J2
M

E
J2

S
E

E
xt

en
de

d
Pr

oG
ua

rd

(d
ef

au
lt)

E
xt

en
de

d
Pr

oG
ua

rd

(a
gr

es
si

ve
)

N
o

op
tim

iz
at

io
n

Pr
oG

ua
rd

 v
1.

7.
2

Total memory
allocated (bytes)

Table 6-4: Reduction on total memory allocated.

Table 6-5 presents the execution time for each modified application, measured as

an average of three consecutive executions. Below each execution time, we inform the

percentage of reduction of the time, compared to the values obtained with the non-

optimized application. Therefore, positive percentage values mean improvements on the

application performance, and negative percentage values mean the resulting application

is slower than the non-optimized one.

SpaceInvaders 14.411 14.501 13.059 12.912
-0,63% 9,38% 10,40%

Pacman 13.703 13.710 13.413 13.322
-0,05% 2,12% 2,78%

Atlantis 11.403 11.323 10.422 10.388
0,70% 8,61% 8,90%

Tenis 17.478 17.432 16.614 16.564
0,27% 4,95% 5,23%

ProGuard 1.7.2 10.018 10.254 10.208 10.478
-2,36% -1,90% -4,60%

J2
M

E

Execution time
average (ms)

J2
S

E

E
xt

en
de

d
Pr

oG
ua

rd

(d
ef

au
lt)

E
xt

en
de

d
Pr

oG
ua

rd

(a
gr

es
si

ve
)

N
o

op
tim

iz
at

io
n

Pr
oG

ua
rd

 v
1.

7.
2

Table 6-5: Application performance improvement.

 Results

44

In our experiments, the default parameterization, shown in the third data column,

always improved the application performance compared with the original ProGuard

1.7.2., shown in the second data column. That is because the application code generated

by default parameterization was always smaller than original ProGuard’s, as shown in

Section 6.2. That avoids degrading application performance for memory cache reasons

while inlining.

The negative value of the default parameterization (when the ProGuard itself is

optimized) is because, in that case, the method inlining improvement was not able to

compensate the performance degradation caused by previous optimizations of the

original ProGuard 1.7.2. In fact, these optimizations did not target application

performance.

In most of the applications, the execution time for the aggressive optimization is

slightly better than for the default one. The exception to this rule was already expected:

ProGuard 1.7.2 itself, where the aggressive inlining had increased the application size,

degrading the application performance for memory cache reasons.

This result means that the aggressive inlining seems to be worth only if it

reduces the application code size. Otherwise, if the code increases, the performance

impact is probably worse or equal to the non-inlined version, due to the performance

degradation by memory cache reasons.

Anyway, as the default parameterization always reduces the application size, we

believe that we can apply default method inlining without degrading the application

performance. In the end, the default parameterization seems to assure both a reasonable

performance improvement while reducing some application code size.

9�6 ��	��������	��������������������
The study presented in Chapter 3 shown to us that method inlining optimization

is rarely implemented, having been found only in Jax and DashO. In order to verify the

overall improvement of our optimization on code size reduction, we have submitted to

these obfuscators the same applications used to evaluate our solution.

For the experiments performed here, we used the version 7.3 of Jax and an

evaluation copy of the DashO Embedded Edition (the same versions used in study of

Section 3.2). They were configured in order to minimize the size of the applications,

including all optimizations provided by each of them. The graph of Figure 6-1 presents

a comparison of the code size reduction of these applications after optimized.

 Results

45

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

BreakOut Ship Atlantis SpaceInvaders Pacman GoldHunter Tenis Istari

ProGuard v1.7.2

Jax 7.3

DahsO

Extended ProGuard
(default)

Extended ProGuard
(agressive)

Figure 6-1: Code size reduction by obfuscators.

Despite of the additional size reduction of our optimization being apparently

small that was enough to make ProGuard to stand out among the tools. The only

situations in which we lost to Jax refers to applications that use frameworks (wGEM

[Pessoa, 2001]) where Jax managed to apply the adjacent superclass merge

optimization, still not implemented by the other tools, including ProGuard.

In fact, the elimination of unused members is surely the most effective

optimization for the application size reduction, represented by the good performance of

the original version of ProGuard. However the usage of other optimizations as method

inlining performs an additional improvement that can be very important in restricted

environments like J2ME.

47

;;;; ����������
������
�����������
������
�����������
������
�����������
������
�������������������������

This study on the optimizations available by obfuscators combined with our

experience while extending one of them gave us valuable know-how about

optimizations details. Moreover, for more than three years, our research team has been

providing consulting services on J2ME for industrial scale applications

[CESAR/Meantime]. This experience clearly has shown us that it is essential for

programmers to know the capabilities of the adopted tool in order to avoid unneeded

design sacrifices and to improve optimization results. A lot of effort is wasted avoiding

situations already resolved automatically, and many other practices can confuse the

optimization algorithms. Therefore, we have developed this best practices guide to

advise the developers of possible difficulties and facilities when using obfuscators. The

issues are organized in four groups:

• Situations already resolved by the obfuscator: practices we believe
programmers implement only for optimizing the application but that are
already resolved by some optimization.

• Situations not resolved by the obfuscator: clarifies mistaken practices e.g.
practices we believe programmers can do expecting the obfuscators to fix
them but that are not really resolved by any available optimization. These
situations include limitations and possible future implementations of the tool,
as well as special cases not handled properly.

• Situations that jeopardize the obfuscator: highlights undesirable practices
that confuse or make some optimization inapplicable or make the obfuscator
configuration difficult. These situations must be avoided when possible but
can be used if needed.

• Other recommendations: includes all other general advices and
recommendations not included in the previous cases, possibly not related to
the obfuscators.

This kind of information depends on the optimizations implemented by each

obfuscator. Ideally, obfuscator developers should include this information in the user

documentation, since they know the details of the optimizations they implemented.

Unfortunately, this is not usual. The next sections present some examples of best

 Best programming practices

48

programming practices considering the optimizations implemented by the obfuscator we

have extended.

An expert programming staff can extend this document and produce its own best

programming practices document considering the optimizations available by the

adopted obfuscator and the programmers’ skills. This document should be maintained

and updated every time a new optimization becomes available (when the obfuscator is

changed or a new version is installed) or when a new advice to the programmers seems

important.

;�� ��������������	��������	��������������
This section presents some practices we believe the programmers can try to

implement only for optimizing the application but that are already resolved by some

optimization. Some practices include a table presenting a source code example with

unneeded changes; a recommended version of that; and the result of this version when

optimized.

;���� �&�%1"'$%(%"!�'""1/�$&�-"�/8&!$"1�
Short identifiers easily reduce code legibility. Names of classes, fields and

method are already replaced with short (often one letter) ones by class and member

names compression; names of variables are removed by classfile recreation; and

package names are emptied by class package relocation.

Example:

Unneeded packabe game;
class GameObj { int vx; }

Recommended package com.company.game;
class GameObject { int xspeed; }

Optimized class A { int a; }

;���� �'4/"1�("#$4!"/�%'�(!#)"7&!</�1&�'&$�'""1�$&�-"�
/4**!"//"1�

Frameworks often implement a lot of methods and fields to be used when

needed. Many of these features are not used by one application. However it is not

needed to suppress these declarations from the framework for each application, since

they are automatically removed by removal of unused elements, removal of unused

method body, removal write-only fields and method inlining optimizations. Some

examples are fields used only by methods never called; or static methods available in

utility classes.

 Best programming practices

49

Example:

Unneeded class A { void m() { /* ... */ } } // unused body
class B extends A { void m() { ... } }
class Util {
 static A a; /* static B b; */ // write-only
/*static void initA() { a = new A(); } */ // unreachable
 static void initB() { a = /* b = */ new B(); }
}
...
public void startApp() {
 Util.initB(); // only class B is instantiated
 Util.a.m(); // always B.m() is executed
}

Recommended class A { void m() { ... } }
class B extends A { void m() { ... } }
class Util {
 static A a; static B b;
 static void initA() { a = new A(); }
 static void initB() { a = b = new B(); }
}
...
public void startApp() {
 Util.initB();
 Util.a.m();
}

Optimized abstract class A { void abstract m(); } // made abstract
class B extends A { void m() { ... } }
class Util {
 static A a;
}
...
public void startApp() {
 Util.a = new B(); // initB inlined
 Util.a.m();
}

;���� �!%)%$%,"�$+*"�5&'/$#'$�,#.4"/�1&�'&$�'""1�$&�-"�
/4-/$%$4$"1�-+�8#'1�

Constant declarations make the code easier to understand and to maintain,

however constants are implemented as common class fields on bytecode level. For

primitive type values, when the constant is used, the compiler usually generates

bytecode using directly the constant value, but the field is kept because some dynamic

loaded class can access it later. Thus, a whole program analysis does not find any

reference to those fields and removal of unused elements optimization removes them

from the resulting application.

Example:

Unneeded Image.createImage(10, 15);

Recommended public static final int IMAGE_WIDTH = 10;
public static final int IMAGE_HEIGHT = 15;
Image.createImage(IMAGE_WIDTH, IMAGE_HEIGHT);

Optimized Image.createImage(10, 15);

 Best programming practices

50

;���� �%".1/�1&�'&$�'""1�$&�-"�)#1"�*4-.%5�$&�#,&%1�(%".1�
#55"//�)"$8&1/�=3"$�#'1�/"$>�

Declaring public fields is not recommended because it does not protect the user

of the class from changes in class implementation. Unfortunately, many programmers

do this in order to avoid field access method declarations (get and set). Besides, method

call instruction is often slower than direct field access instructions. However, you can

create the proper get and set methods because method inlining often removes them to

you and makes fields public if needed. Trivial methods (e.g. that only read or write a

field) are always inlined. Non-trivial method inlining depends on the number of times

the method is called and the size of the method.

Example:

Unneeded public int xspeed;

Recommended private int xspeed;
public int getXSpeed() { return xspeed; }

Optimized public int xspeed;

;���6 �&'3�)"$8&1/�5#'�-"�1%,%1"1�%'$&�/)#..�5&'$"2$�
)"$8&1/�5#.."1�&'5"�

Long methods can make the code harder to understand. However, sometimes the

programmer does not divide the method in smaller context methods to avoid the new

declaration. Method inlining optimization often removes methods called once and

replaces its unique call with the method code.

Example:

Unneeded public void update () {
 // Update map
 ...
 // Update objects
 ...
};

Recommended public void update () {
 updateMap();
 updateObjects();
}
/** Update map */
private void updateMap() { ... }
/** Update objects */
private void updateObjects() { ... }

Optimized public void update () { }

 Best programming practices

51

;�� �������������������	��������������
This section clarifies mistaken practices e.g. practices we believe the

programmers can do trusting the obfuscators but that are not really resolved by any

available optimization. Some practices include a table presenting a source code example

with the unresolved situation; and the expected result that can be available by some

future optimization, not implemented yet1.

;���� �&'/$#'$�*!&*#3#$%&'�%/�'&$�/$%..�#,#%.#-."�
Constant propagation is an intra-procedural optimization where constants

assigned to a variable can be propagated and substituted at the use of the variable

[Nullstone, 2002]. Compilers often implement constant propagation but some

obfuscator optimizations, like method inlining, can open new opportunities to this

optimization. Besides, some compilers perform constant propagation only in some

cases, for example when the variable is explicitly declared as final.

Example:

Unresolved int x = 10;
int y = x * 5;

Expected int x = 10;
int y = 50;

;���� 	"#1�5&1"�".%)%'#$%&'�%/�'&$�/$%..�#,#%.#-."�
Dead code elimination is an intra-procedural optimization where code that does

not affect the program (e.g. dead stores) can be eliminated [Nullstone, 2002]. Compilers

often implement dead code elimination but some obfuscator optimizations, like method

inlining, can open new opportunities to this optimization.

Example:

Unresolved int i = 1; // never used
global = 1; // dead code
global = 2;
return;

Expected global = 2;
return;

;���� �&'$!&.�(.&7�#'#.+/%/�%/�'&$�/$%..�#,#%.#-."�
Control flow analysis considers branch instructions, such as if, while or

switch, to product an intra-procedural representation, the flow graph. With this graph,

1 In fact, we know by personal communication that some of these optimizations are already included in

the official ProGuard’s list of future features.

 Best programming practices

52

it is possible to detect and remove unreachable branches. Note that, without this

analysis, removal of unused elements optimization can fail and keep a method that

actually will never be executed. Compilers often perform this analysis and some of them

are able to remove unreachable branches under some conditions, like evaluation of

constant boolean values.

Example:

Unresolved boolean debug_mode = false;
if (debug_mode) { // constant propagation
 updateTimeCounter(); // kept but never executed
}
...

Expected boolean debug_mode = false;
...

;���� 	",%!$4#.%?#$%&'�%/�'&$�/$%..�#,#%.#-."�
Devirtualization optimization replaces slower virtual call instructions with faster

static linked call instructions. In order to do that, methods are automatically made

static, private and final when possible. As this optimization is not still

available in the analyzed obfuscator, the programmer must assure that himself.

;���6 �"!3%'3�&(�#1@#5"'$�/4*"!5.#//�%/�'&$�/$%..�#,#%.#-."�
Merging of adjacent superclass optimization removes intermediate classes in the

class hierarchy, moving all methods and fields of a class to its superclass. This

optimization is not still available in the analyzed obfuscator. However, when it is

implemented, it often does not manage to be applied due to the restrictions to keep the

instantiated object size. So, the programmer must be always careful about the number

of classes.

;���9 �#..�3!#*8�5&'/%1"!/�&-@"5$/�%'/$#'$%#$"1�#'+78"!"A�'&$�
&'.+�.&5#..+�

Call graph is a data structure that indicates which methods are reachable through

each call site. The major difficulty in the call graph construction is the identification of

possible executions from a virtual call. The analyzed obfuscator implements an effective

enough algorithm [Bacon, 1997] that verifies if the method belongs to an instantiated

classes from the class hierarchy. However, once the class is instantiated, its methods are

considered reachable anywhere.

 Best programming practices

53

Example:

Unresolved class A { void m() { ... } }
class B extends A { void m() { ... } }
...
static A a = new B(); // instantiating class B
public void startApp() {
 a = new A(); // instantiating class A
 a.m(); // A.m() body is always executed
}

Expected class A { void m() { ... } }
class B extends A { } // method B.m() could be removed
...
static A a = new B();
public void startApp() {
 a = new A();
 a.m();
}

;�� ��������������������	��������������
This section highlights undesirable practices that confuse or make some

optimization inapplicable or make the obfuscator configuration hard. These situations

must be avoided when possible but can be used if needed. Some practices include a

table presenting a source code with undesirable practice; and a recommended approach

as alternative solution.

;���� �"(."5$%&'�����4/#3"�
Reflection is the capability to refer some class, field or method by string

statements, without knowing the exact element being accessed. Note that the name of

the referenced element can be replaced by class and member names compression, so

that the element is not found in execution time. If this feature is really needed, the user

must inform the obfuscator to not change the element name.

Example:

Undesirable Class.forName(“MyClass”).newInstance();

Recommended new MyClass();

;���� �".#$%,"�!"/&4!5"�#11!"//%'3�
It is possible to refer a resource relative to the class location in the package tree.

Note that the package tree can be reorganized by class package relocation, so that the

resource is not found in execution time. If this feature is really needed, it needed to

relocate the resource too or to inform the obfuscator to not change the package name.

 Best programming practices

54

Example:

Undesirable Class.getResourceAsStream(“image.png”)

Recommended Class.getResourceAsStream(“\...\image.png”)

;���� �''"5"//#!+�5&1"�
Unnecessary code, especially method calls, field reading and class instantiation,

must be strongly avoided. For example, method inlining considers the number of times

the method is called to decide if it will be optimized; or if a field is read only once, it

cannot be removed by removal of write-only fields optimization; and yet, instantiated

classes automatically considers all its declared or inherited methods can be reached by

virtual calls.

Example:

Undesirable class A {
 Object x; Object y;
 A() {
 x = new Object(); y = x; // x cannot be write-only
 }
}

Recommended class A {
 Object x; Object y;
 A() {
 x = y = new Object(); // both can be write-only
 }
}

;���� �8!&7%'3�"25"*$%&'/�
Throw exceptions only when needed. It is slow and requires additional classfiles

attributes. Moreover, methods that throw exceptions cannot be optimized by method

inlining because it could change the program behavior. Do not use exception as control

flow or to frequent user messages.

;���6 +'58!&'%?#$%&'�
Synchronized methods are about 10 times slower than normal methods

[Hardwick, 2003]. Moreover, they also cannot be optimized by method inlining, since

they implement an implicit lock.

;���9 7%$58"/�
Switches are very large instructions and they require special treatment to be

copied by method inlining, since the instruction length depends on its position in the

code array. Our implementation rejected method inlining of calls to methods that

belongs switches.

 Best programming practices

55

;�� ��������������	������
This section includes all other general advices and recommendations not

included in the previous cases, possibly not related to the obfuscators.

;���� 	&�'&$�%'%$%#.%?"�-%3�#!!#+/�%'�.%'"�
When initializing arrays in line, such as in the example, each array position

initialization is compiled to an assign instruction. If some big array needs to be

initialized, consider loading it from some binary resource.

Example:

Declaration int arr[] = { 0, 0, 1, 0, ... };

Generated bytecode arr[0] = 0; arr[1] = 0; arr[2] = 1; ...

;���� �+*"/�-+$"A�/8&!$A�58#!�#'1�-&&."#'�#!"�4/4#..+�
5&',"!$"1�$&�%'$�

The Java Virtual Machine Specification [Lindholm & Yellin, 1999] almost

always operates byte, short, char and boolean data as int, inclusive when

loading and storing variables, storing constants, operating math instructions or

evaluating branch conditions. There are special instructions only for arrays. The effect

over class fields is not imposed and it depends on the virtual machine implementation.

So, the programmer usually does not need to force the use of these types only for

optimization.

;���� �,&%1�'"/$"1�#'1�#'&'+)&4/�5.#//"/�
Nested and anonymous classes are inner classes, declared inside the scope of

other classes. However compilers create an entire classfile for each inner class,

including all internal structures. Even more, compilers still have to create some special

methods and fields to allow an inner class to access its enclosing class’ private

information [Lindholm & Yellin, 1999]. Often, these classes can be replaced with some

normal implementation.

;���� �,&%1�!"%',"'$�����=�**.%5#$%&'��!&3!#) ��'$"!(#5">�
#.!"#1+�#,#%.#-."�

Try to use the API already available rather than reimplement your own one. The

new classes and methods rarely manage to be faster than those already implemented by

environment and they usually make the application larger.

 Best programming practices

56

;���6 �"4/"�&-@"5$/�
It takes a long time only to create an empty object (about 13 times longer than

assigning a field, for example) [Hardwick, 2003], so it is often worth updating the fields

of an old object and reusing it rather than creating a new one. Moreover, it also reduces

the garbage collector task, since fewer objects are removed.

57

BBBB ���������	�����������	�����������	�����������	����������

Method inlining is a well-known optimization and it has been studied and

implemented for decades since non-object-oriented programming languages, like

Fortran and C [Allen & Johnson, 1988]. This section discusses the main method inlining

researches and implementations that are related with our work someway. Section 8.1

presents the method inlining specific researches and Section 8.2 discusses some method

inlining implementations on compilers and tools. Section 8.3 discusses some related

works on best programming practices.

B�� ���
��
�0��	����	���������	��������
����������
Most of the specific research on method inlining found in the literature present

the problem in an abstract way, independent from language, platform or application

domain. They often explore the decision algorithm in order to maximize application

performance, while trying to control the code expansion someway. Since they are

generic approaches, they do not use to take full advantage of whole program

environments and, as far as we know, none of them include the removal method benefit

as a parameter of the decision algorithm.

Manuel Serrano [Serrano, 1997] published an article proposing a method

inlining optimization that controls the code size expansion, using a 'factor' initialized

experimentally, which is reduced by 1, for each nested inlining, stopping when the value

becomes zero. Thus, Serrano’s work provides an unconventional and interesting

approach for dealing with recursive call sites. Unfortunately, the intrinsic local

characteristic of its decision algorithm, while analyzing each call site isolated, makes

difficult to reward by the method removal.

Jeffrey Dean and Craig Chambers [Dean & Chambers, 1994] proposed a general

decision algorithm where, for each call site, the inlining is performed, its cost and

benefit are calculated and, in case it is not interesting, the process is reverted. The exact

function of the cost and benefit of the inlining is left out, just citing the increase of the

size and the performance gain as important factors. For optimization of the algorithm,

the work proposes the creation of a database with previously performed analysis (named

 Related works

58

inlining trials) to be considered in future decisions about similar calls. Its experiments

stressed a compilation time reduction due to inlining trials. Since the cost and benefit

are estimated for each call site, it is difficult to take in account the global benefit from

the removal of the method only if all their call sites were optimized.

Vortex [Dean et all, 1996] is a language-independent optimizing compiler that

performs object-oriented-focused optimizations on a low-level intermediate language. It

was developed in order to unify the effectiveness evaluation of these optimizations over

the application performance in several languages. Cross-module inlining is one of the

optimizations mentioned as being implemented, however the author does not detail the

decision algorithm being used or the parameters taken into account. All benchmarks are

substantial in size and there are almost no results about code size increasing.

B�� �����	��������
���������������	������
Cross-module method inlining is effectively implemented only in very

aggressive optimizing compilers and tools, which often have as main goal the

application performance improvement. Most of these works are related to C/C++

compilers, however Java imposes some additional important language specific issues,

like virtual methods by default that makes static analysis harder. Here, we discuss the

most related method-inlining implementations in both languages.

Rainer Leupers published an article [Leupers & Marwedel, 1999] exposing the

development of a function inlining approach for C compilers for embedded processors,

imposing a global limit over final generated code size. His decision algorithm tries to

find the method set that, when inlined, satisfies the limit and obtains the best execution

performance. To do this, it requires several input parameters, including information

about the real execution flow (profiling). Leupers' work, like ours, is very careful about

the impact of method inlining on code size, however C is not an object-oriented

language, which imposes many other difficulties, like polymorphism. Besides it does

not consider the possibility of whole program optimizations, like including the removal

method benefit as a parameter of the decision algorithm.

C++ and most ANSI C compilers allow the programmer to mark functions as a

suggestion to be inlined (usually with an explicit ”inline” function definition keyword)

[Cline, 2003]. Unfortunately, the decision algorithm is completely unclear and the

compilers can inline some, all, or none of the calls to a marked function, depending on

many factors. Besides, the function can be removed only in some very restricted

 Related works

59

situations, like declared as static and linked under special directives etc. Therefore,

users have few guidelines when to mark a function to be inlined and when it will be

really inlined or removed, so that it seems there is no results about optimization

effectiveness over application size reduction, if any.

Sun’s Java HotSpot technology [HotSpot 1.4.1], evolution of the Just In Time

compilers (JIT), in principle can make inlining of frequently called methods in

execution time, inclusive replacing the calls with native code. However, one of the main

features of this kind of compiler is the capability to undo the optimization if it is not

available or worthwhile anymore, for example due to a new class loaded dynamically or

to save execution memory. Therefore, the original bytecode copy of the optimized

methods can never be removed, increasing the application size in execution time.

Besides, only recently Sun has published a CLDC HotSpot implementation [CLDC

HotSpot] tuned to J2ME platform; however it does not implement method inlining at

all.

David Whitlock’s work [Whitlock, 2000] extends an academic tool, named

BLOAT, implementing some inter-procedural optimizations on Java bytecode, among

them method inlining. Whitlock's work presents some more details about

implementation techniques and difficulties; however it has as main goal the

improvement of the execution performance of the applications, not presenting enough

concerns or results about the increase in the code size. In fact Nystrom [Nystrom, 1998]

originally proposes the BLOAT tool, only with intra-procedural optimizations, like

those found in compilers [Nullstone, 2002].

Obfuscators are also tools where method inlining can be found. We consider

them the closest related work because they are also addressed to whole program

optimizations. As shown in the study presented in Chapter 3, only a few obfuscators

implement these optimizations (we could find it in Jax and DashO).

B�� ������	����������������
������
����������
There are really a myriad of articles, web sites and books that address best Java

programming practices [O'Hanley, 2004] [Hardwick, 2003] [Klemm, 1999], however

we was not able to find any publication that considers the usage of obfuscators or the

impact of automated optimizations over those practices. O'Hanley [O'Hanley, 2004]

presents a long list of good programming practices for some Java technologies and

constructions, such as Servlets, JSPs and Swing, exceptions, constructors, serialization

 Related works

60

and so on. Hardwick’s work [Hardwick, 2003] is an on-line collection of general

recommendations for optimizing Java programs so that they are faster, smaller and more

maintainable. Klemm [Klemm, 1999] identifies and explains the main Java performance

problems sources and it presents a list of source-level guidelines for accelerating Java

applications, trying to reduce the object copy and allocation tasks.

Some other documents only recommend the use of obfuscators as a good

practice for J2ME [Giguere, 2002] [Larson, 2002] [J2MEwtk 1.0.4], but they do not

tech how to program to take more advantage of them. Giguere [Giguere, 2002]

addresses some interesting guidelines to optimize J2ME application size and it

recommends the use of obfuscators to shorten the names of packages, classes, methods

and data members. Larson [Larson, 2002] strongly recommends obfuscator as a great

way to reduce the application size. Sun’s J2ME Wireless Toolkit [J2MEwtk 1.0.4] has

already suggests the use of obfuscators since version 1.0.4.

We also could not find any survey about the most common optimizations

implemented by obfuscators; instead, we only found some articles that compare

compiler optimizations [Nullstone, 2002] [Hardwick, 2003]. Of course, the

documentation of each obfuscator indicates what optimizations it implements, but rarely

presents programming facilities and difficulties.

61

CCCC ��

In this chapter, we present the most important contributions of this research and

some future works.

C�� �������������
The strong demand for programs based on platforms with high memory and

processing constraints, like cell phones, is pushing the implementation and use of

optimization tools, such as obfuscators and shrinkers. So far, these tools have neglected

the use of method inlining due to its classical problem of increasing code size. This

study presents an original implementation of cross-module and whole-program

technique for method inlining that improves both performance and application code

size. The experimental results show that our technique is able to optimize and exclude

around 50% of the reachable methods and calls, reducing the code size more than 3%,

in average, and improving the performance up to 10%. These percentages vary

according to the application architecture and the algorithm’s parameterization. Anyway,

our technique is able both to perform a reasonable performance improvement and to

reduce application code size in most cases.

The key idea behind this surprising result is to take full advantage of low-level

features of the Java Virtual Machine. In fact, previous efforts failed in pointing how to

overcome the problem of code size increase when using method inlining, because the

solutions are too general, disregarding the languages’ implementation and target

environment specificities. Our results indicate that, in order to guarantee the success of

some optimization methods, such as inlining, the use of these specificities is

unavoidable.

Unfortunately, developers often don’t know (or don’t trust) these tools enough

and keep sacrificing the code quality in order to optimize their applications. This study

shows that obfuscators are safe but its effectiveness depends on the adopted

programming practices. We noticed that to take best advantage of the obfuscators and to

avoid unneeded sacrifices, it is essential that programmers (i) choose a tool that satisfies

 Conclusions

62

the project requirements, considering its available optimizations and (ii) know how

these optimizations can affect the programming and design decisions.

In order to help the programmer in choosing the obfuscator, this work presented

an original study identifying which optimizations are most common in current

obfuscators and where their implantations differs. It also identifies trends of new

optimizations being implemented and gives some guidelines about what else could be

taken into account to choose the tool.

Besides, in order help developers to program using obfuscators, we introduced a

set of best programming practices, organized in situations not resolved by the tools;

situations well resolved by the tools and situations that jeopardize the tools usefulness.

Despite their obvious importance, these practices have not been enumerated or

discussed in the scientific or technical literature so far.

Our Extended version of ProGuard and the presented programming practices has

been tested and used by an industrial software development team in

C.E.S.A.R/Meantime [CESAR/Meantime]. We submitted our extensions to ProGuard

maintainers to be incorporated in the official open-source version.

This work is strongly motivated by the J2ME platform, because of its clear need

for space and efficiency optimization and for allowing save whole program

optimization. However, it is important to stress that none of the low level features we

have explored in our inlining technique are J2ME-specific. The proposed method

inlining can be directly used in any Java platform. The only restriction is the fact that

the proposed technique performs whole program optimization, generating a code that

will not be reused by other applications.

C�� ������������
We intend to study and evaluate other intra-procedural and inter-procedural

optimization techniques not explored by the majority of current tools.

Method inlining opens opportunities to other intra-procedural optimizations,

such as the identification and removal of unused variables, and the pre-processing of

operations on constants, among others [Nullstone, 2002]. These optimizations are

frequently implemented in compilers in a high level way. However, as our method

inlining technique processes directly on the bytecode already compiled, we are not able

to reuse those optimizations. They must be implemented again on bytecode level, and

performed after method inlining. We believe that the benefit of these intra-procedural

 Conclusions

63

optimizations can improve the method inlining results a lot, especially if included in the

code size estimation of the decision algorithm.

Some other inter-procedural techniques, such as devirtualization and adjacent

merge of superclasses, could also be examined. To take full advantage of these

techniques, we intend to keep the approach of fully exploring the implementation

specificities, in order to assess whether the cost-benefit ratio is worthwhile, as in the

case of method inlining.

Additionally, we intend to study in depth the problem of the insertion and

removal of constant pool entries. It seems to be a rich problem, since changes in the

constant pool is a determinant factor for a successful code size reduction and still a risk

to the aggressive approach of method inlining.

Finally, we also intend to format our best programming practices guide as a

study on traditional design patterns [Gamma et all, 1995] in order to indicate how far

each design pattern can benefit (or jeopardize) the most common optimizations found in

obfuscators.

65

��

[Allen & Johnson, 1988] Allen, R. Johnson, S. (1988) Compiling C for
Vectorization, Parallelization, and Inline Expansion.
In Proceedings of the SIGPLAN'88 Conference on
Programming Language Design and Implementation.
Atlanta, Georgia.

[Ant Project] The Apache Ant Project. The Apache Software
Foundation. Last change September, 2004.
http://ant.apache.org/

[Bacon, 1997] Bacon, D. F. (1997) Fast and Effective Optimization of
Statically Typed Object-Oriented Programs. PhD
thesis, Computer Science Division, University of
California, Berkeley. December, 1997. Report No.
UCB/CSD-98-1017.

[Cameron & Day, 1998] Cameron, C. Day, B. (1998) Knuckletop Computing:
The Java Ring. In Sun Microsystems' web site.
http://java.sun.com/features/1998/03/rings.html

[CDC 1.0] Sun Microsystems. CDC - Connected Device
Configuration, v1.0a. JCP Specification, JSR 036.
http://jcp.org/aboutJava/communityprocess/final/jsr03
6/

[CESAR/Meantime] C.E.S.A.R/Meantime. Centro de Estudos Avançados
do Recife. Meantime Mobile Games. Recife, PE.
http://www.meantime.com.br

[CLDC 1.0] Sun Microsystems. CLDC - Connected, Limited
Device Configuration. JCP Specification, JSR 030.
http://jcp.org/aboutJava/communityprocess/final/jsr03
0/

[CLDC 1.1] Sun Microsystems. CLDC - Connected, Limited
Device Configuration, v1.1. JCP Specification, JSR
139.
http://jcp.org/aboutJava/communityprocess/final/jsr13
9/

[CLDC HotSpot] Sun Microsystems. (2003) The CLDC HotSpot
Implementation Virtual Machine – White Paper. May,
2003. http://java.sun.com/products/cldc/wp/CLDC_
HotSpot_WhitePaper.pdf

 References

66

[Cline, 2003] Cline M. (2003) C++ FAQ Lite: Inline functions. Last
change March, 2003. http://burks.brighton.ac.uk/
burks/language/cpp/cppfaq/inline-functions.html

[Dahm, 2002] Dahm, M. (2002) BCEL Byte Code Engineering
Library 4.4.1. The Apache Jakarta Project. Last change
December, 2002. http://jakarta.apache.org/bcel

[DashO] PreEmptive Solutions. DashO Embedded Edition
documentation. http://www.preemptive.com/

[Dean et all, 1995] Dean, J. Grove, D. Chambers, C. (1995) Optimization
of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In Proceedings of the 9th
European Conference on Object-Oriented
Programming (ECOOP'95). Aarhus, Denmark.

[Dean & Chambers, 1994] Dean, J. Chambers, C. (1994) Towards Better Inlining
Decisions Using Inlining Trials. In Proceedings of the
ACM Conference on Lisp and Functional
Programming Languages (LFP'94). Orlando, Florida.

[Dean, 1996] Dean, J. (1996) Whole-Program Optimization of
Object-Oriented Languages. Technical Report TR-96-
06-02, Department of Computer Science and
Engineering, University of Washington.

[Dean et all, 1996] Dean, J., DeFouw, G., Grove, D., Litvinov, V.,
Chambers, C. (1996) Vortex: An Optimizing Compiler
for Object-Oriented Languages. In Proceedings of the
11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA'96). San Jose, California.

[EmbeddedJava] Sun Microsystems. EmbeddedJava Application
Environment.
http://java.sun.com/products/embeddedjava/

[FP 1.0] Sun Microsystems. Foundation Profile Specification,
v1.0a. JCP Specification, JSR 046.
http://jcp.org/aboutJava/communityprocess/final/jsr04
6/

[Gamma et all, 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995)
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA.

[Giguere, 2002] Giguere, E. (2002) Optimizing J2ME Application Size.
In the Sun Microsystems' web. Posted in February,
2002. http://developers.sun.com/techtopics/mobility/
midp/ttips/appsize/

[Green] Sun Microsystems. A Brief History of the Green

 References

67

Project. http://today.java.net/jag/old/green/

[Hansmann, 2003] Hansmann, U. Merk, L. Nicklous, M., Stober, T.
(2003) Pervasive Computing: Second Edition.
Springer Verlag.

[Hardwick, 2003] Hardwick, J. (2003) Java Optimization. Last change
April, 2003 – http://www-2.cs.cmu.edu/~jch/java/
optimization.html

[HotSpot 1.4.1] Sun Microsystems. (2002) The Java HotSpot Virtual
Machine, v1.4.1 – White Paper. September, 2003.
http://java.sun.com/products/hotspot/docs/whitepaper/
Java_Hotspot_v1.4.1/JHS_141_WP_d2a.pdf

[J2EE] Sun Microsystems. Java 2 Platform, Enterprise
Edition (J2EE). http://java.sun.com/j2ee/

[J2ME] Sun Microsystems. Java 2 Platform, Micro Edition
(J2ME). http://java.sun.com/j2me/

[J2MEwtk 1.0.4] Sun Microsystems. J2ME Wireless Toolkit v1.0.4
documentation. http://java.sun.com/j2me/

[J2SE] Sun Microsystems. Java 2 Platform, Standard Edition
(J2SE). http://java.sun.com/j2se/

[JavaCard] Sun Microsystems. Java Card Technology.
http://java.sun.com/products/javacard/

[Jax] IBM Research. Jax Project. Posted in June, 1998.
http://www.alphaworks.ibm.com/tech/JAX

[JikesBT] IBM AlphaWorks. JikesBT. Jikes Bytecode Toolkit.
Posted in March, 2000. http://www.alphaworks.ibm.
com/tech/jikesbt

[Jshrink] Eastridge Technology. JShrink. Copyright 1997-2004.
http://www.e-t.com/jshrink.html

[Klemm, 1999] Klemm, R. (1999) Practical Guidelines for Boosting
Java Server Performance. In Proceedings of the ACM
1999 on Java Grande Conference. San Francisco,
California.

[Knudsen, 2002a] Knudsen, J. (2002) Obfuscating MIDlet Suites with
ProGuard, In the Sun Microsystems' web site. Posted
in August, 2002. http://developers.sun.com/techtopics/
mobility/midp/ttips/proguard/

[Knudsen, 2002b] Knudsen, J. (2002) Understanding MIDlet Memory. In
the Sun Microsystems' web site. Posted in June, 2002.
http://developers.sun.com/techtopics/mobility/midp/tti
ps/memory/

 References

68

[KVMds] Sun Microsystems. The K Virtual Machine - Data
Sheet. http://java.sun.com/products/cldc/ds/

[KVMwp] Sun Microsystems. Java 2 Platform Micro Edition
(J2ME) Technology for Creating Mobile Devices –
White Paper. http://java.sun.com/products/kvm/wp/
KVMwp.pdf

[Lafortune] Lafortune, E. ProGuard documentation. Source Forge.
http://proguard.sourceforge.net/

[Larson, 2002] Larson, E. D. (2002) J2ME Optimization Tips and
Tools. In Sun Microsystems' web site. Posted in
November, 2002. http://developers.sun.com/
techtopics/mobility/midp/ttips/optimize/

[Leupers & Marwedel, 1999] Leupers, R., Marwedel, P. (1999) Function Inlining
under Code Size Constraints for Embedded
Processors. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD). San
Jose, California.

[Lindholm & Yellin, 1999] Lindholm, T., Yellin, F. (1999) The Java Virtual
Machine Specification – Second Edition. Sun
Microsystems.
http://java.sun.com/docs/books/vmspec/

[MIDP 1.0] Sun Microsystems. MIDP - Mobile Information Device
Profile. JCP Specification, JSR 037.
http://jcp.org/aboutJava/communityprocess/final/jsr03
7/

[MIDP 2.0] Sun Microsystems. MIDP - Mobile Information Device
Profile, v2.0. JCP Specification, JSR 118.
http://jcp.org/aboutJava/communityprocess/final/jsr11
8/

[Nullstone, 2002] Nullstone Corporation. (2002). NULLSTONE
Optimization Categories.
http://www.nullstone.com/htmls/category.htm

[Nystrom, 1998] Nystrom, N. J. (1998) Bytecode-level analysis and
optimization of Java classes. Master dissertation,
Department of Computer Science, Purdue University.
West Lafayette, Indiana. August, 1998.

[O'Hanley, 2004] O'Hanley, J. (2004) Java Practices - Home, Canada.
http://www.javapractices.com/

[Ortiz, 2002] Ortiz, C. E. (2002) A Survey of J2ME Today. In Sun
Microsystems' web site. Posted in November, 2002.
http://developers.sun.com/techtopics/mobility/getstart/
articles/survey/

 References

69

[PBP 1.0] Sun Microsystems. Personal Basis Profile
Specification, v1.0. JCP Specification, JSR 129.
http://jcp.org/aboutJava/communityprocess/final/jsr12
9/

[PDAP] Sun Microsystems. PDA Optional Packages for the
J2ME Platform. JCP Specification, JSR 075.
http://jcp.org/aboutJava/communityprocess/final/jsr07
5/

[PersonalJava] Sun Microsystems. PersonalJava. http://java.sun.com/
products/personaljava/

[Pessoa, 2001] Pessoa, C. wGEM: um Framework de
Desenvolvimento de Jogos para Dispositivos Móveis.
Master dissertation. Centro de Informática.
Universidade Federal de Pernambuco, Recife,
Pernambuco. November, 2002.

[PP 1.0] Sun Microsystems. Personal Profile Specification. JCP
Specification, JSR 62.
http://jcp.org/aboutJava/communityprocess/final/jsr06
2/

[RetroGuard] Retrologic. RetroGuard 1.1.9 User’s Guide. Copyright
1998-2004. http://www.retrologic.com/

[Serrano, 1997] Serrano, M. (1997) Inline expansion: when and how?.
In Proceedings of the 9th International Symposium on
Programming Languages, Implementations, Logics,
and Programs (PLILP'97). Southampton, New York.

[Tip et all, 1999] Tip, F. Laffra, C. Sweeney, P. F. (1999) Practical
Experience with an Application Extractor for Java. In
Proceedings of the 14th Annual ACM SIGPLAN
Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA'99),
Denver, Colorado.

[Tip & Palsberg, 2000] Tip, F. Palsberg, J. (2000) Scalable propagation-based
call graph construction algorithms. In Proceedings of
the 14th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'00). Minneapolis,
Minnesota.

[Whitlock, 2000] Whitlock, D. M. (2000) Persistence-Enabled
Optimization of Java Programs. Master dissertation,
Department of Computer Science, Purdue University.
West Lafayette, Indiana. May, 2000.

