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Abstract—We propose a bootstrap-based iterative method for
generating classifier ensembles called Iterative Classifier Selection
Bagging (ICS-Bagging). Each iteration of ICS-Bagging has two
phases: i) bootstrap sampling to generate a pool of classifiers;
and, ii) selection of the best classifier of the pool using a fitness
function based on the ensemble accuracy and diversity. The
selected classifier is added to the final ensemble. The bootstrap
sampling runs on each iteration and updates the probability of
sampling per class based on the class error rate. This process
is repeated until the number of classifiers in the final ensemble
is reached. For the specific case of imbalanced datasets, we also
propose the SMOTE-ICS-Bagging, a variation of the ICS-Bagging
that runs SMOTE at the beginning of each iteration in order to
reduce the class imbalance before data sampling. We compared
the proposed techniques with Bagging, Random Subspace and
SMOTEBagging, using 15 imbalanced datasets from KEEL.
The results show the proposed techniques outperform all other
techniques in accuracy. Ranking diagrams revealed that the
proposed algorithms achieved the highest ranking in accuracy,
outperforming SMOTEBagging, a renowned ensemble generation
method for imbalanced datasets.

Keywords—Ensemble Generation, Multiple Classifier Systems,
Bagging, Imbalanced Datasets, SMOTE.

I. INTRODUCTION

In many real-world classification datasets, the instances
of one class are greatly outnumbered by the instances of
the other classes. This imbalance gives rise to the so called
class imbalance problem, which is the problem of learning
a class that has a small set of examples when compared to
the other classes. In recent years, the class imbalance problem
has emerged as one of the great challenges of data mining
[1], and it is very common in practice, being present in areas
such as medical diagnosis [2], fraud detection [3], and face
recognition [4].

On imbalanced datasets, the underrepresented class, called
the minority or positive class, is usually the class of interest
(i.e. higher misclassification cost), which makes it essential
that the few instances available for this class be appropriately
learned by the model. This is not usually the case for standard
classification learning algorithms, as most of them do not take
class distribution into account and have a strong bias towards
the majority class. This results in poor learning of the minority
class. As this class is so important in these types of problems,
it makes sense to explicitly deal with the class imbalance
problem.

Numerous methods exist to treat imbalanced datasets [5]

[6] [7] [8], [7]. These methods can be categorized into 3 major
groups: (1) data sampling, in which the dataset is preprocessed
so that a standard learning method can be used [9]; (2)
algorithmic modification, which involves adapting standard
learning methods to take class distribution into account; (3)
cost-senstive learning [10], that uses approaches at the data
level, at the algorithmic level, or both.

Ensemble methods [11] [12] [13] (also known as Multiple
Classifier Systems) are an important area of research in ma-
chine learning, and have been proven in practice to increase
the accuracy of classifier systems [13]. These methods consist
of training not just one classifier (i.e. expert), but several, and
combining their outputs (i.e. expert opinions) in the hope that
the results will be better than any classifier, or at least trying
to avoid the choice of the worst classifier.

The process to generate good classifiers for an ensemble
is not trivial, as the criteria for a “good” ensemble is not only
the accuracy of its classifiers, but that they are as uncorrelated
as possible. To heuristically measure this degree of “uncorre-
latedness”, the concept of diversity [14] [15] is used. Since the
training of each classifier already optimizes for accuracy, the
ensemble designer must choose how to improve diversity in the
ensemble. There are several methods that do this, and they can
be divided in: (1) training data manipulation [16] [17] [18], (2)
randomization [19] and (3) different models/architectures [20].
Ensemble methods are also frequently adapted to imbalanced
domains [8], either by preprocessing the data before training
each classifier [21] [22] or by using a cost-sensitive framework.

In this paper, we proposed a technique for generating clas-
sifier ensembles called Iterative Classifier Selection Bagging
(ICS-Bagging). ICS-Bagging is a bootstrap-based iterative
method composed of two steps: first, a bootstrap sampling
generates a pool of classifiers, and, after, the best classifier
of the pool is selected using a fitness function based on the
ensemble accuracy and diversity.

The main contributions of this paper are two new pro-
posed methods: (1) ICS-Bagging: an ensemble generation
method that chooses what classifiers should be added in the
final ensemble by using ensemble accuracy and diversity;
(2) SMOTE-ICS-Bagging (SICS-Bagging): a variant of ICS-
Bagging that explicitly deals with the class imbalance problem.
Both methods are shown to beat the state-of-the-art according
to a recent survey [8].

This paper is organized as follows. Section 2 presents the
background for the proposed methods, going into more detail



about imbalanced datasets solutions and ensemble methods.
Section 3 presents ICS-Bagging and SICS-Bagging. Next, in
Section 4, we detail the experiments, and in Section 5 we
present the conclusions.

II. BACKGROUND

In the field of classification, imbalanced datasets are a
common occurrence and dealing with such datasets is difficult
problem [23] [1]. The main characteristic of such datasets is
the fact that it has an imbalance in the class distribution.

Most of the standard learning algorithms expect a balanced
training set. Therefore, good models for standard classification
are not necessarily the best for imbalanced datasets. Some of
the reasons for this are [7]:

• The use of performance metrics that do not take class
imbalance into account, such as the accuracy rate, may
provide an advantage to the majority class.

• Classification rules that predict the minority class may
be too specific, and so they are discarded in favor of
more general rules.

• Very small clusters of minority class examples can
be identified as noise, and therefore they could be
wrongly discarded by the classifier. Also, a few noisy
examples can degrade the identification of the minority
class, since it has fewer examples to train with.

Multiple methods exist to deal with the class imbalance
problem, [7] categorizes these methods into 3 major groups:

• Data sampling: training data is modified in such a
way to produce a more or less balanced class distri-
bution that allow classifiers to perform in a similar
manner to standard classification.

• Algorithmic modification: adapts standard learning
algorithms to be more attuned to class imbalance
issues.

• Cost-sensitive learning [10]: This type of solutions
incorporate approaches at the data level, at the algo-
rithmic level, or at both levels combined, considering
higher costs for the misclassification of examples of
the positive class with respect to the negative class,
and therefore, trying to minimize higher cost errors.

A. Data sampling

One of the simpler alternatives (listed above) for dealing
with imbalanced datasets, is preprocessing the data so as
to diminish or eliminate the imbalance. In this vein, there
are 3 options: (1) oversampling the minority class [24], (2)
undersampling the majority class [25] [26], (3) combining
oversampling and undersampling [27]. In this paper we focus
on SMOTE [24], which is an oversampling technique that was
shown to be very effective as a preprocessing step for dealing
with the class imbalance problem [8].

SMOTE [24] is an oversampling technique that creates syn-
thetic examples by interpolating between minority instances
that are close to each other. Synthetic instances are created
along the line segment between each minority class instance

and one of its k nearest neighbors (from the same class). The
procedure is basically this: for each minority class example,
randomly select one of its k nearest neighbors (from the same
class), take the difference between the two vectors, multiply
the difference by a random number (between 0 and 1) and add
it to the minority class example.

The intuition on why SMOTE improves performance on
imbalanced datasets is that it provides more related minority
class samples to learn from, thus allowing a learning algorithm
to create broader decision regions, leading to more coverage
of the minority class. This of course, has an implicit locality
bias, that is, it assumes that interpolating two nearby samples
of the same class, will generate a point in the same class. That
is not always the case, so one of the problems of SMOTE is
its sensitivity to the complexity of the dataset.

B. Ensemble generation

1) Bagging: Bagging [16] is an ensemble meta-algorithm
that was designed to improve the accuracy and stability of
supervised machine learning models. Its main concept is
bootstrap aggregation, where the training set for each classifier
is constructed by random uniform sampling (with replacement)
instances from the original training set (usually keeping the
size of the original data) [28]. The classifiers output is then
combined in some way (for classification problems, majority
vote is generally used). The bootstrap sampling process gener-
ates a different training set for each classifier, which naturally
increases ensemble diversity.

2) Boosting: Boosting [17] [29] is a general method for
improving the accuracy of any given learning algorithm [30].
The objective of boosting methods is to produce a very
accurate (i.e. ”strong”) classifier by combining rough and
somewhat inaccurate (i.e. ”weak”) classifiers. The boosting
method works by iteratively training each classifier, by feeding
it a weighted training set. The weights in each instance of the
training set are higher for instances often misclassified by the
preceding classifiers. This effectively forces each classifier to
focus on the current ”hardest” examples. After the ensemble
is generated, a simple combination scheme may be used (e.g.
majority voting).

C. Ensemble Generation for Imbalanced Datasets

The use of ensembles for dealing with imbalanced datasets
is one common solution [7], and [8] roughly categorizes these
techniques into: (1) bagging-based; (2) boosting-based; (3)
hybrid; and (4) cost-sensitive ensembles. Out of these types,
we’re interested in comparing our proposed technique with
the bagging-based SMOTEBagging, since it obtained slightly
better results than the best (more robust) techniques tested in
[8] and [7].

In SMOTEBagging [21], the bootstrapping procedure used
in the original Bagging, is modified so that even more diversity
is introduced in the ensemble, this is done by using SMOTE.
This technique, at first, uses SMOTE for oversampling the
minority class, and then its resampling rate is updated in each
iteration (i.e. for each classifier that is trained), from lower
to higher values (e.g. 10% - 100%). This ratio defines the
number of minority instances to be additionally resampled in
each iteration [28].



III. PROPOSED ALGORITHMS

This section presents the Iterative Classifier Selection
Bagging (ICS-Bagging) and the SMOTE Iterative Classifier
Selection Bagging (SICS-Bagging).

A. ICS-Bagging

ICS-Bagging is a bootstrap-based iterative methods for
generating classifier ensembles. Each iteration generates a set
of classifiers and selects the best classifier to the ensemble. The
bootstrap sampling uses a probability of sampling from each
class, with this probability being derived from the class error
rate. Figure 1 presents the architecture of the ICS-Bagging
algorithm.

Follows the explanation of each step:

Preprocessing: Before generating the classifiers, a prepro-
cessing technique might be applied to the training set. This
preprocessing can consist of removing or generating features,
removing outliers, noisy and redundant data, or generating new
data. ICS-Bagging does not have this step, it is only used in
the SICS-Bagging and is mentioned later in this section.

Generate K classifiers: This step generates K classifiers
using bootstrap sampling (with replacement). In the first step,
the weights are the same for all classes, after the first step the
weights are updated to prioritize the class that has a higher
error rate.

The motivation for using the weights to guide the bootstrap
process is that the new generated classifiers are trained with
instances that increase the accuracy of the class with the higher
error rate.

The motivation for generating K > 1 classifiers is to ex-
pand a region of search, increasing the probability of finding a
classifier that considerably increase the classification accuracy
and diversity.

Add the best classifier to the pool: For each of the K
generated classifiers the following steps are performed to find
the best classifier. Algorithm 1 presents the mechanism to find
the classifier to be inserted into the pool.

Algorithm 1 Find Best Classifier
Require: V: validation set
Require: C: list of classifiers
Require: P: pool
Require: fitness: a fitness function

1: bestindex ← −1
2: bestvalue ← −1
3: for all i ∈ SizeOf(C) do
4: Add Ci to P
5: fiti ← fitness(P)
6: if fiti > bestvalue then
7: bestvalue ← fiti
8: bestindex ← i
9: end if

10: Remove Ci from P
11: end for
12: return Cbestindex

In Algorithm 1, C is the list of K generated classifiers, V
is the validation set (in this work, we used the traning set as
the validation set) and P is the current pool of classifiers.

For all classifiers in C, the classifier is added to the pool
(Line 4), and the the fitness of the pool is calculated (Line 5).
The fitness is given by

fitness = α× ACC + (1− α)× DIV (1)

where ACC is the classification accuracy of the pool, DIV is the
diversity metric, and α is the balance parameter that regulates
the objective function between high classification accuracy and
high diversity, and has a range of 0.51 to 0.99.

If the pool achieves the highest fitness with this classifier,
the index of this classifier is saved in bestindex (Line 6 - 9). The
classifier is removed from the pool (Line 10) and the process
starts again with another classifier, until the best classifier is
returned (Line 12).

For the classification of a test sample, any combination rule
could be used. In this paper, we used the majority vote rule
[12] to combine the outputs of the classifiers in the pool.

Any classification and diversity metric can be used in Equa-
tion 1, but both need to be normalized (between 0 and 1). In
this paper we used the AUC as classification accuracy because
of the imbalanced datasets issue, and the Entropy Measure
E [14] as the diversity metric because of the simplicity and
running speed.

The Entropy Measure E is a non-pairwise diversity mea-
sure that has it’s highest value when half classifiers correctly
classify a pattern and the other half doesn’t. If all classifiers
have the same agree on a classification, the ensemble is not
considered diverse. The Entropy Measure E is described as

E =
1

N

N∑
j=1

1

(L− dL2 e)
min{l(zj), L− l(zj)} (2)

where L is the number of classifiers of the ensemble, N is
the number of samples to be classified, l(zi) is a function
that returns the number of classifiers that correctly classify the
sample zi. This diversity metric varies from 0 to 1, where 1
is the highest diversity and 0 is the lowest, therefore, there is
no need for normalization when using this metric.

The motivation for adding only one of the K generated
classifiers is because the error rate of each class might change
when the best classifier is inserted in the pool, which means,
the pool now has different samples to prioritize in order to
increase classification rate and diversity.

|pool| = N: If the pool already contains the desired number
of classifiers the pool is returned.

Update the weight of each class: Since the error rate of
each class might have changed after inserting the new classifier
in the pool, the weights need to be updated using Equation 3,

weightclass =
errorclass∑

c∈classes errorc
(3)



Fig. 1. Architecture of ICS-Bagging and SICS-Bagging. Where L is the final ensemble, and Preprocessing is a step from the SICS-Bagging

where weightclass is the weight of the class, errorclass is the
classification error rate of the class, and

∑
c∈classes errorc is

the sum of the error rate of all classes.

As previously stated, the motivation for updating the
weights is to increase the probability of training the new K
classifiers with samples from the class with higher error rate
of the pool.

Return the pool: The final pool of classifiers L is returned.

B. SMOTE-ICS-Bagging

SMOTE-ICS-Bagging (SICS-Bagging) is a variation of
ICS-Bagging in which the Synthetic Minority Over-sampling
Technique (SMOTE) is used as a preprocessing phase before
generating the K classifiers. This step is performed to increase
diversity and to reduce the imbalance ratio when performing
bootstrap sampling.

IV. EXPERIMENTS

This section presents the methodology used in the experi-
ments, and the results of ICS-Bagging and SICS-Bagging.

A. Methodology

The ICS-Bagging and SICS-Bagging methods are eval-
uated using 15 imbalanced datasets from KEEL [31]. The
datasets are binary and have incremental imbalance ratio (IR),
given by the number of samples of the majority class divided
by the number of samples of the minority class. The datasets
used in this study are summarised in Table I that shows
the number of samples, the number of attributes, the classes
distribution and the IR.

TABLE I. DATASETS CHARACTERISTICS

Label Name Patterns Features % (min., maj.) IR

1 Glass1 214 9 (35.51, 64.49) 1.82
2 Pima 768 8 (34.84, 66.16) 1.90
3 Iris0 150 4 (33.33, 66.67) 2.00
4 Yeast1 1484 8 (28.91, 71.09) 2.46
5 Vehicle2 846 18 (28.37, 71.63) 2.52
6 Vehicle3 846 18 (28.37, 71.63) 2.52
7 Ecoli1 336 7 (22.92, 77.08) 3.36
8 Ecoli2 336 7 (15.48, 84.52) 5.46
9 Glass6 214 9 (13.55, 86.45) 6.38
10 Yeast3 1484 8 (10.98, 89.02) 8.11
11 Ecoli3 336 7 (10.88, 89.12) 8.19
12 Vowel0 13 988 (9.10, 90.9) 9.98
13 Glass4 214 9 (6.07, 93.93) 15.47
14 Ecoli4 336 7 (5.95, 94.05) 15.8
15 Page-blocks13vs4 472 10 (5.93, 94.07) 15.85

The datasets are partitioned using the 5-fold cross-
validation procedure, which means that the datasets are divided
in 5 folds (each one with 20% of the samples) and the
experiments are performed 5 times, each time with one of the
folds as the test set and the remaining four folds as the training
set. This partitioning is performed respecting class proportion.

The evaluation metrics are: classification accuracy and
diversity. For the classification accuracy, the metric used was
the Area Under the ROC Curve (AUC). This metric was chosen
because it is one of the most suitable metrics when dealing with
imbalanced datasets. For the diversity, the Entropy Measure E
was used. This non-paired diversity metric was used because
it is not biased by the AUC (already considered in the fitness
function), and for simplicity, because it has the ideal range
(from 0 to 1), where 1 is the highest diversity possible.

In order to evaluate the results, we used the statistical
paired test One Sided Wilcoxon Signed Rank Test [32], compar-
ing ICS-Bagging and SICS-Bagging with the other techniques
in this experiment. The level of significance used was α = 0.1.

The techniques and parameters used in this experiments
are presented in Table II.



TABLE II. ALGORITHMS AND PARAMETERS

Algorithm Parameters

ICS-Bagging N = 40, repetition = True
K = 5, Ksmote = 5

SICS-Bagging N = 40, repetition = True
K = 5, Ksmote = 5

SMOTEBagging N = 40, repetition = True
Ksmote = 5

Bagging N = 40, repetition = True
RandomSubspace N = 40, featuresmax = 0.5

The base classifier used in the experiments was the Deci-
sion Tree Classifier with maximum depth of 9, and minimum
number of samples required to be at a leaf node of 1. The
combination scheme used is a simple majority vote.

B. Results

Tables III and IV present the average and standard devia-
tion for, respectively, the AUC and Entropy Measure E. The
best result in each dataset is highlighted in bold. The last lines
present the results of the Wilcoxon Test, the p-value and the
result when compared with ICS-Bagging and SICS-Bagging.
The symbol “+” when a proposed technique outperformed,
the symbol “−” when it was outperformed, and “=” when
nothing can be concluded with statistical support (NA means
not applicable).

1) Classification Accuracy: Table III shows that ICS-
Bagging and SICS-Bagging outperformed all techniques in
classification accuracy. ICS-Bagging outperformed Bagging
(p-value = 0.0055), Random Subspace (p-value = 0.0003),
and the top ensemble technique for imbalanced datasets,
SMOTEBagging (p-value = 0.0044). SICS-Bagging was even
better, outperforming all techniques in classification accuracy,
including ICS-Bagging.

SICS-Bagging was designed as an improvement of ICS-
Bagging, with SMOTE being applied before each iteration in
order to increase the likelihood of creating balanced classifiers
(following the SMOTEBagging approach). The objective was
achieved, and SICS-Bagging was the best technique in 9 out of
15 datasets, and achieved the highest average AUC (0.8703),
followed by ICS-Bagging (0.8655).

Fig. 2. Average AUC ranking of the ensemble techniques

Figure 2 and Table V show the average and standard
deviation AUC ranking of the ensemble techniques in the ex-

periments. The two techniques proposed in this paper achieved
the two highest performances. SICS-Bagging achieved the first
place with a ranking of 1.53, and ICS-Bagging the second
place with a ranking of 1.93.

Table III and Figure 2 show that ICS-Bagging and SICS-
Bagging had an excelent performance in classification accuracy
with imbalanced datasets, outperforming SMOTEBagging,
which was considered one of the best ensemble techniques
for imbalanced domains in [8].

2) Diversity: Table IV shows that ICS-Bagging outper-
formed all techniques in diversity, except for the Random
Subspace. Random Subspace achieved a high diversity because
it only selects a subset of the features for each classifier, and it
was confirmed to be a more effective diversity generator than
selecting a subset of samples for each classifier. This can be
confirmed when Random Subspace is compared with Bagging
(with no preprocessing).

Statistically, SICS-Bagging outperformed only SMOTE-
Bagging, but, on average, it achieved the third highest di-
versity, losing only to Random Subspace and ICS-Bagging.
SICS-Bagging was outperformed by ICS-Bagging in diversity
because the SMOTE preprocessing improves the AUC of all
classifiers, but does not necessarily generate diverse classifiers.
This can be confirmed because SMOTEBagging did not im-
prove diversity over Bagging (on average).

Fig. 3. Average Entropy Measure E ranking of the ensemble techniques

Figure 3 and Table VI show the average and standard
deviation ranking of the ensemble techniques in the exper-
iments. ICS-Bagging achieved the second highest diversity,
and SICS-Bagging the third highest. The highest diversity
ranking was achieved by Random Subspace, which achieved
one of the lowest performance in classification accuracy. This
indicates that a high Entropy E value does not result in a high
classification accuracy when there is a high loss of information
(which happens when only a subset of the features is selected).

The purpose of a diversity measure is to predict the
accuracy of the ensemble on new data, that is, it is a metric that
tries to predict the generalization power of the ensemble. These
results show that the Entropy E was not strongly correlated to
classification accuracy when using simple majority vote, this
scenario could be different if another combination rule was
used, or if we used dynamic ensemble selection.



TABLE III. AVERAGE, STANDARD DEVIATION AUC, AND WILCOXON SIGNED RANK TEST

Dataset ICS-Bagging-40 SICS-Bagging-40 SMOTEBagging-40 Bagging-40 RandomSubspace-40

glass1 0.7923 0.0500 0.7829 0.0193 0.7816 0.0770 0.7521 0.0529 0.5133 0.0267
pima 0.7390 0.0194 0.7377 0.0189 0.6988 0.0307 0.7215 0.0227 0.5766 0.0345
iris0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.9700 0.0600
yeast1 0.7309 0.0343 0.7204 0.0237 0.7314 0.0282 0.6810 0.0187 0.5288 0.0342
vehicle2 0.9592 0.0168 0.9630 0.0159 0.9669 0.0127 0.9594 0.0225 0.5596 0.0403
vehicle3 0.7368 0.0188 0.7566 0.0162 0.7300 0.0083 0.6600 0.0226 0.5008 0.0106
ecoli1 0.8722 0.0497 0.8795 0.0444 0.8642 0.0414 0.8480 0.0454 0.5086 0.0172
ecoli2 0.8855 0.0495 0.8861 0.0439 0.8670 0.0529 0.8714 0.0464 0.5000 0.0000
glass6 0.8917 0.0190 0.8965 0.0643 0.8886 0.0361 0.8865 0.0624 0.7440 0.1694
yeast3 0.9089 0.0273 0.9045 0.0248 0.9055 0.0095 0.8434 0.0337 0.5000 0.0000
ecoli3 0.8047 0.0967 0.8223 0.0590 0.7525 0.0827 0.7724 0.0677 0.5000 0.0000
vowel0 0.9483 0.0573 0.9594 0.0546 0.9455 0.0547 0.9589 0.0540 0.4994 0.0011
glass4 0.8750 0.1877 0.8825 0.1915 0.8708 0.0982 0.7467 0.1654 0.5000 0.0000
ecoli4 0.8405 0.1143 0.8655 0.0721 0.8155 0.1194 0.8671 0.1326 0.5000 0.0000
page-blocks-1-3 vs 4 0.9978 0.0045 0.9978 0.0045 0.9978 0.0045 0.9766 0.0414 0.6378 0.0612
Average 0.8655 0.0497 0.8703 0.0435 0.8544 0.0438 0.8363 0.0526 0.5693 0.0303
P-value (ICS-Bagging) NA 0.9421 0.0044 0.0055 0.0003
Result (ICS-Bagging) NA − + + +
P-value (SICS-Bagging) 0.0579 NA 0.0054 0.0008 0.0003
result (SICS-Bagging) + NA + + +

TABLE IV. AVERAGE, STANDARD DEVIATION ENTROPY MEASURE E , AND WILCOXON SIGNED RANK TEST

Dataset ICS-Bagging-40 SICS-Bagging-40 SMOTEBagging-40 Bagging-40 RandomSubspace-40

glass1 0.4445 0.0560 0.4314 0.0570 0.4177 0.0464 0.3786 0.0531 0.4845 0.0473
pima 0.4284 0.0133 0.4130 0.0197 0.4303 0.0174 0.4131 0.0196 0.5242 0.0212
iris0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0080 0.0041
yeast1 0.4342 0.0230 0.3926 0.0256 0.3779 0.0200 0.3410 0.0029 0.3866 0.0067
vehicle2 0.1006 0.0148 0.0809 0.0039 0.0849 0.0059 0.0886 0.0126 0.1502 0.0163
vehicle3 0.3900 0.0219 0.3774 0.0248 0.3757 0.0239 0.3661 0.0177 0.3900 0.0352
ecoli1 0.1542 0.0361 0.1555 0.0479 0.1474 0.0340 0.1456 0.0337 0.3431 0.0296
ecoli2 0.1556 0.0440 0.1377 0.0347 0.1174 0.0203 0.1216 0.0286 0.2441 0.0156
glass6 0.1108 0.0550 0.0894 0.0235 0.0708 0.0305 0.0613 0.0148 0.1189 0.0189
yeast3 0.0767 0.0076 0.0717 0.0110 0.0619 0.0086 0.0825 0.0086 0.1592 0.0158
ecoli3 0.1187 0.0364 0.1200 0.0339 0.1089 0.0361 0.1246 0.0290 0.1842 0.0260
vowel0 0.0346 0.0176 0.0309 0.0148 0.0237 0.0084 0.0299 0.0069 0.0844 0.0066
glass4 0.0684 0.0299 0.0623 0.0288 0.0557 0.0289 0.0944 0.0312 0.1123 0.0449
ecoli4 0.0460 0.0228 0.0476 0.0049 0.0253 0.0125 0.0333 0.0151 0.1087 0.0341
page-blocks-1-3 vs 4 0.0052 0.0065 0.0020 0.0035 0.0012 0.0013 0.0269 0.0090 0.0461 0.0081

Average 0.1712 0.0257 0.1608 0.0223 0.1533 0.0196 0.1538 0.0189 0.2230 0.0220
P-value (ICS-Bagging) NA 0.0018 0.0006 0.0320 0.9982
Result (ICS-Bagging) NA + + + −

P-value (SICS-Bagging) 0.9982 NA 0.0078 0.1501 0.9996
Result (SICS-Bagging) − NA + = −

TABLE V. RANKING OF AUC CLASSIFICATION ACCURACY

Algorithm Mean Std Ranking
ICS-Bagging 1.93 0.85 2
SICS-Bagging 1.53 0.72 1
SMOTEBagging 2.73 1.18 3
Bagging 3.20 1.05 4
Random Subspace 5.00 0.00 5

TABLE VI. RANKING OF ENTROPY MEASURE E DIVERSITY

Algorithm Mean Std Ranking
ICS-Bagging 2.40 0.80 2
SICS-Bagging 3.20 0.98 3
SMOTEBagging 4.20 0.98 5
Bagging 3.60 1.25 4
Random Subspace 1.13 0.50 1

3) Diversity vs. Classification: Figure 4 presents the dis-
persion graph (Diversity vs. AUC) of the ensemble techniques
used in this experiment. This figure shows that, on average,
SICS-Bagging achieved the highest classification accuracy and
the third highest diversity. ICS-Bagging had the second highest
classification accuracy and the second highest diversity.

Fig. 4. Dispersion (Diversity vs. AUC) of the ensemble algorithms used in
the experiment.

V. CONCLUSION

This paper proposed a new method of generating ensembles
called Iterative Classifier Selection Bagging (ICS-Bagging),
and its extension for imbalanced datasets SMOTE Iterative
Classifier Selection Bagging (SICS-Bagging). An experimental
study concluded that both ICS-Bagging and SICS-Bagging



obtain state-of-the-art results in the datasets tested (according
with [8]). Future works include: (1) comparing the proposed
techniques with other methods; (2) testing other preprocessing
techniques and (3) using other diversity metrics.
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