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Abstract—In Dynamic Ensemble Selection (DES) techniques,
only the most competent classifiers are selected to classify a given
query sample. Hence, the key issue in DES is how to estimate
the competence of each classifier in a pool to select the most
competent ones. In order to deal with this issue, we proposed
a novel dynamic ensemble selection framework using meta-
learning, called META-DES. The framework is divided into three
steps. In the first step, the pool of classifiers is generated fromthe
training data. In the second phase the meta-features are computed
using the training data and used to train a meta-classifier that is
able to predict whether or not a base classifier from the pool is
competent enough to classify an input instance. In this paper, we
propose improvements to the training and generalization phase
of the META-DES framework. In the training phase, we evaluate
four different algorithms for the training of the meta-classifier.
For the generalization phase, three combination approaches
are evaluated: Dynamic selection, where only the classifiers
that attain a certain competence level are selected; Dynamic
weighting, where the meta-classifier estimates the competence
of each classifier in the pool, and the outputs of all classifiers
in the pool are weighted based on their level of competence;
and a hybrid approach, in which first an ensemble with the
most competent classifiers is selected, after which the weights
of the selected classifiers are estimated in order to be used in a
weighted majority voting scheme. Experiments are carried out
on 30 classification datasets. Experimental results demonstrate
that the changes proposed in this paper significantly improve the
recognition accuracy of the system in several datasets.

Keywords—Ensemble of classifiers; dynamic ensemble selec-
tion; dynamic weighting; classifier competence; meta-Learning.

I. I NTRODUCTION

Multiple Classifier Systems (MCS) aim to combine clas-
sifiers in order to increase the recognition accuracy in pattern
recognition systems [1], [2]. MCS are composed of three
phases [3]: (1) Generation, (2) Selection, and (3) Integration.
In the first phase, a pool of classifiers is generated. In the
second phase, a single classifier or a subset having the best
classifiers of the pool is(are) selected. We refer to the subset
of classifiers as the Ensemble of Classifiers (EoC). In the last
phase, integration, the predictions of the selected classifiers are
combined to obtain the final decision [1].

Recent works in MCS have shown that dynamic ensem-
ble selection (DES) techniques achieve higher classification
accuracy when compared to static ones [3], [4], [5]. This
is specially true for ill-defined problems, i.e., for problems
where the size of the training data is small and there are not

enough data available to train the classifiers [6], [7]. The key
issue in DES is to define a criterion to measure the level of
competence of a base classifier. Most DES techniques [5], [8],
[9], [10] use estimates of the classifiers’ local accuracy insmall
regions of the feature space surrounding the query instance,
called the region of competence, as a search criterion to
estimate the competence level of the base classifier. However,
in our previous work [10], we demonstrated that the use of
local accuracy estimates alone is insufficient to provide higher
classification performance.

To tackle this issue, in [4] we proposed a novel DES frame-
work, called META-DES, in which multiple criteria regarding
the behavior of a base classifier are used to compute its level
of competence. The framework is based on two environments:
the classification environment, in which the input featuresare
mapped into a set of class labels, and the meta-classification
environment, where different properties from the classification
environment, such as the classifier accuracy in a local region
of the feature space, are extracted from the training data and
encoded as meta-features. With the arrival of new test data,the
meta-features are extracted using the test data as reference, and
used as input to the meta-classifier. The meta-classifier decides
whether the base classifier is competent enough to classify the
test sample. The framework is divided into three steps: (1)
Overproduction, where the pool of classifiers is generated;(2)
Meta-training, where the meta-features are extracted, using the
training data, and used as inputs to train a meta-classifier that
works as a classifier selector, and (3) the Generalization phase,
in which the meta-features are extracted from each query
sample and used as input to the meta-classifier to perform the
ensemble selection.

In this paper, we propose two improvements to the META-
DES framework. First, we modify the training routine of the
meta-classifier. The modification made is motivated by the
fact that there is a strong correlation between the perfor-
mance of the meta-classifier for the selection of “competent”
classifiers, i.e., classifiers that predict the correct label for a
given query sample and the classification accuracy of the DES
system [11]. Hence, we believe that the proposed META-DES
framework can obtain higher classification performance by
focusing only on improving the performance of the system
at the meta-classification level. This is an interesting feature
of the proposed system especially when dealing with ill-
defined problems due to critical dataset sizes [4]. Four different
classifier models are considered for the meta-classifier: MLP



Neural Network, Support Vector Machines with Gaussian
Kernel (SVM), Random Forests and Naive Bayes [12].

Secondly, we propose three combination schemes for the
generalization phase of the framework: Dynamic selection,
Dynamic weighting and Hybrid. In the dynamic selection
approach, only the classifiers that attain a certain level of
competence are used to classify a given query sample. In
the dynamic weighting approach, the meta-classifier is used
to estimate the weights of all base classifiers in the pool.
Then, their decisions are aggregated using a weighted majority
voting scheme [2]. Thus, classifiers that attain a higher level of
competence, for the classification of the given query sample,
have a greater impact on the final decision. In the hybrid
approach, only the classifiers that attain a certain level of
competence are selected. Then, the meta-classifier is used to
compute the weights of the selected base classifiers to be used
in a weighted majority voting scheme. The hybrid approach is
based on the observation that the selected base classifiers might
be associated with different levels of competence. It is feasible
that classifiers that attained a higher level of competence
should have more influence for the classification of the given
test sample. The proposed framework differs from mixture of
expert techniques [13], [14], since our system is based on the
mechanism used for the selection of dynamic ensembles [3],
[4] rather than static ones [14]. In addition, mixture of experts
techniques are dedicated to the use of neural networks as base
classifier, while, in the proposed framework, any classification
algorithm can be used.

We evaluate the generalization performance of the system
over 30 classification problems derived from different data
repositories. Furthermore, the recognition performance of the
system is compared against eight state-of-the-art dynamicse-
lection techniques according to a new survey on this topic [3].
Experimental results demonstrate that the choice of the meta-
classifier has a significant impact on the classification accuracy
of the overall system. The modifications proposed in this work
significantly improve the performance of the framework when
compared to state-of-the-art dynamic selection techniques.

This paper is organized as follows: The META-DES frame-
work is introduced in Section II. Experimental results are given
in Section III. Finally the conclusion is presented in the last
section.

II. T HE META-DES FRAMEWORK

The META-DES framework is based on the assumption
that the dynamic ensemble selection problem can be con-
sidered as a meta-problem. This meta-problem uses different
criteria regarding the behavior of a base classifierci, in order
to decide whether it is competent enough to classify a given
test samplexj . The meta-problem is defined as follows [4]:

• The meta-classesof this meta-problem are either
“competent” (1) or “incompetent” (0) to classifyxj .

• Each set ofmeta-featuresfi corresponds to a differ-
ent criterion for measuring the level of competence of
a base classifier.

• The meta-features are encoded into ameta-features
vector vi,j .

• A meta-classifier λ is trained based on the meta-
featuresvi,j to predict whether or notci will achieve
the correct prediction forxj , i.e., if it is competent
enough to classifyxj

A general overview of the META-DES framework is
depicted in Figure 1. It is divided into three phases: Over-
production, Meta-training and Generalization.

A. Overproduction

In this step, the pool of classifiersC = {c1, . . . , cM},
where M is the pool size, is generated using the training
datasetT . The Bagging technique [15] is used in this work in
order to build a diverse pool of classifiers.

B. Meta-Training

In this phase, the meta-features are computed and used
to train the meta-classifierλ. As shown in Figure 1, the
meta-training stage consists of three steps: sample selection,
meta-features extraction process and meta-training. A different
datasetTλ is used in this phase to prevent overfitting.

1) Sample selection:We decided to focus the training ofλ
on cases in which the extent of consensus of the pool is low.
This decision was based on the observations made in [16], [6]
the main issues in dynamic ensemble selection occur when
classifying testing instances where the degree of consensus
among the pool of classifiers is low, i.e., when the number
of votes from the winning class is close to or even equal
to the number of votes from the second class. We employ
a sample selection mechanism based on a thresholdhC ,
called the consensus threshold. For eachxj,trainλ

∈ Tλ, the
degree of consensus of the pool, denoted byH (xj,trainλ

, C),
is computed. IfH (xj,trainλ

, C) falls below the threshold
hC , xj,trainλ

is passed down to the meta-features extraction
process.

2) Meta-feature extraction:The first step in extracting
the meta-features involves computing the region of com-
petence of xj,trainλ

, denoted by θj = {x1, . . . ,xK}.
The region of competence is defined in theTλ set us-
ing the K-Nearest Neighbor algorithm. Then,xj,trainλ

is transformed into an output profile,̃xj,trainλ
. The

output profile of the instancexj,trainλ
is denoted by

x̃j,trainλ
= {x̃j,trainλ,1, x̃j,trainλ,2, . . . , x̃j,trainλ,M}, where

eachx̃j,trainλ,i is the decision yielded by the base classifier
ci for the samplexj,trainλ

[6].

The similarity betweeñxj,trainλ
and the output profiles of

the instances inTλ is obtained through the Euclidean distance.
The most similar output profiles are selected to form the
set φj =

{

x̃1, . . . , x̃Kp

}

, where each output profilẽxk is
associated with a labelwl,k. Next, for each base classifier
ci ∈ C, five sets of meta-features are calculated:

• f1 - Neighbors’ hard classification:First, a vector
with K elements is created. For each samplexk, be-
longing to the region of competenceθj , if ci correctly
classifiesxk, thek-th position of the vector is set to 1,
otherwise it is 0. Thus,K meta-features are computed.

• f2 - Posterior Probability: First, a vector withK
elements is created. Then, for each samplexk, be-
longing to the region of competenceθj , the posterior
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Fig. 1. Overview of the proposed framework. It is divided intothree steps 1) Overproduction, where the pool of classifiersC = {c1, . . . , cM} is generated,
2) The training of the selectorλ (meta-classifier), and 3) The generalization phase where thelevel of competenceδi,j of each base classifierci is calculated
specifically for each new test samplexj,test. Then, the level of competenceδi,j is used by the combination approach to predict the labelwl of the test sample
xj,test. Three combination approaches are considered: Dynamic selection (META-DES.S), Dynamic weighting (META-DES.W) and Hybrid (META-DES.H).
hC , K, Kp andΥ are the hyper-parameters required by the proposed system. [Adapted from [4]].

probability ofci, P (wl | xk) is computed and inserted
into thek-th position of the vector. Consequently,K
meta-features are computed.

• f3 - Overall Local Accuracy:The accuracy ofci over
the whole region of competenceθj is computed and
encoded asf3.

• f4 - Outputs’ profile classification:First, a vector
with Kp elements is generated. Then, for each member
x̃k belonging to the set of output profilesφj , if the
label produced byci for xk is equal to the labelwl,k of
x̃k, thek-th position of the vector is set to 1, otherwise
it is set to 0. A total ofKp meta-features are extracted
using output profiles.

• f5 - Classifier’s confidence:The perpendicular dis-
tance between the reference samplexj and the deci-
sion boundary of the base classifierci is calculated
and encoded asf5.

A vector vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at

the end of the process. Ifci correctly classifiesxj , the class
attribute ofvi,j , αi,j = 1 (i.e., vi,j belongs to the meta-class
“competent”), otherwiseαi,j = 0. vi,j is stored in the meta-
features datasetT ∗

λ that is used to train the meta-classifierλ.

3) Training: The last step of the meta-training phase is the
training of λ. The datasetT ∗

λ is divided on the basis of 75%
for training and 25% for validation. In this paper, we evaluate
four classifier models for the meta-classifier: MLP Neural
Network, Support Vector Machines with Gaussian Kernel
(SVM), Random Forests and Naive Bayes. These classifiers
were selected based on a recent study [12] that ranked the best
classification models in a comparison considering a total of179
classifiers and 121 datasets. All classifiers were implemented
using the Matlab PRTOOLS toolbox [17]. The parameters of
each classifier were set as follows:

1) MLP Neural Network: The validation data was used
to select the number of nodes in the hidden layer. We
used a configuration with 10 neurons in the hidden
layer since there were no improvement in results with



more than 10 neurons. The training process forλ was
performed using the Levenberg-Marquadt algorithm.
The training process was stopped if its performance
on the validation set decreased or failed to improve
for five consecutive epochs.

2) SVM: A radial basis SVM with a Gaussian Kernel
was used. For each dataset, a grid search was per-
formed in order to set the values of the regularization
parameterc and the Kernel spread parameterγ.

3) Random Forest: A total of200 decision trees were
used. The depth of each tree was fixed at5.

4) Naive Bayes: A simple Naive Bayes classifier using
a normal distribution to model numeric features. No
parameters are required for this model.

C. Generalization

Given the query samplexj,test, the region of competence
θj is computed using the samples from the dynamic selection
datasetDSEL. Following that, the output profiles̃xj,test of the
test sample,xj,test, are calculated. The set withKp similar
output profilesφj , of the query samplexj,test, is obtained
through the Euclidean distance applied over the output profiles
of the dynamic selection dataset,D̃SEL.

Next, for each classifierci belonging to the pool of
classifiersC, the meta-features extraction process is called,
returning the meta-features vectorvi,j . Then,vi,j is used as
input to the meta-classifierλ. The support obtained by the
meta-classifier for the “competent” meta-class, denoted byδi,j ,
is computed as the level of competence of the base classifier
ci for the classification of the test samplexj,test.

Three combination approaches are considered:

• META-DES.S: In this approach, the base classifiers
that achieve a level of competenceδi,j > Υ are
considered competent, and are selected to compose
the ensembleC ′. In this paper, we setΥ = 0.5 (i.e.,
the base classifier is selected if the support for the
"‘competent"’ meta-class is higher than the support for
the "‘incompetent"’ meta-class). The final decision is
obtained using the majority vote rule [1]. Tie-breaking
is handled by choosing the class with the highest a
posteriori probability.

• META-DES.W : Every classifier in the poolC is used
to predict the label ofxj,test. The level of competence
δi,j estimated by the meta-classifierλ is used as the
weight of each base classifier. The final decision is
obtained using a weighted majority vote combination
scheme [2]. Thus, the decisions obtained by the base
classifiers with a higher level of competenceδi,j have
a greater influence on the final decision.

• META-DES.H : In this approach, first the base classi-
fiers that achieve a level of competenceδi,j > Υ = 0.5
are considered competent and are selected to compose
the ensembleC ′. Next, the level of competenceδi,j
estimated by the meta-classifierλ, for the classifiers
in the ensembleC ′, are used as its weights. Thus,
the decisions obtained by the base classifiers with
the highest level of competenceδi,j have a greater
influence in the final decision. A weighting majority
voting scheme is used to predict the labelwl of xj,test.

III. E XPERIMENTS

A. Datasets

A total of 30 datasets are used in the comparative exper-
iments, with sixteen taken from the UCI machine learning
repository [18], four from the STATLOG project [19], four
from the Knowledge Extraction based on Evolutionary Learn-
ing (KEEL) repository [20], four from the Ludmila Kuncheva
Collection of real medical data [21], and two artificial datasets
generated with the Matlab PRTOOLS toolbox [17]. The key
features of each dataset are shown in Table I.

TABLE I. K EY FEATURES OF THE DATASETS USED IN THE

EXPERIMENTS

Database No. of Instances Dimensionality No. of Classes Source
Pima 768 8 2 UCI
Liver Disorders 345 6 2 UCI
Breast (WDBC) 568 30 2 UCI
Blood transfusion 748 4 2 UCI
Banana 1000 2 2 PRTOOLS
Vehicle 846 18 4 STATLOG
Lithuanian 1000 2 2 PRTOOLS
Sonar 208 60 2 UCI
Ionosphere 315 34 2 UCI
Wine 178 13 3 UCI
Haberman’s Survival 306 3 2 UCI
Cardiotocography (CTG) 2126 21 3 UCI
Vertebral Column 310 6 2 UCI
Steel Plate Faults 1941 27 7 UCI
WDG V1 50000 21 3 UCI
Ecoli 336 7 8 UCI
Glass 214 9 6 UCI
ILPD 214 9 6 UCI
Adult 48842 14 2 UCI
Weaning 302 17 2 LKC
Laryngeal1 213 16 2 LKC
Laryngeal3 353 16 3 LKC
Thyroid 215 5 3 LKC
German credit 1000 20 2 STATLOG
Heart 270 13 2 STATLOG
Satimage 6435 19 7 STATLOG
Phoneme 5404 6 2 ELENA
Monk2 4322 6 2 KEEL
Mammographic 961 5 2 KEEL
MAGIC Gamma Telescope 19020 10 2 KEEL

B. Experimental Protocol

For the sake of simplicity, the same experimental pro-
tocol used in previous publications [4], [11] was used. The
experiments were carried out using 20 replications. For each
replication, the datasets were randomly divided on the basis
of 50% for training, 25% for the dynamic selection dataset
(DSEL), and 25% for the test set (G). The divisions were
performed while maintaining the prior probabilities of each
class. For the proposed META-DES, 50% of the training data
was used in the meta-training processTλ and 50% for the
generation of the pool of classifiers (T ).

For the two-class classification problems, the pool of clas-
sifiers was composed of 100 Perceptrons generated using the
bagging technique [15]. For the multi-class problems, the pool
of classifiers was composed of 100 multi-class Perceptrons.
The use of Perceptron as base classifier is based on the
observations that the use of weak classifiers can show more
differences between the DES schemes [5], thus making it a
better option for comparing different DES techniques. Fur-
thermore, as reported by Leo Breiman, the bagging technique
achieves better results when weak and unstable base classifiers
are used [15].

The values of the hyper-parametersK, Kp andhc were set
at 7, 5 and 70%, respectively. They were selected empirically
based on previous publications [10], [11], [4].



TABLE II. C OMPARISON OF DIFFERENT CLASSIFIER TYPES USED AS THE META-CLASSIFIERλ FOR THEMETA-DES FRAMEWORK. THE BEST RESULTS

ARE IN BOLD. RESULTS THAT ARE SIGNIFICANTLY BETTER ARE MARKED WITH A•

Meta-Classifier λ META-DES
Dataset λ MLP NN λ SVM λ Forest λ Bayes MLP NN SVM Forest Bayes
Pima 79.03(2.24) 79.46(1.67) 80.27(2.08) 79.63(1.75) 79.03(2.24) 77.58(1.67) 78.39(2.08) 77.76(1.75)
Liver 70.08(3.49) 70.60(5.52) 69.56(5.17) 71.24(4.84) 70.08(3.49) 68.92(5.52) 67.88(5.17) 69.56(4.84)
Breast 97.41(1.07) 97.19(0.61) 97.19(0.61) 97.66(0.50) 97.41(1.07) 96.94(0.61) 96.94(0.61) 96.94(0.61)
Blood 79.14(1.03) 79.18(1.88) 79.83(2.42) 79.66(1.52) 79.14(1.03) 77.84(1.88) 78.49(2.42) 78.31(1.52)
Banana 91.78(2.68) 95.17(1.75) 90.97(3.89) 95.67(2.37)• 91.78(2.68) 93.92(1.75) 89.72(3.89) 94.42(2.37)•
Vehicle 82.75(1.70) 82.50(1.92) 82.44(1.63) 82.76(2.01) 82.75(1.70) 83.29(1.92) 83.24(1.63) 83.55(2.01)
Lithuanian 93.18(1.32) 94.91(1.25) 97.89(0.81)• 93.72(3.09) 93.18(1.32) 94.30(1.25) 97.28(0.81)• 93.12(3.09)
Sonar 80.55(5.39) 85.88(4.08) 84.60(4.61) 86.95(5.67)• 80.55(5.39) 80.77(4.08) 79.49(4.61) 81.84(5.67)
Ionosphere 89.94(1.96) 87.35(2.42) 87.09(2.48) 87.35(2.21) 89.94(1.96) 89.06(2.42) 88.80(2.48) 89.06(2.21)
Wine 99.25(1.11) 98.90(1.61) 98.90(1.61) 97.25(1.48) 99.25(1.11) 99.27(1.61) 99.02(1.61) 98.53(1.48)
Haberman 76.71(1.86) 74.81(2.50) 75.69(2.19) 75.25(2.06) 76.71(1.86) 75.69(2.50) 76.56(2.19) 76.13(2.06)
CTG 84.62(1.08) 88.81(1.03) 88.60(1.04) 90.21(1.14)• 84.62(1.08) 85.64(1.03) 85.43(1.04) 86.04(1.14)•
Vertebral 86.89(2.46) 87.70(2.87) 87.85(3.54) 86.56(2.35) 86.89(2.46) 86.76(2.87) 86.90(3.54) 85.62(2.35)
Faults 67.21(1.20) 74.41(1.17) 74.41(1.17) 74.68(1.19)• 67.21(1.20) 68.45(1.17) 68.45(1.17) 68.72(1.19)•
WDVG1 84.56(0.36) 85.26(0.63) 85.23(0.50) 85.84(0.60)• 84.56(0.36) 84.67(0.63) 84.64(0.50) 84.84(0.36)•
Ecoli 77.25(3.52) 78.01(3.89) 76.74(3.58) 77.01(3.76) 77.25(3.52) 80.92(3.89)• 80.66(3.58) 80.92(3.76)
GLASS 66.87(2.99)• 63.31(4.40) 64.84(4.44) 64.89(3.65) 66.87(2.99)• 65.62(4.40) 64.16(4.44) 65.21(3.65)
ILPD 69.40(1.64) 70.48(2.17) 69.95(2.32) 71.09(2.33)• 69.40(1.64) 69.56(2.17) 69.03(2.32) 70.17(2.33)
Adult 87.15(2.43) 88.75(1.76) 88.68(1.29) 88.62(1.84) 87.15(2.43) 87.35(1.76) 87.29(1.29) 87.22(1.84)
Weaning 79.67(3.78) 79.75(2.85) 79.75(2.85) 80.33(3.71) 79.67(3.78) 79.10(2.85) 79.10(2.85) 79.69(3.71)
Laryngeal1 79.67(3.78) 80.08(3.67) 81.29(3.79) 79.94(5.00) 79.67(3.78) 81.97(3.67) 82.18(3.78)• 81.97(5.00)
Laryngeal3 72.65(2.17) 72.63(0.87) 72.76(0.81) 73.82(0.67) 72.65(2.17) 73.17(2.32) 74.04(2.23) 74.42(1.26)•
Thyroid 96.78(0.87) 97.27(2.32) 97.15(2.23) 97.52(1.26) 96.78(0.87) 97.18(0.87) 97.31(0.81) 97.38(0.67)
German 75.55(1.31) 76.18(2.82) 77.11(1.58)• 75.38(1.30) 75.55(1.31) 75.34(2.82) 76.27(2.58) 74.54(1.30)
Heart 84.80(3.36) 83.67(2.76) 82.85(3.60) 86.99(2.30)• 84.80(3.36) 84.97(2.76) 84.15(3.60) 85.30(2.30)
Segmentation 96.21(0.87) 96.78(0.60) 96.95(0.75) 96.99(0.60) 96.21(0.87) 96.21(0.60) 96.38(0.75) 96.42(0.76)
Phoneme 80.35(2.58) 86.80(3.19) 86.80(3.19) 90.13(0.72)• 80.35(2.58) 78.44(3.19) 78.44(3.19) 81.77(0.72)
Monk2 83.24(2.19) 86.40(2.82) 85.68(2.45) 88.67(3.32)• 83.24(2.19) 81.08(2.82) 80.36(2.45) 83.34(3.32)
Mammographic 84.82(1.55) 87.30(1.82)• 87.30(1.53) 86.34(2.54) 84.82(1.55) 85.37(1.82) 85.37(1.53) 84.41(2.54)
Magic Gamma Telescope 75.40(2.25) 72.30(3.33) 74.57(3.56) 78.65(2.52) 84.35(3.27) 81.35(4.21) 84.35(3.27) 85.33(2.29)
Wilcoxon Signed Test n/a ~ (ρ = 0.110) + (ρ = 0.004) + (ρ = 0.007) n/a ~ (ρ = 0.70) ~ (ρ = 0.500) ~ (ρ = 0.30)

C. Comparison of different classification models as the Meta-
Classifier

In this experiment, we analyze the impact of the classifier
model used for the meta-problem (i.e., for the selection of
competent classifiers). The objective of this experiment isto
verify whether we can improve the classification performance
of the META-DES system, previously defined using an MLP
neural network as the meta-classifier. The following classifier
models are considered: Multi-Layer Perceptron (MLP) Neural
Networks as in [4], Support Vector Machines with Gaussian
Kernel (SVM), Random Forests and Naive Bayes.

Table II shows a comparison of the performance of the
meta-classifierλ and the recognition accuracy obtained by the
META-DES system using each classification model. The best
results are highlighted in bold. For each dataset, we compared
the results obtained by the meta-classifierλ and by the META-
DES framework using the MLP network [4], against the best
result obtained by any of the other classifier models (SVM,
Random Forest and Naive Bayes). The comparison was per-
formed using the Kruskal-Wallis non-parametric statistical test,
with a 95% confidence interval. Results that are significantly
better are marked with a•.

We can observe that when the meta-classifier achieves
a recognition performance that is statistically superior for
a single dataset, such as, Banana, Faults and WDGV1, for
instance, the META-DES is also likely to achieve superior
accuracy for the same classification problem. Figure 2 shows
the number of datasets that each classifier model achieved the
highest accuracy. The Naive Bayes classifier is ranked first,
achieving the best results for 14 datasets, followed by the MLP
Neural Network with 8. SVM and Random Forests achieved

the best results for 4 datasets each. The strong performance
of the Naive Bayes may be explained by the fact that the
majority of the meta-features are binary, and this classifier
model handles well binary input features different than MLP
Networks. In addition, it might indicate that the proposed sets
of meta-features are possibly independent [22]. This is an
interesting finding since the Naive Bayes model is much faster
both in the training and testing stages when compared to an
MLP Neural Network or an SVM classifier.
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Fig. 2. Bar plot showing the number of datasets that each classification model
used a the meta-classifierλ presented the highest recognition accuracy.

Furthermore, in order to verify whether the difference in
classification results obtained over the 30 datasets is statis-



tically significant, we performed a Wilcoxon non-parametric
signed rank test with 95% confidence for a pairwise com-
parison between the results obtained using an MLP Neural
Network against the best result obtained using a different
classifier for the meta-classifier. The Wilcoxon signed ranktest
was used since it was suggested in [23] as a robust method
for comparing the classification results of two algorithms over
several datasets. The results of the Wilcoxon statistical test
are shown in the last row of Table II. Techniques that achieve
performance equivalent to the MLP network are marked with
"~"; those that achieve statistically superior performance are
marked with a "+", and those with inferior performance are
marked with a "-". When comparing the performance of
the four meta-classifiers, the results achieved using Random
Forests and Naive Bayes as the meta-classifierλ are signifi-
cantly superior.

Hence, we can conclude that significant gains in classi-
fication accuracy can be achieved by choosing a more suit-
able classifier model for the meta-classifierλ. Although the
choice of the best meta-classifier may vary according to the
classification problem (Table II), the results of the META-DES
using Naive Bayes as the meta-classifier achieves results that
are statistically superior when compared to the MLP neural
network over the 30 datasets studied in this work.

D. Comparison Between Combination Approaches: Dynamic
Selection, Dynamic Weighting and Hybrid

In this section, we compare the three combination ap-
proaches presented in Section II-C: Dynamic Selection, Dy-
namic weighting, and the Hybrid approach. For the sake of
simplicity, we present only the results obtained using the Naive
Bayes as the meta-classifierλ since it achieved the highest
classification accuracy in the previous experiments (TableII).

The results achieved using the Naive Bayes as meta-
classifier for the three combination approaches are shown in
Table III. In order to select the best combination approach,
we compare the average ranks of each approach computed
using the Friedman test, which is a non-parametric equivalent
of the repeated measures ANOVA used to compare several
algorithms over multiple datasets [24], [23]. The Friedmantest
ranks each algorithm, with the best performing one getting
rank 1, the second best rank 2, and so forth for each dataset
separately. The average rank is then computed, consideringall
datasets. Thus, the best algorithm is the one with the lowest
average rank. The approaches that use the proposed weighting
scheme (Dynamic weighting and Hybrid) outperformed the
Dynamic selection approach in accuracy. This can be explained
by the fact the outputs given by the Naive Bayes classifier
can be directly interpreted as the likelihood that the base
classifier belongs to the "‘competent"’ meta-class. Thus, the
supports provided by the meta-classifier can directly be used
as the weights of each classifier for a weighted majority voting
scheme. This is different from other classification models,
such as Random Forests where their class supports cannot be
directly interpreted as such. Hence, the meta-classifier can also
be used for the fusion (integration) of the classifiers in the
ensemble, rather than only for ensemble selection. Since the
Hybrid combination approach presents the highest recognition
accuracy when the 30 datasets are considered (lowest average

rank) this combination approach is selected for the comparison
against other state-of-the-art DES techniques.

TABLE III. C OMPARISON BETWEEN THE THREE CLASSIFICATION

APPROACHES: SELECTION, WEIGHTING AND HYBRID FOR THE

META-DES FRAMEWORK. THE RESULTS USING ANAIVE BAYES AS THE

META-CLASSIFIERλ ARE PRESENTED. THE BEST RESULTS ARE IN BOLD.
THE AVERAGE RANK IS SHOWN IN THE LAST ROW OF THE TABLE.

Dataset META-DES.S META-DES.W META-DES.H
Pima 77.76(1.75) 77.64(1.68) 77.93(1.86)
Liver 69.56(4.84) 69.69(4.68) 69.95(3.49)
Breast 97.41(0.50) 97.25(0.47) 97.25(0.47)
Blood 78.31(1.52) 78.67(1.77) 78.25(1.37)
Banana 94.42(2.37) 95.13(1.88) 94.51(2.36)
Vehicle 83.55(2.01) 83.50(1.87) 83.55(2.10)
Lithuanian 93.12(3.09) 93.19(3.14) 93.26(3.22)
Sonar 81.84(5.67) 79.92(5.16) 82.06(2.09)
Ionosphere 89.06(2.21) 89.06(2.55) 89.06(2.21)
Wine 98.53(1.48) 98.53(1.08) 98.53(1.08)
Haberman 76.13(2.06) 76.42(2.38) 76.13(1.56)
CTG 86.04(1.14) 85.99(1.05) 86.08(1.24)
Vertebral 85.62(2.35) 85.76(2.55) 84.90(2.95)
Faults 68.72(1.19) 68.63(1.24) 68.95(1.04)
WDVG1 84.84(0.36) 84.83(0.63) 84.77(0.65)
Ecoli 80.92(3.76) 80.66(3.58) 80.66(3.48)
GLASS 65.21(3.65) 66.04(3.67) 65.21(3.53)
ILPD 70.17(2.33) 70.48(2.28) 69.64(2.47)
Adult 87.22(1.84) 87.29(2.20) 87.29(1.80)
Weaning 79.69(3.71) 79.83(2.94) 79.98(3.55)
Laryngeal1 87.00(5.00) 86.79(4.72) 87.21(5.35)
Laryngeal3 73.42(1.26) 73.79(1.38) 73.54(1.66)
Thyroid 97.38(0.67) 97.44(0.71) 97.38(0.67)
German 74.54(1.30) 75.03(2.04) 74.36(1.28)
Heart 85.30(2.30) 85.46(2.70) 85.46(2.70)
Segmentation 96.42(0.76) 96.34(0.74) 96.46(0.79)
Phoneme 81.77(0.72) 81.47(0.77) 81.82(0.69)
Monk2 83.34(3.32) 82.83(3.82) 83.45(3.46)
Mammographic 84.41(2.54) 84.62(2.46) 84.30(2.27)
Magic Gamma Telescope 85.33(2.29) 84.62(2.46) 85.65(2.27)
Friedman Average Rank (↓) 2.15 1.98 1.86

E. Comparison with the state-of-the-art DES techniques

In this section, we compare the recognition rates ob-
tained by the proposed META-DES.H against eight state-of-
the-art dynamic selection techniques in the DES literature:
the KNORA-ELIMINATE [5], KNORA-UNION [5], DES-
FA [10], Local Classifier Accuracy (LCA) [8], Overall Local
Accuracy (OLA) [8], Modified Local Accuracy (MLA) [25],
Multiple Classifier Behaviour (MCB) [9] and K-Nearests Out-
put Profiles (KNOP) [6].

For all techniques, we use the same pool of classifiers
defined in the previous section (Section III-C) in order to
have a fair comparison. The size of the region of competence
(neighborhood size),K is set to 7 since it achieved the
best result in previous experiments [3], [10]. The comparative
results are shown in Table IV. Due to size constraints, we only
show the results using Naive Bayes as the meta-classifier since
it achieved the highest recognition accuracy in the previous
experiment. For each dataset, a Kruskal-Wallis statistical test
with 95% confidence was conducted to know if the classi-
fication improvement is statistically significant. Resultsthat
are statistically better are marked with a•. The results of
the proposed technique obtained the highest accuracy in 20
out of 30 datasets. In addition, the accuracy of the proposed
system was statistically superior in 15 out of 30 datasets. The
original META-DES framework [4], without the improvements
proposed in this paper, achieved results that are statistically
superior in 10 out of the 30 datasets when compared with the
state-of-the-art DES techniques.



Furthermore, we also consider the Wilcoxon test with 95%
confidence, for a pairwise comparison between the classifi-
cation performances of the proposed system against the per-
formance of the state-of-the-art DES techniques over multiple
datasets. The results of the Wilcoxon test are shown in the last
row of the table. The performance of the proposed META-
DES.H system is statistically better when all 30 datasets are
considered. Hence, the experimental results demonstrate that
the changes proposed in this paper lead to a significant gains
in performance when compared to other DES algorithms.

IV. CONCLUSION

In this paper, we proposed two modifications to the novel
META-DES framework. First, we compared different classifier
models, such as the MLP Neural Network, Support Vector
Machines with Gaussian Kernel (SVM), Random Forests and
Naive Bayes for the meta-classifier. Next, we evaluated three
combination approaches to the framework: Dynamic selection,
Dynamic weighting and Hybrid. In the Dynamic selection
approach, only the classifiers that attain a certain level of
competence are used to classify a given query sample. In the
dynamic weighting approach, all base classifiers in the poolare
considered to give the final decision, with the meta-classifier
estimating the weight of each base classifier. In the hybrid
approach, only the classifiers that attain a certain level of
competence are initially selected, after which their decisions
are aggregated in a weighted majority voting scheme. Thus,
the base classifiers attaining higher levels of competence have
a greater impact on the final decision.

Experiments were conducted using 30 classification
datasets derived from five different data repositories (UCI,
KEEL, STATLOG, LKC and ELENA). First, we observed a
significant improvement in accuracy using different classifier
models for the meta-problem. The performance of the META-
DES trained using a Naive Bayes for the meta-classifier
achieves results that are statistically better compared tothose
achieved using an MLP Neural Network, according to the
Wilcoxon Signed Rank test with 95% confidence. This finding
confirms the initial hypothesis that the overall performance
of the system improves when the recognition accuracy of the
meta-classifier improves. As the META-DES framework con-
siders the dynamic selection problem as a meta-classification
problem, we can improve the recognition accuracy by focusing
only on improving the classification performance in the meta-
problem. This finding is especially useful for ill-defined prob-
lems since there is not enough data to properly train the base
classifiers. Techniques such as stacked generalization forthe
generation of more meta-feature vectors in the data generation
process as well as the use of feature selection techniques
to achieve a more representative set of meta-features can be
considered to improve the recognition performance at the meta-
classification level.

In addition, we demonstrate that the framework can also be
used to compute the weights of the base classifiers. We found
that the Naive Bayes classifier achieved the best result when
the dynamic weighting (META-DES.W) or hybrid (META-
DES.H) approach is used. This can be explained by the fact
that the supports given by this classifier can be seen as the
likelihood that the base classifier belongs to the "‘competent"’
meta-class. Thus, the classifiers that are more likely to be

"‘competent"’ have greater influence on the classification of
any given test sample. When compared to eight state-of-the-art
techniques found in the dynamic ensemble selection literature,
the proposed META-DES.H using a Naive Bayes classifier
for the meta-classifier presented classification accuracy that is
statistically better in 15 out of the 30 classification datasets.
The original META-DES framework [4] achieved results that
are statistically better in 10 out of the 30 datasets when
compared with the state-of-the-art DES techniques. Hence,
the changes to the META-DES framework proposed in this
paper lead to a significant gain in performance when compared
against other DES algorithms.
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