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Abstract—In this paper, we propose a novel dynamic ensemble
selection framework using meta-learning. The framework is
divided into three steps. In the first step, the pool of classi-
fiers is generated from the training data. The second phase is
responsible to extract the meta-features and train the meta-
classifier. Five distinct sets of meta-features are proposed, each
one corresponding to a different criterion to measure the level
of competence of a classifier for the classification of a given
query sample. The meta-features are computed using the training
data and used to train a meta-classifier that is able to predict
whether or not a base classifier from the pool is competent enough
to classify an input instance. Three different training scenarios
for the training of the meta-classifier are considered: problem-
dependent, problem-independent and hybrid. Experimental re-
sults show that the problem-dependent scenario provides the best
result. In addition, the performance of the problem-dependent
scenario is strongly correlated with the recognition rate of the
system. A comparison with state-of-the-art techniques shows that
the proposed-dependent approach outperforms current dynamic
ensemble selection techniques.

Keywords—Ensemble of classifiers; dynamic ensemble selec-
tion; meta-Learning.

I. I NTRODUCTION

Ensembles of Classifiers (EoC) have been widely studied
in the past years as an alternative to increase efficiency and
accuracy in many pattern recognition [1], [2]. There are many
examples in the literature that show the efficiency of an
ensemble of classifiers in various tasks, such as signature
verification [3], handwritten recognition [4], [5] and image la-
beling [6]. Classifiers ensembles involve two basic approaches,
namely classifier fusion and dynamic ensemble selection. With
classifier fusion approaches, every classifier in the ensemble
is used and their outputs are aggregated to give the final
prediction. However, such techniques [1], [7], [8], [4] presents
two main problems: they are based on the assumption that the
base classifiers commit independent errors, which is difficult
to find in real pattern recognition applications. Moreover,not
every classifier in the pool of classifiers is an expert for every
test pattern. Different patterns are associated with distinct
degrees of difficulties. It is therefore reasonable to assume that
only a few base classifiers can achieve the correct prediction.

On the other hand, dynamic ensemble selection (DES)
techniques work by estimating the level of competence of
a classifier for each query sample separately. Then, only the
most competent classifiers in relation to the input sample are
selected to form the ensemble. Thus, the key point in DES
techniques is to define a criterion to measure the level of
competence of a base classifier for the classification of the
given query sample. In the literature, we can observe several
criteria based on estimates of the classifier accuracy in local

regions of the feature space surrounding the query sample [9],
[10], [11], [12], [13], extent of consensus [14] and decision
templates [15], [16], [17], [18]. However, in our previous
works [10], we demonstrate that using only one criterion to
measure the level of competence of a base classifier is very
error-prone.

In this paper, we propose a novel dynamic ensemble
selection framework using meta-learning. The framework is
divided into three steps: (1) overproduction, where the pool
of classifiers is generated, (2) Meta-training where the meta-
features are extracted, using the training data, and used as
inputs to train a meta-classifier that works as a classifier
selector. Five sets of meta-features are proposed in this work.
Each set of meta-features correspond to a different criteria used
to measure the level of competence of a base classifier such as
the confidence of the base classifier for the classification ofthe
input sample, and its performance in predefined regions of the
feature space. (3) Generalization phase, in which the meta-
features are extracted from each query sample and used as
input to the meta-classifier to perform the ensemble selection.
Thus, based on the proposed framework we integrate multiple
dynamic selection criteria in order to achieve a more robust
dynamic selection technique.

Three different training scenarios for the meta-classifier
are investigated: (1) The meta-classifier is trained using data
from one classification problem, and is used as the classifier
selector 1 on the same problem; (2) The meta-classifier is
trained using one classification problem, and is used as the
classifier selector on a different one; (3) A single meta-
classifier is trained using the data of all classification problems
considered in this work, and is used as the classifier selector
for all classification problems.

Based on these three scenarios, we aim to answer three
research questions: (1) Can the use of meta-features lead toa
more robust dynamic selection technique? (2) Is the training
of the meta-classifier problem-dependent? (3) Can we improve
the performance of the meta-classifier using knowledge from
different classification problems? Experiments conductedover
eleven classification datasets demonstrate that the proposed
technique outperforms current dynamic selection techniques.
Furthermore, the accuracy of the DES system is correlated to
the performance of the meta-classifier.

This paper is organized as follows: In Section II we
introduce the notion of classifier competence for dynamic
selection. The architecture of the proposed system is presented
in Section III. Experimental results are given in Section IV.
Finally, a conclusion is presented in the last section.

1In this paper, we use the terms meta-classifier and classifier selector
interchangeably



II. CLASSIFIER COMPETENCE

The level of competence of a classifier defines how much
we trust an expert, given a classification task. It is used as a
way of selecting, from a pool of classifiersC, the one(s) that
best fit(s) a given test patternxj . Thus, in dynamic selection,
the level of competence is measured on-the-fly according to
some criteria applied for each input instance separately. There
are three categories present in the literature [19]: the classifier
accuracy over a local region, i.e., in a region close to the test
pattern; decision templates, and the extent of consensus.

A. Classifier accuracy over a local region

Classifier accuracy is the most commonly used criterion for
dynamic classifier and ensemble selection techniques [9], [11],
[10], [20], [21], [12], [22]. Techniques that are based on this
paradigm first define a local region around the test instance,
called the region of competence. This region is computed using
either the K-NN algorithm [11], [9], [10] or by Clustering
techniques [20], [23]. For example, the OLA technique [9]
selects the classifier that obtains the highest accuracy rate
in the region of competence. The Local classifier accuracy
(LCA) [9] selects the classifier with the highest accuracy in
relation to a specific class label and the K-Nearests Oracle
(KNORA) technique [11] selects all classifiers that achievea
perfect accuracy in the region of competence. The drawback
of these techniques is that their performance ends up limited
by the algorithm that defines the region of competence [10].

B. Decision Templates

In this class of methods, the goal is also to select patterns
that are close to the test samplexj . However, the similarity is
computed in the decision space through the concept of decision
templates [24]. This is performed by transforming both the test
instancexj and the validation data into output profiles using
the transformationT , (T : xj ⇒ x̃j), wherexj ∈ ℜD and
x̃j ∈ ZM [25], [18] (M is the pool size). The output profile
of a patternxj is denoted byx̃j = {x̃j,1, x̃j,2, . . . , x̃j,M},
where eachx̃j,i is the decision yielded by the classifierci
for xj . Based on the information extracted from the decision
space, the K-Nearest Output Profile (KNOP) [25] is similar
to the KNORA technique, with the difference being that the
KNORA works in the feature space while the KNOP works in
the decision space. The Multiple Classifier Behaviour (MCB)
technique [15] selects the classifiers that achieve a performance
higher than a given threshold. The problem with using such
information lies in the fact it neglects the local performance
of the base classifiers.

C. Extent of Consensus or confidence

In this class of techniques, the first step is to generate
a population of an ensemble of classifiers (EoC),C∗ =
{C

′

1
, C

′

2
, . . . , C

′

M ′} (M
′

is the number of EoC generated)
using an optimization algorithm such as a genetic algorithms
or greedy search [26], [27]. Then, for each new query instance
xj , the level of competence of each EoC is computed using
techniques such as the Ambiguity-guided dynamic selection
(ADS), Margin-based dynamic selection (MDS) and Class-
strength dynamic selection (CSDS) [14], [17]. The drawback
of these techniques is that they require the pre-computation

of EoC, which increases the computational complexity. In
addition, the pre-computation of EoC also reduces the levelof
diversity and the Oracle performance (the Oracle performance
is the upper limit performance of an EoC [2]) of the pool [14].

III. PROPOSED DYNAMIC ENSEMBLE SELECTOR

A general overview of the proposed framework is depicted
in Figure 1. It is divided into three phases: Overproduction,
Meta-training and Generalization.

A. Overproduction

In this step, the pool of classifiersC = {c1, . . . , cM},
where M is the pool size, is generated using the training
datasetT . The Bagging technique [28] is used in this work in
order to build a diverse pool of classifiers.

B. Meta-Training

In this phase, the meta-features are computed and used
to train the meta-classifierλ. We select five subset of meta-
features derived from the three categories presented in Sec-
tion II. As shown in Figure 1, the meta-training stage consists
of three steps: sample selection, meta-features extraction pro-
cess and meta-training. A different datasetTλ is used in this
phase to prevent overfitting.

1) Sample selection:We focus the training ofλ on cases in
which the extent of consensus of the pool is low. Thus, we em-
ploy a sample selection mechanism based on a thresholdhC ,
called the consensus threshold. For eachxj,trainλ

∈ Tλ, the
degree of consensus of the pool, denoted byH (xj,trainλ

, C),
is computed. IfH (xj,trainλ

, C) falls below the threshold/
hC , xj,trainλ

is passed down to the meta-features extraction
process.

2) Meta-feature extraction:The first step in extracting
the meta-features is to compute the region of competence
of xj,trainλ

, denoted byθj = {x1, . . . ,xK}. The region
of competence is defined in theTλ set using the K-Nearest
Neighbor algorithm. Then,xj is transformed into an output
profile, x̃j by applying the transformationT (Section II-B).
The similarity betweenx̃j and the output profiles of the
instances inTλ is obtained through the Manhattan distance.
The most similar output profiles are selected to form the
set φj =

{

x̃1, . . . , x̃Kp

}

, where each output profilẽxk is
associated with a labelwl,k. Next, for each base classifier
ci ∈ C, five sets of meta-features are calculated:

• f1 - Neighbors’ hard classification:First, a vector
with K elements is created. For each patternxk, be-
longing to the region of competenceθj , if ci correctly
classifiesxk, thek-th position of the vector is set to 1,
otherwise it is 0. Thus,K meta-features are computed.

• f2 - Posterior Probability: First, a vector withK
elements is created. Then, for each patternxk, be-
longing to the region of competenceθj , the posterior
probability ofci, P (wl | xk) is computed and inserted
into thek-th position of the vector. Consequently,K
meta-features are computed.

• f3 - Overall Local Accuracy:The accuracy ofci over
the whole region of competenceθj is computed and
encoded asf3.
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Fig. 1. Overview of the proposed framework. It is divided intothree steps 1) Overproduction, where the pool of classifiersC = {c1, . . . , cM} is generated,
2) The training of the selectorλ (meta-classifier), and 3) The generalization phase where an ensembleC′ is dynamically defined based on the meta-information
extracted fromxj,test and the poolC = {c1, . . . , cM}. The generalization phase returns the labelwl of xj,test. hC , K andKp are the hyper-parameters
required by the proposed system.

• f4 - Outputs’ profile classification:First, a vector
with Kp elements is generated. Then, for each member
x̃k belonging to the set of output profilesφj , if the
label produced byci for xk is equal to the labelwl,k of
x̃k, thek-th position of the vector is set to 1, otherwise
it is set to 0. A total ofKp meta-features are extracted
using output profiles.

• f5 - Classifier’s confidence:The perpendicular dis-
tance betweenxj and the decision boundary of the
base classifierci is calculated and encoded asf5.

A vector vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at
the end of the process. Ifci correctly classifiesxj , the class
attribute ofvi,j , αi,j = 1 (i.e.,vi,j corresponds to the behavior
of a competent classifier), otherwiseαi,j = 0. vi,j is stored in
the meta-features datasetT ∗

λ .

3) Training: The last step of the meta-training phase is the
training of λ. The datasetT ∗

λ is divided on the basis of 75%
for training and 25% for validation. A Multi-Layer Perceptron
(MLP) neural network with 10 neurons in the hidden layer is
used as the meta-classifierλ. The training process is stopped
if its performance on the validation set decreases or fails to
improve for five consecutive epochs.

C. Generalization

Given an input test samplexj,test from the generalization
datasetG, first, the region of competenceθj and the set of
output profilesφj , are calculated using the samples from the
dynamic selection datasetDSEL. For each classifierci ∈ C,
the meta-features are extracted (Section III-B2), returning the
meta-features vectorvi,j .

Next, vi,j is passed down as input to the meta-classifier



λ, which decides whetherci is competent enough to classify
xj,test. If ci is considered competent, it is inserted into the
ensembleC

′

. After each classifier of the pool is evaluated, the
majority vote rule [2] is applied over the ensembleC ′, giving
the labelwl of xj,test. Tie-breaking is handled by choosing
the class with the highest a posteriori probability.

IV. EXPERIMENTS

We evaluated the generalization performance of the pro-
posed technique using eleven classification datasets, ninefrom
the UCI machine learning repository, and two, artificially gen-
erated using the Matlab PRTOOLS toolbox2. The experiment
was conducted using 20 replications. For each replication,
the datasets were randomly divided on the basis of 25% for
training (T ), 25% for meta-trainingTλ, 25% for the dynamic
selection dataset (DSEL) and 25% for generalization (G). The
divisions were performed maintaining the prior probability
of each class. The pool of classifiers was composed of 10
Perceptrons. The value of the hyper-parametersK, Kp andhc

were 7, 5 and 70% respectively. They were selected empirically
based on previous results [10].

We evaluate three different scenarios for the training
of the meta-classifierλ. For the following definitions, let
D = {D1,D2, . . . ,D11} be the eleven classification problems
considered in this paper, andΛ = {λ1, λ2, . . . , λ11} a set of
meta-classifiers trained using the meta-training dataset,T ∗

λ,i

related to a classification problemDi.

1) Scenario I - λ dependent(λD): The selectorλi is
trained using the meta-training dataT ∗

λ,i, and is used
as the classifier selector for the same classification
problem Di. This scenario is performed in order
to answer the first research question of this paper:
Can the use of meta-features lead to a more robust
dynamic selection technique?

2) Scenario II -λ independent(λI ): The selectorλi is
trained using the meta-training dataT ∗

λ,i, and is used
as the classifier selector for a different classification
problemDj | i 6= j. The objective of this scenario
is to answer the second question posed in this work:
Is the training of the meta-classifier application inde-
pendent?

3) Scenario III - λALL: Here, we train a single meta-
classifierλALL using the meta-training data derived
from all classification problemsDi ∈ D, T ∗

λ,ALL =
{

T ∗

λ,1 ∪ T ∗

λ,2 ∪ . . . ,∪T ∗

λ,11

}

. The objective of this
scenario is to answer the third question posed in
this paper: Can we improve the performance of
the meta-classifier using knowledge from different
classification problems?

For the rest of this paper, we refer to each scenario asλD,
λI and λALL. We refer to DESD, DESI and DESALL, the
DES system created using each training scenario, respectively.

A. Results

Table I shows a comparison of the results achieved related
to scenarios I, II and III. Both the DES performance and

2www.prtools.org

60 65 70 75 80 85 90 95 100
60

65

70

75

80

85

90

95

100

EoC Performance

S
el

ec
to

r 
P

er
fo

rm
an

ce

 

 

Correlation
Pima
Liver
Breast
Blood
Banana
Vehicle
Lithuanian
Sonar
Ionosphere
Wine
Haberman

Fig. 2. Correlation between the performances of the proposedDESD and
λD . ρ = 0.88.
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Fig. 3. Correlation between the performances of the proposedDESI andλI .
ρ = 0.42.

the meta-classifier performance are presented. We compare
each pair of results using the Kruskal-Wallis non-parametric
statistical test with a 95% confidence interval. Results that
improved the accuracy significantly are underlined.

The λ-dependent scenario (DESD) obtained the best re-
sults. The only exception is for the Vehicle problem, where
the λALL achieved the best result. Furthermore, when the
performance of the meta-classifier is significantly better,the
accuracy of the DES system is also significantly better. This
finding shows how the performance of the meta-classifier is
correlated with the accuracy of its corresponding DES system.
The independent scenario,λI , presented the lowest results for
both the DES system (DESI ) and meta-classifier (λI ) in all
cases. The accuracies ofλI and DESI are also significantly
worse when compared to the other two scenarios.

We also study the correlation between the accuracy of the
DES system and the performance of the meta-classifier for
the three scenarios. Figures 2, 3 and 4 show the correlation
between the accuracy of the proposed DES system and the
performance of the meta-classifier for theλD, λI and λALL

scenarios, respectively. We compute the correlation coefficient,
ρ, using the Pearson’s Product-Moment.

Scenario I achieved the highest correlation coefficient
ρ = 0.88, while Scenario IIIλALL presented a slightly lower
coefficient, ρ = 0.76. Thus, the use of knowledge from a
different classification problem also reduced the correlation



TABLE I. M EAN AND STANDARD DEVIATION RESULTS OF THE ACCURACY FOR THE THREE SCENARIOS. THE BEST RESULTS ARE IN BOLD. RESULTS

THAT ARE SIGNIFICANTLY BETTER (p < 0.05) ARE UNDERLINED.

Datasets DESD DESI DESALL λD λI λALL

Pima 77.74(2.34) 72.14(3.69) 77.18(2.99) 73.20 (3.48) 68.53(1.79) 72.57(2.12)
Liver 68.83(5.57) 59.22(3.64) 65.53(3.20) 68.92(2.22) 52.90(3.66) 62.29(3.14)
Breast 97.41(1.07) 96.99(3.64) 96.96(1.00) 97.54(1.04) 85.66(6.84) 96.97(1.15)
Blood 79.14(1.88) 75.39(5.55) 75.79(2.62) 82.83(5.57) 69.32(2.90) 74.28(2.87)
Banana 90.16(2.09) 82.52(13.24) 85.98(1.73) 91.14(3.09) 83.58(6.09) 80.21(8.97)
Vehicle 82.50(2.07) 80.25(3.73) 83.53(1.26) 82.38(2.34) 73.70(3.85) 88.67(3.15)
Lithuanian 90.26(2.78) 79.48(13.56) 87.40(1.87) 89.42(3.41) 82.20(6.31) 81.70(3.97)
Sonar 79.72(1.86) 53.14(6.66) 80.38(4.32) 76.15(2.43) 60.70(7.34) 75.42(2.91)
Ionosphere 89.31(0.95) 86.69(6.94) 88.97(2.51) 89.18(2.31) 67.44(3.42) 89.52(3.72)
Wine 96.94(3.12) 94.39(10.91) 95.11(6.69) 93.33(1.56) 90.86(4.49) 78.11(6.69)
Haberman 76.71(3.52) 72.77(6.34) 77.63(2.55) 76.31(2.35) 71.88(2.72) 76.23(4.91)
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Fig. 4. Correlation between the performances of the proposedDESALL and
λALL. ρ = 0.76.

between the meta-classifier and the accuracy of the DES
system. The correlation betweenλI and DESI wasρ = 0.42,
which is significantly lower than Scenarios I and III.

Therefore, experimental results indicate that the training
of the meta-classifier is problem-dependent. The behavior of
a competent classifier differs according to each classification
problem. Furthermore, as theλALL selector performed worse
than theλD, we failed to improve the performance of the meta-
classifier and DES system by adding knowledge derived from
other classification problems. However, the loss in accuracy
might be explained by the use of classification problems with
completely different distributions and data complexities[29].

B. Comparison with the state-of-the-art

In Table II, we compare the recognition rates obtained by
the proposed DESD against dynamic selection techniques in
the literature (KNORA-Eliminate [11], KNORA-Union [11],
DES-FA [10], LCA [9], OLA [9] and KNOP [17]). We
compare each pair of results using the Kruskal-Wallis non-
parametric statistical test with a 95% confidence interval.The
results of the proposed DESD over the Pima, Liver Disorders,
Blood Transfusion, Vehicle, Sonar and Ionosphere datasets
are statistically superior to the result of the best DES from
the literature. For the other datasets, Breast, Banana and
Lithuanian, the results are statistically equivalent.

We can thus answer the first question posed in this paper:
Can the use of meta-features lead to a more robust dynamic

selection technique? As the result of the proposed DESD is
significantly better in eight datasets, the use of meta-learning
indeed leads to a more robust dynamic ensemble selection
technique.

V. CONCLUSION

In this paper, we present a novel DES framework using
meta-learning. Different properties of the behavior of a base
classifier are extracted from the training data and encoded
as meta-features. These meta-features are used to train a
meta-classifier that can estimate whether a base classifier is
competent enough to classify a given input sample. Based
on the proposed framework, we perform three experiments
considering three different scenarios for the training of the
meta-classifier.

Experimental results show that the training of the pro-
posed meta-classifier is problem-dependent as the dependent
scenario,λD, outperformed bothλI andλALL. In addition, the
correlation between the performances ofλD and the accuracy
of the corresponding DESD is also higher than that of the other
two scenarios.

A comparison with the state-of-the-art dynamic ensemble
selection techniques shows that the proposedDESD out-
performs current techniques. Moreover, the gain in accuracy
observed with our system is also statistically significant.Thus,
we can conclude that the use of multiple properties of the
behavior of a base classifier in the classification environment
indeed leads to a more robust DES system.

Future works on this topic will involve:

1) The evaluation of a different training scenario using
only classification problems with similar data com-
plexity for the training of the meta-classifier.

2) the design of new meta-features in order to improve
the performance of the meta-classifier, and conse-
quently, the DES system.
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TABLE II. M EAN AND STANDARD DEVIATION RESULTS OF THE ACCURACY OBTAINEDFOR THE PROPOSEDDESD AND THE DES SYSTEMS IN THE

LITERATURE. THE BEST RESULTS ARE IN BOLD. RESULTS THAT ARE SIGNIFICANTLY BETTER(p < 0.05) ARE UNDERLINED.

Database DESD KNORA-E [11] KNORA-U [11] DES-FA [10] LCA [9] OLA [9] KNOP [25]
Pima 77.74(2.34) 73.16(1.86) 74.62(2.18) 76.04(1.61) 72.86(2.98) 73.14(2.56) 73.42(2.11)

Liver Disorders 68.92(2.22) 63.86(3.28) 64.41(3.76) 65.72(3.81) 62.24(4.01) 62.05(3.27) 65.23(2.29)
Breast (WDBC) 97.54(1.04) 96.93(1.10) 96.35(1.02) 97.18(1.13) 97.15(1.58) 96.85(1.32) 95.42(0.89)

Blood Transfusion 79.14(1.88) 74.59(2.62) 75.50(2.36) 76.42(1.16) 72.20(2.87) 72.33(2.36) 77.54(2.03)
Banana 90.16(2.09) 88.83(1.67) 89.03(2.87) 90.16(3.18) 89.28(1.89) 89.40(2.15) 85.73(10.65)
Vehicle 82.5(2.07) 81.19(1.54) 82.08(1.70) 80.20(4.05) 80.33(1.84) 81.50(3.24) 80.09(1.47)

Lithuanian Classes 90.26(2.78) 88.83(2.50) 87.95(2.64) 92.23(2.46) 88.10(2.20) 87.95(1.85) 89.33(2.29)
Sonar 79.72(1.86) 74.95(2.79) 76.69(1.94) 77.52(1.86) 76.51(2.06) 74.52(1.54) 75.72(2.82)

Ionosphere 89.31(0.95) 87.37(3.07) 86.22(1.67) 86.33(2.12) 86.56(1.98) 86.56(1.98) 85.71(5.52)
Wine 96.94(3.12) 95.00(1.53) 96.13(1.62) 95.45(1.77) 95.85(2.25) 96.16(3.02) 95.00(4.14)

Haberman 76.71(3.52) 71.23(4.16) 74.40(2.27) 74.47(2.41) 70.16(3.56) 72.26(4.17) 75.00(3.40)
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