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Abstract—In Dynamic Ensemble Selection (DES) techniques,
only the most competent classifiers are selected to classify a given
query sample. Hence, the key issue in DES is how to estimate
the competence of each classifier in a pool to select the most
competent ones. In order to deal with this issue, we proposed
a novel dynamic ensemble selection framework using meta-
learning, called META-DES. The framework is divided into three
steps. In the first step, the pool of classifiers is generated frote
training data. In the second phase the meta-features are comped
using the training data and used to train a meta-classifier that is
able to predict whether or not a base classifier from the pool is
competent enough to classify an input instance. In this paper, we
propose improvements to the training and generalization phase
of the META-DES framework. In the training phase, we evaluate
four different algorithms for the training of the meta-classifier.
For the generalization phase, three combination approaches
are evaluated: Dynamic selection, where only the classifiers
that attain a certain competence level are selected; Dynamic
weighting, where the meta-classifier estimates the competence
of each classifier in the pool, and the outputs of all classifiers
in the pool are weighted based on their level of competence;
and a hybrid approach, in which first an ensemble with the
most competent classifiers is selected, after which the weights
of the selected classifiers are estimated in order to be used in a
weighted majority voting scheme. Experiments are carried out
on 30 classification datasets. Experimental results demonstrate
that the changes proposed in this paper significantly improve the
recognition accuracy of the system in several datasets.

Keywords—Ensemble of classifiers; dynamic ensemble selec-
tion; dynamic weighting; classifier competence; meta-Learning.

I. INTRODUCTION

Multiple Classifier Systems (MCS) aim to combine clas-

sifiers in order to increase the recognition accuracy inepatt

recognition systems [1], [2]. MCS are composed of threeDE

phases [3]: (1) Generation, (2) Selection, and (3) Intégmat

In the first phase, a pool of classifiers is generated. In th

second phase, a single classifier or a subset having the b

classifiers of the pool is(are) selected. We refer to the etubs

of classifiers as the Ensemble of Classifiers (EoC). In the la
phase, integration, the predictions of the selected diassare
combined to obtain the final decision [1].

S
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enough data available to train the classifiers [6], [7]. Thg k
issue in DES is to define a criterion to measure the level of
competence of a base classifier. Most DES techniques [5], [8]
[9], [10] use estimates of the classifiers’ local accuracgnall
regions of the feature space surrounding the query instance
called the region of competence, as a search criterion to
estimate the competence level of the base classifier. Howeve
in our previous work [10], we demonstrated that the use of
local accuracy estimates alone is insufficient to providghér
classification performance.

To tackle this issue, in [4] we proposed a novel DES frame-
work, called META-DES, in which multiple criteria regardjn
the behavior of a base classifier are used to compute its level
of competence. The framework is based on two environments:
the classification environment, in which the input featuaes
mapped into a set of class labels, and the meta-classificatio
environment, where different properties from the clasaiftm
environment, such as the classifier accuracy in a local megio
of the feature space, are extracted from the training dada an
encoded as meta-features. With the arrival of new test tiaa,
meta-features are extracted using the test data as reégamt
used as input to the meta-classifier. The meta-classifiedekec
whether the base classifier is competent enough to clagsfy t
test sample. The framework is divided into three steps: (1)
Overproduction, where the pool of classifiers is genergi&d;
Meta-training, where the meta-features are extractedgubie
training data, and used as inputs to train a meta-clasdifar t
works as a classifier selector, and (3) the Generalizatiasgh
in which the meta-features are extracted from each query
sample and used as input to the meta-classifier to perform the
ensemble selection.

In this paper, we propose two improvements to the META-
S framework. First, we modify the training routine of the
eta-classifier. The modification made is motivated by the
t that there is a strong correlation between the perfor-
fmance of the meta-classifier for the selection of “compétent
classifiers, i.e., classifiers that predict the correct lldbe a
given query sample and the classification accuracy of the DES
system [11]. Hence, we believe that the proposed META-DES
framework can obtain higher classification performance by

Recent works in MCS have shown that dynamic ensemfocusing only on improving the performance of the system

ble selection (DES) techniques achieve higher classifioati

at the meta-classification level. This is an interestinguiea

accuracy when compared to static ones [3], [4], [5]. Thisof the proposed system especially when dealing with ill-

is specially true for ill-defined problems, i.e., for proivg

defined problems due to critical dataset sizes [4]. Fouerfiit

where the size of the training data is small and there are natlassifier models are considered for the meta-classifier® ML



Neural Network, Support Vector Machines with Gaussian e A meta-classifier A is trained based on the meta-
Kernel (SVM), Random Forests and Naive Bayes [12]. featuresy; ; to predict whether or nat; will achieve
the correct prediction fox;, i.e., if it is competent

Secondly, we propose three combination schemes for the enough to classif;

generalization phase of the framework: Dynamic selection,
Dynamic weighting and Hybrid. In the dynamic selection A general overview of the META-DES framework is
approach, only the classifiers that attain a certain level oflepicted in Figure 1. It is divided into three phases: Over-
competence are used to classify a given query sample. Iproduction, Meta-training and Generalization.

the dynamic weighting approach, the meta-classifier is used

to estimate the weights of all base classifiers in the poolA. Overproduction

Then, their decisions are aggregated using a weighted ityajor In this step. the pool of classifiers — {¢ .
voting scheme [2]. Thus, classifiers that attain a higheallet o1 " 1° > %P poolp sive. is gonerated uiinlg]”thé ft‘f;’mng

competence, for the classification of the given query sampley . sorr The Bagging technique [15] is used in this work in
have a greater impact on the final decision. In the hybndgrder to build a diverse pool of classifiers

approach, only the classifiers that attain a certain level o
competence are selected. Then, the meta-classifier is ased
compute the weights of the selected base classifiers to loke us
in a weighted majority voting scheme. The hybrid approach is In this phase, the meta-features are computed and used
based on the observation that the selected base classifgls m to train the meta-classifieA. As shown in Figure 1, the

be associated with different levels of competence. It isiftda  meta-training stage consists of three steps: sample &elect
that classifiers that attained a higher level of competencéneta-features extraction process and meta-training. féreift
should have more influence for the classification of the giverflataset7, is used in this phase to prevent overfitting.

test sample. The proposed framework differs from mixture of 1) Sample selectionwe decided to focus the training af
expert techniques [13], [14], since our system is based en thy, cases in which the extent of consensus of the pool is low.
mechanism used for the selection of dynamic ensembles [3fhis gecision was based on the observations made in [16], [6]
[4] rather than static ones [14]. In addition, mixture of M8 he main issues in dynamic ensemble selection occur when
techniques are dedicated to the use of neural networks as batﬁassifying testing instances where the degree of consensu
classifier, while, in the proposed framework, any classitite 5 mong the pool of classifiers is low, i.e., when the number
algorithm can be used. of votes from the winning class is close to or even equal

We evaluate the generalization performance of the systerp the number of votes from the second class. We employ
over 30 classification problems derived from different data® Sample selection mechanism based on a thresheld
repositories. Furthermore, the recognition performarfctne ~ Called the consensus threshold. For eagh..in, € 7x, the
system is compared against eight state-of-the-art dynamic degree of consensus of the pool, denoted b irain, , C),
lection techniques according to a new survey on this togic [3 IS computed. If H (x; train,, C) falls below the threshold
Experimental results demonstrate that the choice of the-metc: Xj.train, 1S passed down to the meta-features extraction
classifier has a significant impact on the classification@myu Process.
of the overall system. The modifications proposed in thiskwor  2) Meta-feature extraction:The first step in extracting
significantly improve the performance of the framework whenthe meta-features involves computing the region of com-
compared to state-of-the-art dynamic selection techisique  petence of x; /rain,, denoted by6; = {xi,...,xx}.

This paper is organized as follows: The META-DES frame-11€ region of competence is defined in the set us-

work is introduced in Section II. Experimental results aneg "9 the K-Nearest Neighbor algorithm. Then; ¢ qin,

in Section lll. Finally the conclusion is presented in thstla IS transformed intoan _output proflle.xj,tmim. The
output profile of the instancex; qin, IS denoted by

é. Meta-Training

section. - -
Xjtrainy — {Xj:traink,lv Xj:,t.rainx,?a s 7Xj,train>\,M}y Where. .
eachx; ;rqin,,; IS the decision yielded by the base classifier
Il. THE META-DES FRAMEWORK ¢; for the samplex; 14in, [6]-

The META-DES framework is based on the assumption The similarity betweerx; ;,,:,, and the output profiles of
that the dynamic ensemble selection problem can be corihe instances iff, is obtained through the Euclidean distance.
sidered as a meta-problem. This meta-problem uses differeffhe most similar output profiles are selected to form the
criteria regarding the behavior of a base classifiein order  set¢; = {il,...,i;{p}, where each output profil&, is
to decide whether it is competent enough to classify a givemssociated with a labeb; ;. Next, for each base classifier
test samplex;. The meta-problem is defined as follows [4]: ¢; € C, five sets of meta-features are calculated:

e The meta-classesof this meta-problem are either ~ ® Jf1 - Neighbors’ hard classification:First, a vector

) longing to the region of competenég, if ¢; correctly
e Each set ofneta-features f; corresponds to a differ- classifiesxy, the k-th position of the vector is set to 1,
ent criterion for measuring the level of competence of otherwise it is 0. Thusik’ meta-features are computed.

a base classifier. . . . .
e fo - Posterior Probability: First, a vector with K

e The meta-features are encoded intonata-features elements is created. Then, for each sampje be-
vector v; ;. longing to the region of competendg, the posterior
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Fig. 1. Overview of the proposed framework. It is divided itioee steps 1) Overproduction, where the pool of classifiees {c1,...,car} is generated,

2) The training of the selectox (meta-classifier), and 3) The generalization phase wherdéetle of competencé; ; of each base classifier; is calculated
specifically for each new test samplg ;... Then, the level of competende ; is used by the combination approach to predict the lalhebf the test sample
Xj test- Three combination approaches are considered: Dynamictisel§META-DES.S), Dynamic weighting (META-DES.W) and HyBr{META-DES.H).

hc, K, Kp andY are the hyper-parameters required by the proposed systerap{édi from [4]].

probability of¢;, P(w; | xx) is computed and inserted the end of the process. H; correctly classifiex;, the class
into the k-th position of the vector. Consequently,  attribute ofv; ;, oy ; = 1 (i.e., v; ; belongs to the meta-class
meta-features are computed. “competent”), otherwisey; ; = 0. v; ; is stored in the meta-

e f5 - Overall Local Accuracy:The accuracy of; over features datasefy” that is used to train the meta-classifier

the whole region of competeneg is computed and
encoded ags.

3) Training: The last step of the meta-training phase is the
training of A. The datase?y" is divided on the basis of 75%
for training and 25% for validation. In this paper, we evadua
four classifier models for the meta-classifier: MLP Neural
Network, Support Vector Machines with Gaussian Kernel
(SVM), Random Forests and Naive Bayes. These classifiers
were selected based on a recent study [12] that ranked the bes
classification models in a comparison considering a totaléf
classifiers and 121 datasets. All classifiers were impleeaent
using the Matlab PRTOOLS toolbox [17]. The parameters of
e f5 - Classifier's confidenceThe perpendicular dis- each classifier were set as follows:

tance between the reference sampjeand the deci-

sion boundary of the base classifieris calculated 1

and encoded ag;.

e f4 - Outputs’ profile classification:First, a vector
with K, elements is generated. Then, for each membe
X, belonging to the set of output profiles;, if the
label produced by; for x;, is equal to the labeb; ; of
X, thek-th position of the vector is set to 1, otherwise
it is set to 0. A total ofi(,, meta-features are extracted
using output profiles.

MLP Neural Network: The validation data was used
to select the number of nodes in the hidden layer. We
used a configuration with 10 neurons in the hidden

A vector v; ; = {fiU faU f3U fy U f5} is obtained at layer since there were no improvement in results with



more than 10 neurons. The training processXavas I1l.  EXPERIMENTS
performed using the Levenberg-Marquadt algorithm.

The training process was stopped if its performanceA' Datasets

on the validation set decreased or failed to improve A total of 30 datasets are used in the comparative exper-
for five consecutive epochs. iments, with sixteen taken from the UCI machine learning

2) SVM: A radial basis SVM with a Gaussian Kernel repository [18], four from the STATLOG project [19], four
was used. For each dataset, a grid search was pefrom the Knowledge Extraction based on Evolutionary Learn-
formed in order to set the values of the regularizationing (KEEL) repository [20], four from the Ludmila Kuncheva
parameter: and the Kernel spread parameter Collection of real medical data [21], and two artificial dsets

3) Random Forest: A total o200 decision trees were generated with the Matlab PRTOOLS toolbox [17]. The key
used. The depth of each tree was fixedbat ~ features of each dataset are shown in Table I.

4) Naive Bayes: A simple Naive Bayes classifier using
a normal distribution to model numeric features. No TABLEI.  KEey FEATE‘;EEE;%FEL':E DATASETS USED IN THE
parameters are required for this model.

Database No. of Instances Dimensionality No. of Classes Soe
. . Pi 768 8 2 UCl
C. Generalization Liver Disorders 345 6 2 Ui
) ) Breast (WDBC) 568 30 2 UcCl
Given the query samplg; ..., the region of competence Blood transfusion 1761(?0 4 2 PF#SO s
0; is computed using the samples from the dynamic selectionvencie 846 8 7 STATLOG
1 e . Lithuanian 1000 2 2 PRTOOLS
datasetDgs gy, . Following that, the output proflles_sj’test pf fche Lihua o 2 2 o
test samplex; ;..;, are calculated. The set with,, similar lonosphere 315 34 2 ucl
. H H Wi 178 13 3 UcCl
output profiles¢;, of the query samplex; ., is obtained Habarman's Survival 306 3 5 oc
through the Euclidean distance applied over the outputlpsofi  Cardiotocography (CTG) 2126 21 3 ucl
. . ~ Vertebral Column 310 6 2 ucl
of the dynamic selection datasédsg . Steel Plate Faults 1941 27 7 uc
n . WDG V1 50000 21 3 ucl
Next, for each classifier; belonging to the pool of  Ecoli 336 7 8 ucl
g . . Glass 214 9 6 UcCl
classifiersC, the meta-features extraction process is called, irp 214 9 6 ucl
i i Adult 48842 14 2 S]]
returning the meta-features vector;. Then,v; ; is used as  {{on. oo b ; e
input to the meta-classifiek. The support obtained by the Laryngealt 213 16 2 Lke
meta-classifier for the “competent” meta-class, denoteg by Thyrow 215 5 3 ke
I ifi erman credit 1000 20 2 STATLOG
is computed as _the_level of competence of the base classifieze™ Pt 2 2 STATLos
c; for the classification of the test samptg ;.. Satimage 6435 19 7 STATLOG
Phoneme 5404 6 2 ELENA
i i i . Monk2 4322 6 2 KEEL
Three combination approaches are considered: Mo s graphic 32 s 2 KEEL
MAGIC Gamma Telescope 19020 10 2 KEEL

META-DES.S: In this approach, the base classifiers
that achieve a level of competendg; > T are
considered competent, and are selected to compo
the ensemble&’. In this paper, we st = 0.5 (i.e.,
the base classifier is selected if the support for the For the sake of simplicity, the same experimental pro-
"‘competent™ meta-class is higher than the support fortocol used in previous publications [4], [11] was used. The
the ™incompetent™ meta-class). The final decision is experiments were carried out using 20 replications. Foh eac
obtained using the majority vote rule [1]. Tie-breaking replication, the datasets were randomly divided on thesbasi
is handled by choosing the class with the highest aof 50% for training, 25% for the dynamic selection dataset
posteriori probability. (Dskr), and 25% for the test seG). The divisions were

} . P : performed while maintaining the prior probabilities of kac
{\(/l)Ep-lr—édIi?:tEtSh.:\{éEevleorf{jizféllfjﬁerz Ilre]\}gfogicévn;;eliseﬁge class. For the proposed META-DES, 50% of the training data

5,.; estimated by the meta-classifiaris used as the was used in the meta-training procegs and 50% for the

weight of each base classifier. The final decision jsgeneration of the pool of classifierg ).

obtained using a weighted majority vote combination  For the two-class classification problems, the pool of clas-
scheme [2]. Thus, the decisions obtained by the bassifiers was composed of 100 Perceptrons generated using the
classifiers with a higher level of competentg have  bagging technique [15]. For the multi-class problems, thel p

a greater influence on the final decision. of classifiers was composed of 100 multi-class Perceptrons.

META-DES.H: In this approach, first the base classi- The use of Perceptron as base classifier is based on the
fiers that achieve a level of comp;eter&;g ~ T —(.5 Observations that the use of weak classifiers can show more

are considered competent and are selected to compogifferences between the DES schemes [5], thus making it a
the ensemble™”. Next, the level of competenct ; better option for comparing different DES techniques. Fur-
estimated by the meta-classifir for the classifiers thermore, as reported by Leo Breiman, the bagging technique
in the ensemble’”, are used as its weights. Thus, achieves better results when weak and unstable base @essifi
the decisions obtained by the base classifiers wittfre used [15].

the highest level of competendg; have a greater The values of the hyper-parametérs K, andh, were set
influence in the final decision. A weighting majority gt 7, 5 and 70%, respectively. They were selected empiyicall
VOtII’]g SCheme IS used to predICt the |a.b@bf Xj’test. based on prev|ous publlcat|ons [10]’ [11], [4]

§:4 Experimental Protocol



TABLE II. COMPARISON OF DIFFERENT CLASSIFIER TYPES USED AS THE METGLASSIFIERA FOR THEMETA-DES FRAMEWORK. THE BEST RESULTS
ARE IN BOLD. RESULTS THAT ARE SIGNIFICANTLY BETTER ARE MARKED WITH Ae

Meta-Classifier A META-DES

Dataset A MLP NN A SVM )\ Forest )\ Bayes MLP NN SVM Forest Bayes
Pima 79.03(2.24) | 79.46(1.67) 80.27(2.08)  79.63(1.75) | 79.03(2.24) | 77.58(1.67)  78.39(2.08)  77.76(1.75
Liver 70.08(3.49) | 70.60(5.52) 69.56(5.17)  71.24(4.84) 70.08(3.49) | 68.92(5.52) 67.88(5.17) 69.56(4.84
Breast 97.41(1.07) | 97.19(0.61) 97.19(0.61)  97.66(0.50) 97.41(1.07) | 96.94(0.61) 96.94(0.61) 96.94(0.61
Blood 79.14(1.03) | 79.18(1.88) 79.83(2.42) 79.66(1.52) 79.14(1.03) | 77.84(1.88) 78.49(2.42) 78.31(1.52
Banana 91.78(2.68) | 95.17(1.75) 90.97(3.89) 95.67(2.37)e | 91.78(2.68) | 93.92(1.75)  89.72(3.89) 94.42(2.37)e
Vehicle 82.75(1.70) | 82.50(1.92) 82.44(1.63) 82.76(2.01) | 82.75(1.70) | 83.29(1.92)  83.24(1.63) 83.55(2.01)
Lithuanian 93.18(1.32) | 94.91(1.25) 97.89(0.81)e 93.72(3.09) 93.18(1.32) | 94.30(1.25) 97.28(0.81)e  93.12(3.09)
Sonar 80.55(5.39) | 85.88(4.08) 84.60(4.61) 86.95(5.67)e 80.55(5.39) | 80.77(4.08) 79.49(4.61) 81.84(5.67)
lonosphere 89.94(1.96) | 87.35(2.42) 87.09(2.48) 87.35(2.21) 89.94(1.96) | 89.06(2.42)  88.80(2.48)  89.06(2.21
Wine 99.25(1.11) 98.90(1.61) 98.90(1.61) 97.25(1.48) 99.25(1.11) | 99.27(1.61) 99.02(1.61) 98.53(1.48)
Haberman 76.71(1.86) | 74.81(2.50) 75.69(2.19) 75.25(2.06) 76.71(1.86) | 75.69(2.50) 76.56(2.19) 76.13(2.06
CTG 84.62(1.08) | 88.81(1.03) 88.60(1.04) 90.21(1.14)e 84.62(1.08) | 85.64(1.03) 85.43(1.04) 86.04(1.14)
Vertebral 86.89(2.46) | 87.70(2.87) 87.85(3.54)  86.56(2.35) | 86.89(2.46) | 86.76(2.87) 86.90(3.54) 85.62(2.35)
Faults 67.21(1.20) | 74.41(1.17) 74.41(1.17) 74.68(1.19) | 67.21(1.20) | 68.45(1.17)  68.45(1.17) 68.72(1.19)e
WDVG1 84.56(0.36) | 85.26(0.63) 85.23(0.50) 85.84(0.60)e 84.56(0.36) | 84.67(0.63) 84.64(0.50) 84.84(0.36)
Ecoli 77.25(3.52) | 78.01(3.89) 76.74(3.58) 77.01(3.76) | 77.25(3.52) | 80.92(3.89)e  80.66(3.58) 80.92(3.76)
GLASS 66.87(2.99)e | 63.31(4.40) 64.84(4.44) 64.89(3.65) 66.87(2.99) | 65.62(4.40)  64.16(4.44)  65.21(3.65
ILPD 69.40(1.64) | 70.48(2.17) 69.95(2.32) 71.09(2.33) | 69.40(1.64) | 69.56(2.17)  69.03(2.32) 70.17(2.33)
Adult 87.15(2.43) | 88.75(1.76) 88.68(1.29) 88.62(1.84) | 87.15(2.43) | 87.35(1.76)  87.29(1.29) 87.22(1.84)
Weaning 79.67(3.78) | 79.75(2.85) 79.75(2.85)  80.33(3.71) 79.67(3.78) | 79.10(2.85) 79.10(2.85) 79.69(3.71)
Laryngeall 79.67(3.78) | 80.08(3.67) 81.29(3.79)  79.94(5.00) | 79.67(3.78) | 81.97(3.67) 82.18(3.78)e  81.97(5.00)
Laryngeal3 72.65(2.17) | 72.63(0.87) 72.76(0.81)  73.82(0.67) | 72.65(2.17) | 73.17(2.32)  74.04(2.23) 74.42(1.26)e
Thyroid 96.78(0.87) | 97.27(2.32) 97.15(2.23)  97.52(1.26) 96.78(0.87) | 97.18(0.87) 97.31(0.81) 97.38(0.67)
German 75.55(1.31) | 76.18(2.82) 77.11(1.58)e 75.38(1.30) | 75.55(1.31) | 75.34(2.82) 76.27(2.58)  74.54(1.30)
Heart 84.80(3.36) | 83.67(2.76) 82.85(3.60) 86.99(2.30) | 84.80(3.36) | 84.97(2.76)  84.15(3.60) 85.30(2.30)
Segmentation 96.21(0.87) | 96.78(0.60) 96.95(0.75)  96.99(0.60) 96.21(0.87) | 96.21(0.60) 96.38(0.75) 96.42(0.76)
Phoneme 80.35(2.58) | 86.80(3.19) 86.80(3.19) 90.13(0.72)e 80.35(2.58) | 78.44(3.19) 78.44(3.19) 81.77(0.72)
Monk2 83.24(2.19) | 86.40(2.82) 85.68(2.45) 88.67(3.32)e 83.24(2.19) | 81.08(2.82) 80.36(2.45) 83.34(3.32)
Mammaographic 84.82(1.55) | 87.30(1.82)¢  87.30(1.53) 86.34(2.54) | 84.82(1.55) | 85.37(1.82) 85.37(1.53)  84.41(2.54)
Magic Gamma Telescope| 75.40(2.25) | 72.30(3.33) 74.57(3.56)  78.65(2.52) 84.35(3.27) | 81.35(4.21) 84.35(3.27) 85.33(2.29)
Wilcoxon Signed Test n/a ~(p=0.110) + (p=0.004) + (p=0.007) n/a ~(p=0.70) ~(p=0.500) ~(p=0.30)

C. Comparison of different classification models as the Metathe best results for 4 datasets each. The strong performance
Classifier of the Naive Bayes may be explained by the fact that the
In this experiment, we analyze the impact of the classifiermajority of the meta—_featur_es are binary, gnd this clagsifie

’ odel handles well binary input features different than MLP

gnorgelet:?\(tadclg)srsi}?eis;n?Fz_eprc?t?leecqi]vg-gi" t;?; 'g:(e esr?rlr?ecrttlgli; ONetworks. In addition, it might indicate that the proposetss
P ' J P of meta-features are possibly independent [22]. This is an

verify whether we can improve the classification performeanc interesting finding since the Naive Bayes model is much faste

of the META-DES system, previously defined using an MLPy, ., 5 the training and testing stages when compared to an
neural network as the meta-classifier. The following cfassi ., Neural Network or an SVM classifier

models are considered: Multi-Layer Perceptron (MLP) Neura
Networks as in [4], Support Vector Machines with Gaussian .
Kernel (SVM), Random Forests and Naive Bayes.

Table 1l shows a comparison of the performance of the *
meta-classifie and the recognition accuracy obtained by the
META-DES system using each classification model. The bes
results are highlighted in bold. For each dataset, we coadpar
the results obtained by the meta-classifieand by the META-
DES framework using the MLP network [4], against the best
result obtained by any of the other classifier models (SVM,
Random Forest and Naive Bayes). The comparison was pe
formed using the Kruskal-Wallis non-parametric statatiest,
with a 95% confidence interval. Results that are signifigant!
better are marked with &

N
© S}
T T

Number of datasets the corresponding
*
T

classifier model achieved the best results

IS

We can observe that when the meta-classifier achieve
a recognition performance that is statistically superior f e v Em——
a single dataset, such as, Banana, Faults and WDGV1, fc. Classifer Mode!
instance, the META-DES is also likely to achieve superior
accuracy for the same classification problem. Figure 2 showsig. 2. Bar plot showing the number of datasets that eachifitzs®n model
the number of datasets that each classifier model achieeed thised a the meta-classifigrpresented the highest recognition accuracy.
highest accuracy. The Naive Bayes classifier is ranked first,
achieving the best results for 14 datasets, followed by th® M Furthermore, in order to verify whether the difference in
Neural Network with 8. SVM and Random Forests achievedclassification results obtained over the 30 datasets its-sstat

Naive Bayes



tically significant, we performed a Wilcoxon non-parametri rank) this combination approach is selected for the corapari

signed rank test with 95% confidence for a pairwise com-against other state-of-the-art DES techniques.

parison between the results obtained using an MLP Neural

Network against the best result obtained using a different TABLE Ill.

classifier for the meta-classifier. The Wilcoxon signed reask

C OMPARISON BETWEEN THE THREE CLASSIFICATION
APPROACHES SELECTION, WEIGHTING AND HYBRID FOR THE
META-DES FRAMEWORK. THE RESULTS USING ANAIVE BAYES AS THE

was used since it was suggested in [23] as a robust methoghera-cLasSIFIER A ARE PRESENTED THE BEST RESULTS ARE IN BOLD

for comparing the classification results of two algorithmero
several datasets. The results of the Wilcoxon statistiest t

THE AVERAGE RANK IS SHOWN IN THE LAST ROW OF THE TABLE

Dataset

META-DES.S META-DES.W META-DES.H

are shown in the last row of Table Il. Techniques that achieve pima 77.76(1.75) 77.64(1.68)  77.93(1.86)
performance equivalent to the MLP network are marked with E';;earst gg-iﬁl((‘(‘)-g‘é)) 9392-25(’(()44‘;*)3) 63-79%%42)
-t those.that achieve statistica!ly _supe_rior performeaiace Blood 7831(1.52) 78.67(1.77)  78.25(1.37)
marked with a "+", and those with inferior performance are Banana 94.42(2.37)  95.13(1.88)  94.51(2.36)
i i Vehicle 83.55(2.01)  83.50(1.87) 83.55(2.10)
marked with a . When comparing the performance of Litteion 93.12(3.00) 0310(3.14)  93.96(32)
the four meta—c[as&ﬁers, the results achleveq using ando Sonar 81.84(5.67) 79.92(5.16)  82.06(2.09)
Forests and Naive Bayes as the meta-classKiare signifi- lonosphere 89.06(2.21)  89.06(2.55) 89.06(2.21)
cantly superior Wine 98.53(1.48) 98.53(1.08) 98.53(1.08)
: Haberman 76.13(2.06)  76.42(2.38)  76.13(1.56)
- L . CTG 86.04(1.14)  85.99(1.05)  86.08(1.24)
_ I—_|ence, we can conclude _that significant gains in class!- Vertebral 85.62(2.35)  85.76(2.55)  84.90(2.95)
fication accuracy can be achieved by choosing a more suit- Faults 68.72(1.19) 68.63(1.24)  68.95(1.04)
able classifier model for the meta-classifier Although the ‘éVDVGl 84.84(0.36)  84.83(0.63)  84.77(0.65)
; o . coli 80.92(3.76)  80.66(3.58) 80.66(3.48)
ch0|c_e_ of _the best meta-classifier may vary according to the gLass 65.21(3.65)  66.04(3.67)  65.21(3.53)
classification problem (Table II), the results of the METAD kLg’l?t ;ggggig 73%4%%-22%) gg-ggg-ggg
. . . . u . . . . . .
using Nalv_e Bayes as the meta-classifier achieves resalts th Weaning 79.69(3.71) 79.83(2.94)  79.98(3 55)
are statistically superior when compared to the MLP neural Laryngeal1 87.00(5.00) 86.79(4.72)  87.21(5.35)
network over the 30 datasets studied in this work. Laryngeal3 73.42(1.26)  73.79(1.38)  73.54(1.66)
Thyroid 97.38(0.67)  97.44(0.71)  97.38(0.67)
German 7454(1.30)  75.03(2.04)  74.36(1.28)
_ o  Heart 85.30(2.30)  85.46(2.70)  85.46(2.70)
D. Comparison Between Combination Approaches: Dynamic gﬁgmentatlon gi-%gg-;gg g?-iégg-;‘% g?-gggg-ggg
H H H 5 H oneme . . . . . .
Selection, Dynamic Weighting and Hybrid Monk2 83.34(3.32) 8283(382) 83.45(3.46)
. . E X Mammographic 84.41(2.54) 84.62(2.46) 84.30(2.27)
In this section, we compare the three combination ap- magic Gamma Telescope 85.33(2.29) 84.62(2.46)  85.65(2.27)
2.15 1.98 1.86

proaches presented in Section II-C: Dynamic Selection, Dy- Friedman Average Rank ()

namic weighting, and the Hybrid approach. For the sake of
simplicity, we present only the results obtained using tae/&l
Bayes as the meta-classifiar since it achieved the highest
classification accuracy in the previous experiments (Tdple

The results achieved using the Naive Bayes as met

E. Comparison with the state-of-the-art DES techniques

In this section, we compare the recognition rates ob-
tained by the proposed META-DES.H against eight state-of-
%he-art dynamic selection techniques in the DES literature

classifier for the three combination approaches are shown i o« NORA-ELIMINATE [5]. KNORA-UNION [5], DES-
Table 1. In order to select the best combination approachFA [10], Local Classifier Acéuracy (LCA) [8], Ove}all Local
we compare the average ranks of each approach CompUteﬁg:curacy (OLA) [8], Modified Local Accuracy (MLA) [25],

using the Friedman test, which is a non-parametric equitale M

algorithms over multiple datasets [24], [23]. The Friednest

of the repeated measures ANOVA used to compare severﬁhlf[ltllaprfﬁlcéfs(g\'leorFl?)e[%?wour (MCB) [9] and K-Nearests Out-

ranks each algorithm, with the best performing one getting For all techniques, we use the same pool of classifiers
rank 1, the second best rank 2, and so forth for each datasdéfined in the previous section (Section III-C) in order to
separately. The average rank is then computed, considalting have a fair comparison. The size of the region of competence
datasets. Thus, the best algorithm is the one with the lowegheighborhood size) K is set to 7 since it achieved the
average rank. The approaches that use the proposed weightibest result in previous experiments [3], [10]. The compeeat
scheme (Dynamic weighting and Hybrid) outperformed theresults are shown in Table IV. Due to size constraints, wg onl
Dynamic selection approach in accuracy. This can be exgain show the results using Naive Bayes as the meta-classifie sin
by the fact the outputs given by the Naive Bayes classifieit achieved the highest recognition accuracy in the previou
can be directly interpreted as the likelihood that the basexperiment. For each dataset, a Kruskal-Wallis statistest
classifier belongs to the "competent™ meta-class. Thhs, t with 95% confidence was conducted to know if the classi-
supports provided by the meta-classifier can directly bel usefication improvement is statistically significant. Resulltgt

as the weights of each classifier for a weighted majorityngpti are statistically better are marked withea The results of
scheme. This is different from other classification modelsthe proposed technique obtained the highest accuracy in 20
such as Random Forests where their class supports cannot et of 30 datasets. In addition, the accuracy of the proposed
directly interpreted as such. Hence, the meta-classifieatso  system was statistically superior in 15 out of 30 datasets. T
be used for the fusion (integration) of the classifiers in theoriginal META-DES framework [4], without the improvements
ensemble, rather than only for ensemble selection. Sinee thproposed in this paper, achieved results that are statigtic
Hybrid combination approach presents the highest redognit superior in 10 out of the 30 datasets when compared with the
accuracy when the 30 datasets are considered (lowest averagtate-of-the-art DES techniques.
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Furthermore, we also consider the Wilcoxon test with 95%"competent” have greater influence on the classification o
confidence, for a pairwise comparison between the classifiany given test sample. When compared to eight state-offthe-a
cation performances of the proposed system against the peechniques found in the dynamic ensemble selection litezat
formance of the state-of-the-art DES techniques over plalti the proposed META-DES.H using a Naive Bayes classifier
datasets. The results of the Wilcoxon test are shown in ste lafor the meta-classifier presented classification accutaatlyis
row of the table. The performance of the proposed META-statistically better in 15 out of the 30 classification datas
DES.H system is statistically better when all 30 datasets arThe original META-DES framework [4] achieved results that
considered. Hence, the experimental results demonstrate t are statistically better in 10 out of the 30 datasets when
the changes proposed in this paper lead to a significant gaim®mpared with the state-of-the-art DES techniques. Hence,
in performance when compared to other DES algorithms.  the changes to the META-DES framework proposed in this
paper lead to a significant gain in performance when compared
against other DES algorithms.

IV. CONCLUSION

In this paper, we proposed two modifications to the novel
META-DES framework. First, we compared different classifie . .
models, such as the MLP Neural Network, Support Vector_ NS work was supported by the Natural Sciences and
Machines with Gaussian Kernel (SVM), Random Forests anfngineering Research Council of Canada (NSERC), the Ecole
Naive Bayes for the meta-classifier. Next, we evaluatedethred® technologie supérieure (ETS Montréal), CNPq (Conselho
combination approaches to the framework: Dynamic selectio Nacional de Desenvolvimento Cientifico e Tecnologico) and
Dynamic weighting and Hybrid. In the Dynamic selection FACEPE (Fundagdo de Amparo a Ciéncia e Tecnologia de
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approach, only the classifiers that attain a certain level ofP€mambuco).

competence are used to classify a given query sample. In the
dynamic weighting approach, all base classifiers in the po®l
considered to give the final decision, with the meta-classifi [1]
estimating the weight of each base classifier. In the hybrid
approach, only the classifiers that attain a certain level of
competence are initially selected, after which their deos 2]
are aggregated in a weighted majority voting scheme. Thus
the base classifiers attaining higher levels of competeage h 13
a greater impact on the final decision.

Experiments were conducted using 30 classification [4]
datasets derived from five different data repositories (UCI
KEEL, STATLOG, LKC and ELENA). First, we observed a
significant improvement in accuracy using different cléssi
models for the meta-problem. The performance of the META-
DES trained using a Naive Bayes for the meta-classifier[e]
achieves results that are statistically better compardatidse
achieved using an MLP Neural Network, according to the
Wilcoxon Signed Rank test with 95% confidence. This finding [7]
confirms the initial hypothesis that the overall performanc
of the system improves when the recognition accuracy of the,
meta-classifier improves. As the META-DES framework con-
siders the dynamic selection problem as a meta-classificati
problem, we can improve the recognition accuracy by foaisin
only on improving the classification performance in the meta [9]
problem. This finding is especially useful for ill-definecpr
lems since there is not enough data to properly train the badédl
classifiers. Techniques such as stacked generalizatiothéor
generation of more meta-feature vectors in the data geoerat
process as well as the use of feature selection techniques
to achieve a more representative set of meta-features can pe)
considered to improve the recognition performance at tht@ame
classification level.

(5]

(8]

12
In addition, we demonstrate that the framework can also b([a ]
used to compute the weights of the base classifiers. We found
that the Naive Bayes classifier achieved the best result when
the dynamic weighting (META-DES.W) or hybrid (META- [13]
DES.H) approach is used. This can be explained by the fact
that the supports given by this classifier can be seen as tq&]
likelihood that the base classifier belongs to the "‘compt&te
meta-class. Thus, the classifiers that are more likely to be
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TABLE IV. M EAN AND STANDARD DEVIATION RESULTS OF THE ACCURACY OBTAINEDFOR THE PROPOSEIMETA-DES USING A NAIVE BAYES
CLASSIFIER FOR THE METACLASSIFIERA AND THE HYBRID COMBINATION APPROACH. THE BEST RESULTS ARE IN BOLD RESULTS THAT ARE
SIGNIFICANTLY BETTER ARE MARKED WITH A e.

Database META-DES.H KNORA-E [5] KNORA-U [5] DES-FA[10] LCA 8] OLA [8] MLA [25] MCB [9] KNOP [6]
Pima 77.93(1.86)  73.79(1.86) 76.60(2.18) 73.95(1.61) 73.95(2.98) 73.96Q  77.08(4.56) 7656(3.71)  73.42(2.11
Liver Disorders 69.95(3.49)  56.65(3.28) 56.97(3.76) 61.62(3.81) 58.13(4.01) 582908  58.00(4.25) 58.00(4.25)  65.23(2.29
Breast (WDBC) 97.25(0.47) 97.59(1.10) 97.18(1.02) 97.88(0.78)  97.88(1.58) 97.88(1.58) 95.77(2.38) 97.18(1.38)  95.8%(0
Blood Transfusion 78.25(1.37p  77.65(3.62) 77.12(3.36) 73.40(1.16) 75.00(2.87) 75.082  76.06(2.68) 73.40(4.19)  77.54(2.03
Banana 94.51(2.36) 93.08(1.67) 92.28(2.87) 95.21(3.18)  95.21(2.15) 95.21(2.15) 80.31(7.20) 88.29(3.38)  90.7Z&(B
Vehicle 83.55(2.10) 83.01(1.54) 82.54(1.70) 82.54(4.05) 80.33(01  81.50(3.24) 74.05(6.65) 84.90(2.01)  80.09(1.47)
Lithuanian Classes 93.26(3.22) 93.33(2.50) 95.33(2.64) 98.00(2.46) 85202  98.66(3.85)  88.33(3.89) 86.00(3.33)  89.33(2.29
Sonar 82.06(2.00p  74.95(2.79) 76.69(1.94) 78.52(3.86) 76.51(2.06) 74520  76.91(3.20) 76.56(2.58)  75.72(2.82
lonosphere 89.06(2.21)  89.77(3.07)  87.50(1.67) 88.63(2.12) 88.00(1.98) 88.63(1.98) 81.BRY  87.50(2.15)  85.71(5.52)
Wine 98.53(1.08)  97.77(1.53) 97.77(1.62) 95.55(1.77) 85.71(2.25) 88823  88.88(3.02) 97.77(162)  95.50(4.14
Haberman 76.13(1.56)  71.23(4.16) 73.68(2.27) 72.36(2.41) 70.16(3.56) 6923  73.68(3.61) 67.10(7.65)  75.00(3.40
Cardiotocography (CTG) 86.08(1.24)  86.27(157)  85.71(2.20)  86.27(1.57)  86.65(2.35) 86.65(2.35) 86.27(1.78) 85.71(2.21)  86.02(B
Vertebral Column 84.90(2.95) 85.80(2.27) 87.17(2.24)  82.05(3.20) 85.00(3.25) 85.89(3.74) 77.94(5.80) 84.8EB  86.98(3.21)
Steel Plate Faults 68.95(1.04)  67.35(2.01) 67.96(1.98) 68.17(1.59) 66.00(1.69) 66.55)l  67.76(1.54) 68.17(1.59)  68.57(1.85
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MAGIC Gamma Telescope  85.65(2.27  80.03(3.25) 79.99(3.55) 81.73(3.27) 81.53(3.35) 81.O68  73.13(6.35) 75.91(5.35)  80.03(3.25
Wilcoxon Signed test nla —(p=.0001) = (p=.0007) — (p=.0016) — (p=.000I) — (p=.0001) — (p=.0001) — (p=.0003) — (p=.005)
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