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Abstract

Dynamic ensemble selection systems work by estimating the level of competence of each
classifier from a pool of classifiers. Only the most competent ones are selected to classify a
given test sample. This is achieved by defining a criterion to measure the level of competence
of a base classifier, such as, its accuracy in local regions of the feature space around the query
instance. However, using only one criterion about the behavior of abase classifier isnot sufficient
to accurately estimate itslevel of competence. In this paper, we present anovel dynamic ensemble
selection framework using meta-learning. We propose five distinct sets of meta-features, each one
corresponding to a different criterion to measure the level of competence of a classifier for the
classification of input samples. The meta-features are extracted from the training data and used to
train a meta-classifier to predict whether or not a base classifier is competent enough to classify
an input instance. During the generalization phase, the meta-features are extracted from the query
instance and passed down as input to the meta-classifier. The meta-classifier estimates, whether a
base classifier is competent enough to be added to the ensemble. Experiments are conducted over
several small sample size classification problems, i.e., problems with a high degree of uncertainty
dueto the lack of training data. Experimental results show the proposed meta-learning framework
greatly improves classification accuracy when compared against current state-of-the-art dynamic
ensembl e selection techniques.
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1. Introduction

Multiple Classifier Systems (MCS) aim to combine classifiersto increase the recognition accu-
racy in pattern recognition systems[1, 2]. MCS are composed of three phases[3]: (1) Generation,
(2) Selection and (3) Integration. In thefirst phase, apool of classifiersis generated. In the second
phase, asingle classifier or asubset having the best classifiers of the pool is(are) selected. We refer
to the subset of classifiers as Ensemble of Classifiers (EoC). The last phase is the integration, and
the predictions of the selected classifiers are combined to obtain the final decision [1].

For the second phase, there are two types of selection approaches. static and dynamic. In
static approaches, the selection is performed during the training stage of the system. Then, the
selected classifier or EoC is used for the classification of all unseen test samples. In contrast,
dynamic ensemble selection approaches (DES) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] select a different
classifier or a different EOC for each new test sample. DES techniques rely on the assumption
that each base classifier is an expert in a different local region of the feature space [14]. So,
given a new test sample, DES techniques aim to select the most competent classifiers for the
local region in the feature space where the test sample is located. Only the classifiers that attain
a certain competence level, according to a selection criterion, are selected. Recent work in the
dynamic selection literature demonstrates that dynamic selection techniques is an effective tool
for classification problemsthat areill-defined, i.e., for problems where the size of the training data
issmall and there are not enough data available to model the classifiers[6, 7].

The key issue in DES is to define a criterion to measure the level of competence of a base
classifier. Most DES techniques [4, 12, 11, 10, 15, 16, 17, 18] use estimates of the classifiers
local accuracy in small regions of the feature space surrounding the query instance as a search
criterion to perform the ensembl e sel ection. However, in our previouswork [10], we demonstrated
that the use of local accuracy estimates alone is insufficient to achieve results close to the Oracle
performance. The Oracle is an abstract model defined in [19] which always selects the classifier

that predicted the correct label, for the given query sample, if such classifier exists. In other
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words, it represents the ideal classifier selection scheme. In addition, as reported by Ko et a. [4],
addressing the behavior of the Oracle is much more complex than applying a simple neighborhood
approach.

On the other hand, DES techniques based on other criteria, such as the degree of consensus of
the ensemble classifiers[5, 6], encounter some problems when the search cannot find a consensus
among the ensembles. In addition, they neglect the local performance of the base classifiers.
As stated by the “No Free Lunch” theorem [20], no algorithm is better than any other over all
possible classes of problems. Using asingle criterion to measure the level of competence of abase
classifier isvery error-prone. Thus, we believe that multiple criteriato measure the competence of
abase classifier should be taken into account in order to achieve a more robust dynamic ensemble
selection technique.

In this paper, we propose a novel dynamic ensemble selection framework using meta-learning.
From the meta-learning perspective, the dynamic ensemble selection problem is considered as
another classification problem, called meta-problem. The meta-features of the meta-problem are
the different criteriaused to measure the level of competence of the base classifier. We proposefive
sets of meta-features in this paper. Each set captures a different property about the behavior of the
base classifier, and can be seen as a different dynamic selection criterion such as, the classification
performancein alocal region of the feature space and the classifier confidence for the classification
of the input sample. Using five distinct sets of meta-features, even though one criterion might fail
dueto problemsin thelocal regions of the feature space [10] or due to low confidence results[21],
the system can still achieve a good performance as other meta-features are also considered by the
selection scheme. Furthermore, in arecent analysis[22] we compared the criteria used to measure
the competence of base classifiers embedded in different DES techniques. The result demonstrates
that, given the same query sample, distinct DES criteria select adifferent base classifier asthe most
competent one. Thus, they are not fully correlated. Hence, we believe that a more robust dynamic
ensembl e selection technique is achieved using five sets of meta-features rather than only one.

The meta-features are used as input to a meta-classifier that decides whether or not a base
classifier is competent enough for the classification of an input sample based on the meta-features.

The use of meta-learning has recently been proposed in [23] as an alternative for performing
3



classifier selection in static scenarios. We believe that we can carry thisfurther, and extend the use
of meta-learning to dynamically estimate the level of competence of a base classifier.

The proposed framework is divided into three phases. overproduction, meta-training and gen-
eralization. In the overproduction stage, a pool of classifiersis generated using the training data.
In the meta-training stage, the five sets of meta-features are extracted from the training data, and
are used to train the meta-classifier that works as the classifier selector. During the generalization
phase, the meta-features are extracted from the query instance and passed down as inputs to the
meta-classifier. The meta-classifier estimates whether a base classifier is competent enough to
classify the given test instance. Thus, the proposed system differs from the current state-of-the-art
dynamic selection techniques not only because it uses multiple criteria to perform the classifier
selection, but also because the classifier selection rule is learned by the meta-classifier using the
training data.

The generdization performance of the system is evaluated over 30 classification problems.
We compare the proposed framework against eight state-of-the-art dynamic selection techniques
as well as static combination methods. The evaluation is focused on small size dataset, since
DES techniques has shown to be an effective tool for problems where the level of uncertainty
for recognition is high due to few training samples [6]. However, a few larger datasets were
also considered in order to evaluate the performance of the proposed framework under different
conditions. The goal of the experimentsis to answer the following research questions: (1) Can the
use of multiple DES criteria, as meta-features, lead to a more robust dynamic selection technique?
(2) Does the proposed framework outperform current DES techniques for ill-defined problems?

This paper is organized as follows: Section 2 introduces the notion of classifier competence,
and the state-of-the-art techniques for dynamically measuring the classifiers competence are pre-
sented. The proposed framework is presented in Section 3. The experimental study is conducted

in Section 4. Finally, our conclusion is presented in the last section.

2. Classifier competence for dynamic selection

Classifier competence defines how much we trust an expert, given a classification task. The

notion of competence used is extensively in the field of machine learning as a way of selecting,
4



from the plethora of different classification models, the one that best fits the given problem. Let
C = {c1,...,en} (M isthe size of the pool of classifiers) be the pool of classifiers and ¢; a
base classifier belonging to the pool C. The goa of dynamic selection is to find an ensemble of
classifiers C' C C that has the best classifiers to classify a given test sample x;. Thisis different
from static selection, where the ensembl e of classifiers C’ is selected during the training phase, and
considering the global performance of the base classifiers over avalidation dataset [ 24, 25, 26, 27].

Nevertheless, the key issue in dynamic selection is how to measure the competence of a base
classifier ¢; for the classification of a given query sample x;. In the literature, we can observe
three categories: the classifier accuracy over alocal region, i.e., in aregion of the feature space
surrounding the query instance x;, decision templates [28], which are techniques that work in
the decision space (i.e, a space defined by the outputs of the base classifiers) and the extent of

consensus or confidence. The three categories are described in the following subsections.

2.1. Classifier accuracy over a local region

Classifier accuracy is the most commonly used criterion for dynamic classifier and ensemble
selection techniques[12, 4, 10, 17, 13, 15, 29, 16, 9]. Techniques that are based on local accuracy
first define a small region in the feature space surrounding a given test instance x;, called the
region of competence. Thisregion is computed using either the K-NN algorithm [4, 12, 10] or by
Clustering techniques[17, 13], and can be defined either in thetraining set [12] or inthe validation
set, such asin the KNORA techniques [4].

Based on the samples belonging to the region of competence, a criterion is applied in order
to measure the level of competence of a base classifier. For example, the Overall Local Accuracy
(OLA) [12] technique uses the accuracy of the base classifier in the whole region of competence
as a criterion to measure its level of competence. The classifier that obtains the highest accuracy
rate is considered the most competent one. The Local Classifier Accuracy (LCA) [12] computes
the performance of the base classifier in relation to a specific class label using a posteriori infor-
mation [30]. The Modified Local Accuracy [16] works similarly to the LCA technique, with the
only difference being that each sample belonging to the region of competence is weighted by its

Euclidean distance to the query instance. That way, instances from the region of competence that
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are closer to the test sample have a higher influence when computing the performance of the base
classifier. The classifier rank method [29] usesthe number of consecutive correctly classified sam-
ples as a criterion to measure the level of competence. The classifier that correctly classifies the
most consecutive samples coming from the region of competence is considered to have the highest
competence level or “rank”.

Ko et a. [4] proposed the K-Nearest Oracles (KNORA) family of techniques, inspired by
the Oracle concept. Four techniques are proposed: the KNORA-Eliminate (KNORA-E) which,
considers that a base classifier ¢; is competent for the classification of the query instance x; if
¢; achieves a perfect accuracy for the whole region of competence. Only the base classifiers
with a perfect accuracy are used during the voting scheme. In The KNORA-Union (KNORA-U)
technique, the level of competence of a base classifier ¢; is measured by the number of correctly
classified samplesin the defined region of competence. In this case, every classifier that correctly
classified at least one sample can submit a vote. In addition, two weighted versions, KNORA-
E-W and KNORA-U-W were also proposed, in which the influence of each sample belonging to
the region of competence was weighted based on its Euclidean distance to the query sample x ;.
Lastly, Xiao et a. [9] proposed the Dynamic Classifier Ensemble for Imbalanced Data (DCEID),
which is based on the same principles as the LCA technique. However, this technique also takes
into account each class prior probability when computing the performance of the base classifier
for the defined region of competence in order to deal with imbalanced distributions.

The difference between these techniques lies in how they utilize the local accuracy informa-
tion in order to measure the level of competence of a base classifier. The main issue with the
techniques arises from the fact that they depend on the performance of the techniques that define
the region of competence such as K-NN or clustering techniques. In our previous work [10], we
demonstrated that the effectiveness of dynamic selection techniquesis limited by the performance
of the algorithm that defines the region of competence. The dynamic selection techniqueis likely
to commit errors when outlier instances (i.e., mislabelled samples) exists around the query sample
in the feature space [10]. Using the local accuracy information alone is not sufficient to achieve
results close to the Oracle. Moreover, any difference between the distribution of validation and test

datasets may negatively affect the system performance. Consequently, we believe that additional
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information should also be considered.

2.2. Decision Templates

In this class of methods, the goal is also to select samples that are close to the query instance
x;. However, the similarity is computed over the decision space through the concept of decision
templates [28]. Thisis performed by transforming both the test instance x ; and the validation data
into output profiles. The output profile of an instance x; isdenoted by X; = {X;1,X;2,...,Xjm},
where each % ; is the decision yielded by the base classifier ¢; for the sample x;.

Based on the information extracted from the decision space, the K-Nearest Output Profile
(KNOP) [7] issimilar to the KNORA technique, with the difference being that the KNORA works
in the feature space, while the KNOP works in the decision space. The KNOP technique first
defines a set with the samples that are most similar to the output profile of the input sample, x; in
the decision space, called the output profiles set. The validation set is used for this purpose. Then,
similarly to the KNORA-E technique, only the base classifiers that achieve a perfect recognition
accuracy for the samples belonging to the output profiles set are used during the voting scheme.
The Multiple Classifier Behaviour (MCB) technique [11] also defines a set with the most similar
output profiles to the input sample using the decision space. Here, the selection criterion is based
on athreshold. The base classifiersthat achieve a performance higher than the predefined threshold
are considered competent and are selected to form the ensemble.

The advantage of this class of methods is that they are not limited by the quality of the region
of competence defined in the feature space, with the similarity computed based on the decision
space rather than the feature space. However, the disadvantage with this comes from the fact that

only global information is considered, whilethelocal expertise of each base classifier is neglected.

2.3. Extent of Consensus or confidence

Different from other methods, techniques that are based on the extent of consensus work by
considering a pool of ensemble of classifiers (EoC) rather than a pool of classifiers. Hence, the
first step is to generate a population of EoC, C* = {C}, Cs, ..., Cy,} (M isthe number of EoC
generated) using an optimization algorithm such as genetic algorithmsor greedy search [26, 5, 27].

7



Then, for each new query instance x;, the level of competence of an ensemble of classifiers C; is
equal to the extent of consensus among its base classifiers.

Severa criterion based on this paradigm was proposed: the Margin-based Dynamic Selection
(MDS) [5], where the criterion is the margin between the most voted class and the second most
voted class. The margin is computed simply by considering the difference between the number of
votes received by the most voted class and those received by the second most voted class. Two
variations of the MDS where proposed in [5], the Class-Strength Dynamic Selection (CSDYS),
which includes the ensemble decision in the computation of the MDS, and the GSDS, where
the global performance of each EoC is also taken into account [6]. Another technique from this
paradigm isthe Ambiguity-guided Dynamic Selection (ADS) [5], which uses the ambiguity among
the base classifiers of an EoC as the criterion for measuring the competence level of an EoC. The
ambiguity is calculated by the number of base classifiers of an ensemble that disagrees with the
ensemble decision. The lower the number of classifiers that disagree with the ensemble decision,
the higher the level of competence of the EoC.

The greatest advantage of this class of methods stems from the fact that it does not require
information from the region of competence. Thus, it does not suffer from the limitations of the
algorithm that defines the region of competence. However, these techniques present the following
disadvantages. In many cases, the search cannot find an EoC with an acceptable confidence level.
Thereis atie between different members of the pool, and the systems end up performing arandom
decision [6]. In addition, some classifiers are more overtrained than others. In this case, they end
up dominating the outcome even though they do not present better recognition performance [31].
The pre-computation of ensembles also greatly increases the overall system complexity aswe are

dealing with a pool of EoC rather than a pool of classifiers.

3. TheProposed Framework: META-DES

3.1. Problem definition
From the meta-learning perspective, the dynamic selection problem can be seen as another
classification problem, called the meta-problem. This meta-problem uses different criteriaregard-

ing the behavior of a base classifier in order to decide whether it is competent enough to classify
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agiven sample x;. Thus, a dynamic selection system can be defined based on two environments.
A classification environment in which the input features are mapped into a set of class labels
w = {wy, we, ...,wr} and a meta-classification environment in which information about the be-
havior of the base classifier is extracted from the classification environment and used to decide
whether a base classifier ¢; is competent enough to classify x;.

To keep with the conventions of the meta-learning literature, we define the proposed dynamic

ensemble selection in a meta-learning framework as follows:

e The meta-problem consists in defining whether a base classifier ¢; is competent enough to

e The meta-classes of this meta-problem are either “ competent” or “incompetent” to classify

Xj.

e Each meta-feature f; correspondsto adifferent criterion to measurethe level of competence

of abase classifier.

e The meta-features are encoded into ameta-features vector v; ; which contains theinforma-

tion about the behavior of abase classifier ¢; in relation to the input instance x;.

e A meta-classifier ) is trained based on the meta-features v; ; to predict whether or not c;

will achieve the correct prediction for x;.

In other words, a meta-classifier \ is trained, based on v; ;, to predict whether a base classifier
¢; is competent enough to classify given atest sample x;. Thus, the proposed system differs from
the current state-of-the-art dynamic sel ection technigues not only because it uses multiple criteria,

but also because the selection rule islearned by the meta-classifier \ using the training data.

3.2. The proposed META-DES
The META-DES framework is divided into three phases (Figure 1):

1. The overproduction phase, where the pool of classifiers C' = {c4, ..., ¢y }, composed of M

classifiers, is generated using the training instances x; ,.q;, from the dataset 7.
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2. The meta-training stage, in which samples x; ;,.4;,, from the meta-training dataset 7, are
used to extract the meta-features. A different dataset 7, is used in this phase in order to
prevent overfitting. The meta-feature vectors v, ; are stored in the set 7, that islater used to
train the meta-classifier \.

3. Thegeneralization phase, given atest samplex; .., resulting from the generalization data g;
its region of competence is extracted using the samples from the dynamic selection dataset
Dgpy, in order to compute the meta-features. The meta-feature vector v; ; is then passed to
the selector A, which decides whether ¢; is competent enough to classify x; ... and should
be added to the ensemble, C’. The majority voteruleis applied over the ensemble C’, giving

the classification w; of x; ;e

3.2.1. Overproduction

In this work, the Overproduction phase is performed using the Bagging technique [32, 33].
Bagging is an acronym for Bootstrap AGGregatING. The idea behind this technique isto build a
diverse ensemble of classifiers by randomly selecting different subsets of the training data. Each
subset isused to train oneindividual classifier ¢;. Asthefocus of the paper ison classifier selection,

and not on classifier generation methods, only the bagging technique is considered.

3.2.2. Meta-training

As shown in Figure 1, the meta-training stage consists of three steps. the sample selection
process, the meta-features extraction process, and the training of the meta-classifier \. For every
sample X, irain, € T, thefirst step isto apply the sample selection mechanism in order to know
whether or not x; 4,.4:, Should be used for the training of the meta-classifier A. The whole Meta-

training phase isformalized in Algorithm 1.

3.2.2.1 Sample Selection

As demonstrated by Dos Santos et al. [5] and Cavalin et a. [6], one of the main issuesin dynamic
ensembl e sel ection arises when classifying testing instances where the degree of consensus among

the pool of classifier islow, i.e., when the number of votes from the winning class is close or even
10
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Figure 1: Overview of the proposed META-DES framework. It is divided into three steps 1) Overproduction, where
the pool of classifiers C = {c1,...,car} is generated, 2) The training of the meta-classifier A, and 3) The gener-
alization phase where an ensemble C is dynamically defined based on the meta-information extracted from x ; ;e
and the pool C' = {c1,...,ear}. The generalization phase returns the label w; of x; ses:. he, K and K, are the
hyper-parametersrequired by the proposed system.

equal to the number of votes from the second class. To tackle this issue, we decided to focus
the training of the meta-classifier \ to specifically deal with cases where the extent of consensus
among the pool islow. Thisstep isconducted using athreshold /., called the consensusthreshol d.
Each instance x; ¢q:,, IS first evaluated by the whole pool of classifiers in order to compute the
degree of consensus among the pool, denoted by H (X train, , C). If theconsensus H (X 4rqin, » C)

falls below the consensus threshold /., theinstance x; 4.q:,, IS used to compute the meta-features.
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Algorithm 1 The Meta-Training Phase
Input: Training data 7,
Input: Pool of classifiersC' = {¢,...,cn}

1 TF=10

2: for all x; 4y4in, € T\ dO

3:  Compute the consensus of the pool H (X, trqin, , C)

4 if H (Xjtrainy, C) < he then

5 Find the region of competence 6; of x; ;qin, USING 7.
6: Compute the output profile X; ,4in, Of X; train, -
7
8
9

Find the K, similar output profiles ¢; of X, ;,4in, USING ’K.
for all ¢; € C do
v;; = MetaFeatureExtraction(0;, ¢;, iy Xj train, )

10: if ¢; correctly classifiesx; ;qin, then

11 a;j = 1"¢; iscompetent for x; ;,4in,”
12: else

13: a;; = 0" ¢; isincompetent for x; 44, ”
14: end if

15; x =T Ud{vis}

16: end for

17 endif

18: end for

19: Divide 7, into 25% for validation and 75% for training.
20: Train A using the Levenberg-Marquadt algorithm.
21: return The meta-classifier A.

Before extracting the meta-features, the region of competence of the instance x; ;,4in, , de-
noted by 6; = {x1,...,xx}, must first be computed. The region of competence 6, is defined
in the 7, set, using the K-Nearest Neighbor algorithm (line 5). Then, x; /4, 1S transformed
into an output profile.  The output profile of the instance x; 1qin, iS denoted by X;;p4in, =
{X; trainy 1> Xjtrainy.2s -« - » Xjtrainy,M }» Were €ach X; ¢.q:n, ; 1S the decision yielded by the base
classifier ¢; for the sample x; ;4in, [6, 7].

Next, with the region of competence ¢; and the set with the most similar output profiles ¢ ;
computed, for each base classifier ¢; belonging to the pool of classifiers C', one meta-feature vector

v;,; Isextracted (lines 8 to 14). Each v; ; contains five sets of meta-features:

12



3.2.2.2 Meta-feature extraction process

Five different sets of meta-features are proposed in this work. Each feature set f;, corresponds to
adifferent criterion for measuring the level of competence of a base classifier. Each set captures
adifferent property about the behavior of the base classifier, and can be seen as a different crite-
rion to dynamically estimate the level of competence of base classifier such as, the classification
performance estimated in a local region of the feature space and the classifier confidence for the
classification of the input sample. Using five distinct sets of meta-features, even though one crite-
rionmight fail dueto imprecisionsinthelocal regions of the feature space or dueto low confidence
results, the system can still achieve a good performance as other meta-features are considered by
the selection scheme. Table 1 shows the criterion used by each f; and its relationship with one

dynamic ensembl e selection paradigm presented in Section 2.

Table 1: Relationship between each meta-features and different paradigms to compute the level of competence of a
base classifier.

Meta-Feature | Criterion Paradigm

fi Local accuracy in the region of competence Classifier Accuracy over alocal region
fa Extent of consensus in the region of competence | Classifier consensus

f3 Overall accuracy in the region of competence Accuracy over alocal region

fa Accuracy in the decision space Decision Templates

f5 Degree of confidence for the input sample Classifier confidence

Three meta-features, f1, fo and f3, are computed using information extracted from the region
of competence ;. f4 usesinformation extracted from the set of output profiles ¢,. f5 iscalculated
directly from the input sample x; ;,4,,, and corresponds to the level of confidence of ¢; for the

classification of x; 4 qin, -

f1 - Neighbors' hard classification: First, avector with K elementsis created. For each instance
x;, belonging to the region of competence ¢, if ¢; correctly classifies x;, the k-th position

of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance
13



Xy, belonging to the region of competence 6;, the posterior probability of ¢;, P(w; | x) is
computed and inserted into the &-th position of the vector. Consequently, K meta-features

are computed.

f5 - Overall Local accuracy: The accuracy of ¢; over the whole region of competence 6; is com-

puted and encoded as f5.

f1 - Output profiles classification: First, avector with K, elementsis generated. Then, for each
member x;, belonging to the set of output profiles ¢, if the label produced by c¢; for x;, is
equal to the label w, 5, of x;, the k-th position of the vector is set to 1, otherwise itis 0. A

total of K, meta-features are extracted using output profiles.

/5 - Classifier’s Confidence: The perpendicular distance between the input sample x; ;,4i,, and
the decision boundary of the base classifier ¢; iscalculated and encoded as f5. f5 isnormal-

ized to a [0 — 1] range using the Min-max normalization.

K
p
K features K features 1 feature features 1 feature
| | {_A_\ | |
[ || | [ | \
H.a.rd . Poste.ri.o.r Local Output Profiles Classifier’s Class
Classification Probabilities Accuracy Confidence | | Attribute

fi Jo J3 J4 /5

Figure 2: Feature Vector containing the meta-information about the behavior of abase classifier. A total of 5 different
meta-featuresare considered. Thesize of the featurevector is (2 x K) + K, + 2. The class attribute indicates whether
or not ¢; correctly classified the input sample.

A vectorv;; = {fiU fo U fs U f4 U f5} is obtained at the end of the process (Figure 2). If ¢;
correctly classifiesx; ;,qin, , the classattribute of v; ;, «; ; = 1 (i.€e., v; ; corresponds to the behavior
of a competent classifier), otherwise o; ; = 0. v, ; is stored in the meta-features dataset 7, (lines
10 to 16).

For each samplex; ,4:,, Used inthe meta-training stage, atotal of A/ (1 isthesize of the pool
of classifiers C') meta-feature vectors v; ; are extracted, each one corresponding to one classifier

from the pool C. In thisway, the size of the meta-training dataset 7, isthe pool size M/ x number
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of training samples N. For instance, consider that 200 training samples are available for the meta-
training stage (V. = 200), if the pool C' is composed of 100 weak classifiers (M = 100), the
meta-training dataset is the number of training samples N x the number classifiersin the pool M,
N M = 20.000. Hence, even though the classification problem may beill-defined dueto the size
of the training set, we can overcome this limitation in the meta-problem by increasing the size of

the pool of classifiers.

3.2.2.3 Traning

The last step of the meta-training phase is the training of the meta-classifier \. The dataset 7,*
is divided on the basis of 75% for training and 25% for validation. A Multi-Layer Perceptron
(MLP) neura network is considered as the selector \. The validation data was used to select the
number of nodes in the hidden layer. We use a configuration of 10 neurons in the hidden layer
since there were no improvement in results with more than 10 neurons. The training process for A
is performed using the L evenberg-Marquadt algorithm. In addition, the training processis stopped

if its performance on the validation set decreases or failsto improve for five consecutive epochs.

3.2.3. Generalization Phase

The generalization procedure is formalized by Algorithm 2. Given the query sample x; ;c5, in
this phase, the region of competence 0, is computed using the samples from the dynamic selection
dataset Dgpy, (line 2). Following that, the output profiles x; ;.. of the test sample, x; ., are
calculated. The set with K, similar output profiles ¢;, of the query sample x; ., iS obtained
through the Euclidean distance applied over the output profiles of the dynamic selection dataset,
DSEL-

Next, for each classifier ¢; belonging to the pool of classifiers C, the meta-feature extraction
process is called (Section 3.2.2.2), returning the meta-features vector v, ; (lines 5 and 6). Then,
v;,; 1S used as input to the meta-classifier A. If the output of \ is1 (i.e., competent), ¢, isincluded
in the ensemble C” (lines 8 to 10). After every base classifier, ¢;, is evaluated, the ensemble C’
is obtained. The base classifiers in C’ are combined through the Mgjority Vote rule [1], giving
the label w; of z; .. (line 12 and 13). The magjority vote rule is used to combine the selected
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Algorithm 2 Classification steps using the selector A
Input: Query sample x; s
Input: Pool of classifiersC' = {¢,...,cn}
Input: dynamic selection dataset Dsgy,
1. C' =0
Find the region of competence 6, of x; ;.. using Dspy..
Compute the output profile X; ;es: Of X; sest-
Find the K, similar output profiles ¢; of x; ;.. using Dsgy.
for all c; € C'do
v; ; = FeatureExtraction(0;, ¢;, ¢i, X test)
input v; ; to A
if a; ; = 1"¢; iscompetent for x; ;" then
Cl = O/ U {Cz}
end if
. end for
s wy = MajorityV ote(X; test, ")
return w;

© o NPT RAE®DN

P I
W N kR Q

classifierssinceit has been successfully used by other DES techniques[3]. Tie-breakingishandled
by choosing the class with the highest a posteriori probability.

4. Experiments

4.1. Datasets

A total of 30 datasets are used in the comparative experiments. sixteen coming from the UCI
machine learning repository [34], four from the STATLOG project [35], four from the Knowl-
edge Extraction based on Evolutionary Learning (KEEL) repository [36], four from the Ludmila
Kuncheva Collection of real medical data[37], and two artificial datasets generated with the Mat-
lab PRTOOLS toolbox [38]. We consider both ill-defined problems, such as, Heart and Liver
Disorders as well as larger databases, such as, Adult, Magic Gamma Telescope, Phoneme and

WDG V1. The key features of each dataset are shown in Table 2.

4.2. Experimental Protocol

The experiments were conducted using 20 replications. For each replication, the datasets were

randomly divided on the basis 50% for training, 25% for the dynamic selection dataset (D sz 1),
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Table 2: Key Features of the datasets used in the experiments.

Database No. of Instances | Dimensionality | No. of Classes | Source
Pima 768 8 2 UCl
Liver Disorders 345 6 2 UCl
Breast (WDBC) 568 30 2 ucCl
Blood transfusion 748 4 2 ucl
Banana 1000 2 PRTOOLS
Vehicle 846 18 4 STATLOG
Lithuanian 1000 2 2 PRTOOLS
Sonar 208 60 2 ucCl
lonosphere 315 34 2 UcCl
Wine 178 13 3 UcCl
Haberman’s Survival 306 3 2 ucCl
Cardiotocography (CTG) 2126 21 3 UCl
Vertebral Column 310 6 2 ucl
Steel Plate Faults 1941 27 7 uUcCl
WDG V1 50000 21 3 ucCl
Ecoli 336 8 ucCl
Glass 214 6 ucCl
ILPD 214 6 uUcCl
Adult 48842 14 2 ucCl
Weaning 302 17 2 LKC
Laryngeall 213 16 2 LKC
Laryngeal3 353 16 3 LKC
Thyroid 215 5 3 LKC
German credit 1000 20 2 STATLOG
Heart 270 13 2 STATLOG
Satimage 6435 19 7 STATLOG
Phoneme 5404 2 ELENA
Monk2 4322 2 KEEL
Mammogr aphic 961 2 KEEL
MAGIC Gamma Telescope 19020 10 2 KEEL
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and 25% for the test set (G). The divisions were performed maintaining the priors probabilities of
each class. For the proposed META-DES, 50% of the training data was used in the meta-training
process 7, and 50% for the generation of the pool of classifiers (7).

For the two-class classification problems, the pool of classifiers was composed of 100 Per-
ceptrons generated using the bagging technique [32]. For the multi-class problems, the pool of
classifiers was composed of 100 multi-class perceptron classifier. The use of Perceptron as base

classifier comes from the following observations based on past worksin the literature:

e The use of weak classifiers can show more differences between the DES schemes[4]. Thus,

making it a better option for comparing different DES techniques.

e Past works in the DES literature demonstrate that the use of weak models as base classi-
fier achieve better results [5, 6, 39, 40, 10], where the use of decision trees or Perceptrons

outperform strong classification models such as KNN classifiers.

e As reported by Leo Breiman [32, 33], the bagging technique achieves better results when

weak and unstable base classifiers are used.

4.3. Parameters Setting

The performance of the proposed selection scheme depends on three parameters: the neighbor-
hood size, K, the number of similar patterns using output profiles £, and the consensus threshold
he. The dynamic selection dataset D, was used for the analysis. The following methodology
is used:

e For the sake of simplicity, we selected the parameters that performed best.

e Thevaue of the parameter K was selected based on the results of our previous paper [10].
In this case, K = 7 showed the best overall results, considering severa dynamic selection

techniques.

e The Kruskall-Wallis statistical test with a 95% confidence interval was used to determine

whether the difference in results was statistically significant. If two configurations yielded
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similar results, we selected the one with the smaller parameter value asiit leads to a smaller
meta-features vector.

e The parameter ho was evaluated with K, initially set at 1.
e The best value of . was used in the evaluation of the best value for K.

e Only a subset with eleven of the thirty datasets are used for parameters setting procedure:

Pima, Liver, Breast, Blood Transfusion, Banana, Vehicle, Lithuanian, Sonar, lonosphere,
Wine, Haberman's Survival.

4.3.1. The effect of the parameter h¢

Breast
~A Wine

— Lithuanian

Banana

lonosphere
—+— Vehicle
= > = Blood
= Sonar
-/~ Pima
=%=Haberman
—=— Liver

Recogpnition Rate (%)

I I I I I I I I I
50 55 60 65 70 75 80 85 90 95 100
Consensus Threshold

Figure 3: Performance of the proposed system based on the parameter h  on the dynamic selection dataset, Dsg .
K=7and K, =1.

We varied the parameter h,. from 50% to 100% at 10 percentile point interval. Figure 3 shows

the mean performance and standard deviation for each h value. We compared each pair of results
19



using the Kruskal-Wallis non-parametric statistical test with a 95% confidence interval. For 6 out
of 11 datasets (Vehicle, Lithuanian, Banana, Blood transfusion, lonosphere and Sonar) he = 70%
presented a value that was statistically superior to the others. Hence, h = 70% was selected.

4.3.2. The effect of the parameter K,

Breast
“A Wine

== Lithuanian

Banana

lonosphere
—+— Vehicle
= {> =Blood
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-/~ Pima
+=%="Haberman
—=— Liver

Recogpnition Rate (%)
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Number of Output Profiles

Figure 4: The performance of the system varying the parameter X ,, from 1 to 10 on the dynamic selection dataset,
Dsgr. he = 0% and K =7

Figure 4 shows the impact of the value of the parameter K, in an 1-to-10 range. Once again,
we compared each pair of results using the Kruskal-Wallis non-parametric statistical test, with a
95% confidence. The results were statistically different only for the Sonar, lonosphere and liver

disorders datasets, where the value of K, = 5 showed the best results. Hence, K, was set at 5.
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4.4. Comparison with the state-of-the-art dynamic selection techniques

In this section we compare the recognition rates obtained by the proposed META-DES, against
eight dynamic selection techniques found in the literature [3]. The objective of this comparative
study is to answer the following research question: (1) Can the use of multiple DES criteria as
meta-features lead to a more robust dynamic selection technique? (2) Does the proposed frame-
work outperform current DES techniques for ill-defined problems?

Theeight state-of-the-art DES techniquesused inthisstudy are: the KNORA-ELIMINATE [4],
KNORA-UNION [4], DES-FA [10], Local Classifier Accuracy (LCA) [12], Overal Loca Accu-
racy (OLA) [12], Modified Local Accuracy (MLA) [16], MultipleClassifier Behaviour (MCB) [11]
and K-Nearests Output Profiles (KNOP) [7, 6]. These techniques were selected because they pre-
sented the very best results in the dynamic selection literature according to a recent survey on
this topic [3]. In addition, we also compare the performance of the proposed META-DES with
static combination methods (Adaboost and Bagging), the classifier with the highest accuracy in
the validation data (Single Best), static ensemble selection based on the majority voting error [41]
and the abstract model (Oracle) [19]. The Oracle represents the ideal classifier selection scheme.
It always selects the classifier that predicted the correct label, for any given query sample, if such
classifier exists. For the static ensemble selection method, 50% of the classifiers of the pool are
selected. The comparison against static methods is used since it is suggested the DES literature
that the minimum requirement for a DES method is to surpass the performance of static selection
and combination methods in the same pool [3].

For all techniques, the pool of classifiers C' is composed of 100 Perceptrons as base classifier
(M = 100). For the state-of-the-art DES techniques (KNORA-E, KNORA-U, DES-FA, LCA,
OLA, MLA, MCB and KNOP), the size of the region of competence (neighborhood size), K is
set to 7, since it achieved the best result on previous publications [3, 10]. The size of the region
of competence K is the only hyper-parameter required for the eight DES techniques. For the
Adaboost and Bagging technique 100 iterations are used (i.e., 100 base classifier are generated).

We split the results in two tables: Table 3 shows a comparison with the proposed META-DES

against the eight state-of-the-art dynamic selection techniques considered. A comparison of the
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Table 3: Mean and standard deviation results of the accuracy obtained for the proposed DES p, and the DES systems
inthe literature. A pool of 100 Perceptrons as base classifiersis used for al techniques. The best results are in bold.
Results that are significantly better (p < 0.05) are marked with ae.

Database META-DES | KNORA-E [4] | KNORA-U [4] | DESFA[10] | LCA[12] | OLA[12] | MLA[16] | MCB[11] | KNOP[6]
Pima 79.03(2.24) e | 7379(186) | 76.60(2.18) | 73.95(1.61) |73.95(2.98) | 73.95(2.56) | 77.08(4.56) | 76.56(3.71) | 73.42(2.11)
Liver Disorders 70.08(349) ¢ | 56.65(328) | 56.97(3.76) | 61.62(3.81) |58.13(4.01) | 58.13(3.27) | 58.00(4.25) | 58.00(4.25) | 65.23(2.29)
Breast (WDBC) 97.41(1.07) | 9759(110) | 97.18(1.02) | 97.88(0.78) | 97.88(1.58) | 97.88(158) | 95.77(2.38) | 97.18(1.38) | 95.42(0.89)
Blood Transfusion 79.14(1.03) e | 77.65(362) | 77.12(336) | 73.40(1.16) | 75.00(2.87) | 75.00(2.36) | 76.06(2.68) | 73.40(4.19) | 77.54(2.03)
Banana 01.78(2.68) | 9308(1L67) | 92.28(2.87) | 95.21(3.18) | 95.21(2.15) | 95.21(2.15) | 80.31(7.20) | 88.29(3.38) | 90.73(3.45)
Vehicle 82.75(1.70) | 8301(L54) | 8254(1.70) | 8254(4.05) | 80.33(1.84) | 81.50(3.24) | 74.05(6.65) | 84.90(2.01) | 80.09(1.47)
Lithuanian Classes 9318(1.32) | 9333(250) | 95.33(264) | 98.00(2.46) | 85.71(2.20) | 98.66(3.85) | 88.33(3.89) | 86.00(3.33) | 89.33(2.29)
Sonar 8055(539) | 74.95(279) | 76.69(1.94) | 7852(3.86) | 76.51(2.06) | 74.52(1.54) | 76.91(3.20) | 76.56(2.58) | 75.72(2.82)
lonosphere 89.94(1.96) | 89.77(307) | 87.50(1.67) | 88.63(2.12) | 88.00(1.98) | 88.63(1.98) | 81.81(2.52) | 87.50(2.15) | 85.71(5.52)
Wine 90.25(1.11) e | 97.77(153) | 97.77(1.62) | 9555(1.77) |85.71(2.25) | 88.88(3.02) | 88.88(3.02) | 97.77(1.62) | 95.50(4.14)
Haber man 76.71(1.86) | 7123(4.16) | 73.68(227) | 72.36(2.41) | 70.16(3.56) | 69.73(4.17) | 73.68(3.61) | 67.10(7.65) | 75.00(3.40)
Cardiotocography (CTG) | 84.62(1.08) | 86.27(157) | 85.71(220) | 86.27(1.57) | 86.65(2.35) | 86.65(2.35) | 86.27(1.78) | 85.71(2.21) | 86.02(3.04)
Vertebral Column 86.89(2.46) | 85.89(227) | 87.17(2.24) | 82.05(3.20) | 85.00(3.25) | 85.89(3.74) | 77.94(5.80) | 84.61(3.95) | 86.98(3.21)
Steel Plate Faults 67.21(1.20) | 67.35(2.01) | 67.96(1.98) | 68.17(1.59) | 66.00(1.69) | 66.52(1.65) | 67.76(1.54) | 68.17(1.59) | 68.57(1.85)
WDG V1 8456(0.36) | 8401(110) | 84.01(110) | 84.01(1.10) |80.50(0.56) | 80.50(0.56) | 79.95(0.85) | 78.75(1.35) | 84.21(0.45)
Ecoli 77.25(352) | 7647(276) | 7529(341) | 75.29(341) | 75.29(3.41) | 75.29(3.41) | 76.47(3.06) | 76.47(3.06) | 80.00(4.25) e
Glass 66.87(299) | 57.65(5.85) | 61.00(2.88) | 55.32(4.98) |59.45(2.65) | 57.60(3.65) | 57.60(3.65) | 67.92(3.24) | 62.45(3.65)
ILPD 69.40(1.64) | 67.12(2.35) | 69.17(1.58) | 67.12(2.35) | 69.86(2.20) | 69.86(2.20) | 69.86(2.20) | 68.49(3.27) | 68.49(3.27)
Adult 87.15(243) ¢ | 80.34(157) | 79.76(2.26) | 80.34(157) |83.58(2.32) | 82.08(2.42) | 80.34(1.32) | 78.61(3.32) | 79.76(2.26)
Weaning 87.15(2.43)e | 78.94(1.25) | 8157(3.65) | 82.89(352) |77.63(2.35) | 77.63(2.35) | 80.26(1.52) | 81.57(2.86) | 82.57(3.33)
Laryngeall 79.67(378)e | 77.35(445) | T77.35(445) | 77.35(4.45) | 77.35(4.45) | 77.35(4.45) | 75.47(5.55) | 77.35(4.45) | 77.35(4.45)
Laryngeal3 72.65(2.17) | 7078(3.68) | 7203(1.89) | 72.03(1.89) | 72.90(2.30) | 71.91(1.01) | 61.79(7.80) | 71.91(1.01) | 73.03(1.89)
Thyroid 96.78(0.87) | 9595(125) | 9595(1.25 | 95.37(2.02) | 95.95(1.25) | 95.95(1.25) | 94.79(2.30) | 95.95(1.25) | 95.95(1.25)
German credit 7555(1.31) e | 72.80(1.95) | 7240(1.80) | 74.00(3.30) | 73.33(2.85) | 71.20(2.52) | 71.20(2.52) | 73.60(3.30) | 73.60(3.30)
Heart 84.80(3.36) | 8382(4.05) | 83.82(405) | 83.82(4.05) |85.29(3.69) | 85.29(3.69) | 86.76(5.50) | 83.82(4.05) | 83.82(4.05)
Satimage 96.21(0.87) | 95.35(123) | 95.86(1.07) | 93.00(2.90) | 95.00(1.40) | 94.14(1.07) | 93.28(2.10) | 95.86(1.07) | 95.86(1.07)
Phoneme 80.35(258) | 79.06(250) | 78.92(333) | 79.06(2.50) | 78.84(2.53) | 78.84(2.53) | 64.94(7.75) | 73.37(5.55) | 78.92(3.33)
Monk2 83.24(2.19) e | 8055(332) | T77.77(425) | 75.92(4.25) | 74.07(6.60) | 74.07(6.60) | 75.92(5.65) | 74.07(6.60) | 80.55(3.32)
Mammographic 84.82(155) e | 8221(227) | 8221(227) | 80.28(3.02) | 82.21(2.27 | 82.21(2.27) | 75.55(5.50) | 81.25(2.07) | 82.21(2.27)
MAGIC Gamma Telescope | 84.35(3.27) o | 80,03(3.25) | 79,99(355) | 81.73(3.27) |81,53(3.35) | 81,16(3.00) | 73,13(6.35) | 75,91(5.35) | 80,03(3.25)

META-DES against static combination rulesis shown in Table 4. Each pair of resultsis compared
using the Kruskal-Wallis non-parametric statistical test, with a 95% confidence interval. The best
resultsare in bold. Resultsthat are significantly better (p < 0.05) are marked with ae.

We can see in Table 3 the proposed META-DES achieves results that are either superior or
equivalent to the state-of-the-art DES techniques in 25 datasets (84% of the datasets). In addition,
the META-DES achieved the highest recognition performance for 18 datasets, which corresponds
to 60% of the datasets considered. Only for the Ecoli, Heart, Vehicle, Banana and Lithuanian
datasets (16% of the datasets) the recognition rates of the proposed META-DES framework pre-
sented is statistically inferior to the best result achieved by state-of-the-art DES techniques.
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Table 4: Mean and standard deviation results of the accuracy obtained for the proposed DES p, and static ensemble
combination. A pool of 100 Perceptrons as base classifier is used for al techniques The best results are in bold.
Results that are significantly better (p < 0.05) are marked with ae.

Database META-DES | SingleBest [3] | Bagging [32] | AdaBoost [42] | Static Selection [41] | Oracle[19]
Pima 79.03(2.24) ¢ | 73.57(1.49) 73.28(2.08) 72.52(2.48) 72.86(4.78) 95.10(1.19)
Liver Disorders 70.08(3.49) e | 65.38(3.47) 62.76(4.81) 64.65(3.26) 59.18(7.02) 93.07(2.41)
Breast (WDBC) 97.41(1.07) 97.04(0.74) 96.35(1.14) 98.24(0.89) 96.83(1.00) 99.13(0.52)
Blood Transfusion 79.14(1.03) e | 75.07(1.83) 75.24(1.67) 75.18(2.08) 75.74(2.23) 94.20(2.08)
Banana 91.78(2.68) 84.07(2.22) 81.43(3.92) 81.61(2.42) 81.35(4.28) 94.75(2.09)
Vehicle 82.75(1.70) 81.87(1.47) 82.18(1.31) 80.56(4.51) 81.65(1.48) 96.80(0.94)
Lithuanian Classes 93.18(1.32) o | 84.35(2.04) 82.33(4.81) 82.70(4.55) 82.66(2.45) 98.35(0.57)
Sonar 80.55(5.39) 78.21(2.36) 76.66(2.36) 74.95(5.21) 79.03(6.50) 94.46(1.63)
lonosphere 89.94(1.96) 87.29(2.28) 86.75(2.75) 86.75(2.34) 87.50(2.23) 96.20(1.72)
Wine 99.25(1.11) 96.70(1.46) 95.56(1.96) 99.20(0.76) 96.88(1.80) 100.00(0.01)
Haberman 76.71(1.86) 75.65(2.68) 72.63(3.45) 75.26(3.38) 73.15(3.68) 97.36(3.34)
Cardiotocography (CTG) | 84.62(1.08) 84.21(1.10) 84.54(1.46) 83.06(1.23) 84.04(2.02) 93.08(1.46)
Vertebral Column 86.89(2.46) 82.04(2.17) 85.89(3.47) 83.22(3.59) 84.27(3.24) 97.40(0.54)
Steel Plate Faults 67.21(1.20) 66.05(1.98) 67.02(1.98) 66.57(1.06) 67.22(1.64) 88.72(1.89)
WDG V1 84.56(0.36) 83.17(0.76) 84.36(0.56) 84.04(0.37) 84.23(0.53) 97.82(0.54)
Ecoli 77.25(352) ¢ | 69.35(2.68) 72.22(3.65) 70.32(3.65) 67.80(4.60) 91.54(1.55)
Glass 66.87(2.99) o | 52.92(4.53) 62.64(5.61) 55.89(3.25) 57.16(4.17) 90.65(0.00)
ILPD 69.40(1.64) 67.53(2.83) 67.20(2.35) 69.38(4.28) 67.26(1.04) 99.10(0.72)
Adult 87.15(2.43) ¢ | 83.64(3.34) 85.60(2.27) 83.58(2.91) 84.37(2.79) 95.59(0.39)
Weaning 79.67(3.78) o |  74.86(4.78) 76.31(4.06) 74.47(3.68) 76.89(3.15) 92.10(0.92)
Laryngeall 83.43(4.50) 80.18(5.51) 81.32(3.82) 79.81(3.88) 80.75(4.93) 98.86(0.98)
Laryngeal3 72.65(2.17) 68.42(3.24) 67.13(2.47) 62.32(2.57) 71.23(3.18) 100(0.00)
Thyroid 96.78(0.87) 95.15(1.74) 95.25(1.11) 96.01(0.74) 96.24(1.25) 99.88(0.36)
German credit 75.55(2.31) 71.16(2.39) 74.76(2.73) 72.96(1.25) 73.60(2.69) 99.12(0.70)
Heart 84.80(3.36) 80.26(3.58) 82.50(4.60) 81.61(5.01) 82.05(3.72) 95.90(1.02)
Satimage 96.21(0.87) 94.52(0.96) 95.23(0.87) 95.43(0.92) 95.31(0.92) 98.69(0.87)
Phoneme 80.35(2.58) ¢ | 75.87(1.33) 72.60(2.33) 75.90(1.06) 72.70(2.32) 99.34(0.24)
Monk2 83.24(2.19) 79.25(3.78) 79.18(2.57) 80.27(2.76) 80.55(3.59) 98.98(1.19)
Mammogr aphic 84.82(1.55) 83.60(1.85) 85.27(1.85) 83.07(3.03) 84.23(2.14) 99.59(0.15)
MAGIC Gamma Telescope | 84.35(3.27) 80.27(3.50) 81.24(2.22) | 87.35(1.45) ¢ 85.25(3.25) 95.35(0.68)

For the 12 datasets where the proposed META-DES did not achieved the highest recognition
rate (WDBC, Banana, Vehicle, Lithuanian, Cardiotocography, Vertebral column, Steel plate faults,
Ecoli, Glass, ILPD, Laryngea 3 and Heart) we can see that each DES technique presented the best
accuracy for different datasets (as shownin Figure 5). The KNOP achievesthe best resultsfor three
datasets (Ecoli, Steel plate faults and Laryngeal 3), the MCB for two datasets (Vehicle and Glass),
the DES-FA for 3 datasets (Banana, Breast cancer and Cardiotocography) and so forth. Thiscan be
explained by the "no free lunch" theorem. There isno criterion to estimate the competence of base
classifiers that dominates all other when compared with several classification problems. Since the
proposed META-DES uses a combination of five different criteria as meta-features, even though
one criterion might fail, the system can still achieve agood performance as other meta-features are
also considered by the selection scheme. In thisway, a more robust DES technique is achieved.
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Figure5: Bar plot showing the number of datasets that each DES technique presented the highest recognition accuracy.

Moreover, another advantage of the proposed META-DES framework comes from the fact
that several meta-feature vectors are generated for each training sample in the meta-training phase
(Section 3.2.2). For instance, consider that 200 training samples are available for the meta-training
stage (N = 200), if the pool C is composed of 100 weak classifiers (M = 100), the meta-
training dataset is the number of training samples N x the number classifiers in the pool M,
N x M = 20.000. Hence, there is more data to train the meta-classifier A\ than for the generation
of the pool of classifiers C' itself. Even though the classification problem may be ill-defined, due
to the size of the training set, using the proposed framework we can overcomethislimitation since
the size of the meta-problem is up to 100 times bigger than the classification problem. So, our
proposed framework has more data to estimate the level of competence of base classifiers than
the other DES methods, where only the training or validation data is available. This fact can be
observed by the results obtained for datasets with less than 500 samples for training, such as,
Liver Disorders, Sonar, Weaning and lonosphere where recognition accuracy of the META-DES
is statistically superior for those small size problems.

When compared against stati c ensembl e techniques Table 4, the proposed META-DES achieves

the highest recognition accuracy for 24 out of 30 datasets. This can be explained by the fact that
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the majority of datasets considered are ill-defined. Hence, the results found in this paper aso
support the claim made by Cavalin et al. [6] that DES techniques outperform static methods for
ill-defined problems.

We can thus answer the research question posed in this paper: Can the use of meta-features|ead
to amore robust dynamic selection technique? Asthe proposed system achieved better recognition
rates in the majority of datasets the use of multiple properties from the classification environment

as meta-features indeed leads to a more robust dynamic ensemble sel ection technique.

5. Conclusion

In this paper, we presented a novel DES technique in a meta-learning framework. The frame-
work is based on two environments: the classification environment, in which the input features
are mapped into a set of class labels, and the meta-classification environment, in which different
properties from the classification environment, such as the classifier accuracy in the feature space
or the consensus in the decision space, are extracted from the training data and encoded as meta-
features. Five sets of meta-features are proposed. Each set corresponding to a different dynamic
selection criterion. These meta-features are used to train a meta-classifier which can estimate
whether a base classifier is competent enough to classify a given input sample. With the arrival of
new test data, the meta-features are extracted using the test data as reference, and used as input to
the meta-classifier. The meta-classifier decides whether the base classifier is competent enough to
classify the test sample.

Experiments were conducted using 30 classification datasets coming from five different data
repositories (UCI, KEEL, STATLOG, LKC and ELENA) and compared against eight state-of-the-
art dynamic selection techniques (each technique based on asingle criterion to measure the level of
competence of abase classifier), aswell asfive classical static combination methods. Experimental
results show the proposed META-DES achieved the highest classification accuracy in the magority
of datasets, which can be explained by the fact that the proposed META-DES framework is based
on five different DES criteria. Even though one criterion might fail, the system can still achieve a
good performance as other criteria are also considered in order to perform the ensemble selection.

In thisway, a more robust DES technique is achieved.
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In addition, we observed a significant improvement in performance for datasets with critical
training size samples. This gain in accuracy can be explained by the fact that during the Meta-
Training phase of the framework, each training sample generates several meta-feature vectors for
the training of the meta-classifier. Hence, the proposed framework has more data to train the meta-
classifier and consequently to estimate the level of competence of base classifiers than the current
state-of-the-art DES methods, where only the training or validation data is available.

Future works on thistopic will involve:

1. The definition of new sets of meta-features to better estimate the level of competence of the

base classifiers.

2. The selection of meta-features based on optimization algorithms in order to improve the
performance of the meta-classifier, and consequently, the accuracy of the DES system.

3. The evaluation of different training scenarios for the meta-classifier.
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