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Abstract—In this paper, we propose a novel dynamic ensemble
selection framework using meta-learning. The framework is
divided into three steps. In the first step, the pool of classi-
fiers is generated from the training data. The second phase is
responsible to extract the meta-features and train the meta-
classifier. Five distinct sets of meta-features are proposed, &a
one corresponding to a different criterion to measure the level
of competence of a classifier for the classification of a given
query sample. The meta-features are computed using the training
data and used to train a meta-classifier that is able to predict
whether or not a base classifier from the pool is competent enough
to classify an input instance. Three different training scenarios
for the training of the meta-classifier are considered: problem-
dependent, problem-independent and hybrid. Experimental re-
sults show that the problem-dependent scenario provides the bies
result. In addition, the performance of the problem-dependent
scenario is strongly correlated with the recognition rate of the
system. A comparison with state-of-the-art techniques show#at
the proposed-dependent approach outperforms current dynaic
ensemble selection techniques.

Email: gdcc@cin.ufpe.br

regions of the feature space surrounding the query sample [9
[10], [11], [12], [13], extent of consensus [14] and decisio
templates [15], [16], [17], [18]. However, in our previous
works [10], we demonstrate that using only one criterion to
measure the level of competence of a base classifier is very
error-prone.

In this paper, we propose a novel dynamic ensemble
selection framework using meta-learning. The framework is
divided into three steps: (1) overproduction, where thel poo
of classifiers is generated, (2) Meta-training where theamet
features are extracted, using the training data, and used as
inputs to train a meta-classifier that works as a classifier
selector. Five sets of meta-features are proposed in thik. wo
Each set of meta-features correspond to a different aitesed
to measure the level of competence of a base classifier such as
the confidence of the base classifier for the classificatiaghef
input sample, and its performance in predefined regionseof th
feature space. (3) Generalization phase, in which the meta-

Keywords—Ensemble of classifiers; dynamic ensemble selec- féatures are extracted from each query sample and used as

tion; meta-Learning.

I. INTRODUCTION

input to the meta-classifier to perform the ensemble selecti
Thus, based on the proposed framework we integrate multiple
dynamic selection criteria in order to achieve a more robust
dynamic selection technique.

Ensembles of Classifiers (EoC) have been widely studied Three different training scenarios for the meta-classifier

in the past years as an alternative to increase efficiency angte investigated: (1) The meta-classifier is trained usiaig d
accuracy in many pattern recognition [1], [2]. There are ynan from one classification problem, and is used as the classifier
examples in the literature that show the efficiency of anselector! on the same problem; (2) The meta-classifier is
ensemble of classifiers in various tasks, such as signatuigained using one classification problem, and is used as the
verification [3], handwritten recognition [4], [5] and imada-  classifier selector on a different one; (3) A single meta-
beling [6]. Classifiers ensembles involve two basic apteac classifier is trained using the data of all classificatiorbfems
namely classifier fusion and dynamic ensemble selectioth Wi considered in this work, and is used as the classifier selecto
classifier fusion approaches, every classifier in the enembsor )| classification problems.

is used and their outputs are aggregated to give the final , )
prediction. However, such techniques [1], [7], [8], [4] peats Based on these three scenarios, we aim to answer three
two main problems: they are based on the assumption that tH§Search questions: (1) Can the use of meta-features lemd to
base classifiers commit independent errors, which is difficu More robust dynamic selection technique? (2) Is the trginin
to find in real pattern recognition applications. Moreovest ~ Of the meta-classifier problem-dependent? (3) Can we ingprov
every classifier in the pool of classifiers is an expert fomgve the performance of the meta-classifier using knowledge from
test pattern. Different patterns are associated with rdisti different classification problems? Experiments conducest
degrees of difficulties. It is therefore reasonable to asstimat ~ €léven classification datasets demonstrate that the pdpos
only a few base classifiers can achieve the correct predictio technique outperforms current dynamic selection tectesqu
Furthermore, the accuracy of the DES system is correlated to
On the other hand, dynamic ensemble selection (DESphe performance of the meta-classifier.
techniques work by estimating the level of competence of . . . ) .
a classifier for each query sample separately. Then, only the 1S Paper is organized as follows: In Section Il we
most competent classifiers in relation to the input sampde grintroduce the notion of classifier competence for dynamic
selected to form the ensemble. Thus, the key point in DESEIECtion. The architecture of the proposed system is prese
techniques is to define a criterion to measure the level of? Section Ill. Experimental results are given in Section IV
competence of a base classifier for the classification of th&inally, @ conclusion is presented in the last section.
given query sample. In the literature, we can observe severa iy this paper, we use the terms meta-classifier and classiflectse
criteria based on estimates of the classifier accuracy ial loc interchangeably




Il. CLASSIFIER COMPETENCE of EoC, which increases the computational complexity. In
ddition, the pre-computation of EoC also reduces the lefvel
iversity and the Oracle performance (the Oracle perfonman
R the upper limit performance of an EoC [2]) of the pool [14].

The level of competence of a classifier defines how mucfi’j1
we trust an expert, given a classification task. It is used as
way of selecting, from a pool of classifie€s, the one(s) that
best fit(s) a given test pattesn,. Thus, in dynamic selection, m
the level of competence is measured on-the-fly according to
some criteria applied for each input instance separatélgre A general overview of the proposed framework is depicted
are three categories present in the literature [19]: thesiflar  in Figure 1. It is divided into three phases: Overproduction
accuracy over a local region, i.e., in a region close to tisé te Meta-training and Generalization.
pattern; decision templates, and the extent of consensus.

PROPOSED DYNAMIC ENSEMBLE SELECTOR

A. Overproduction

A. Classifier accuracy over a local region In this step, the pool of classifiel§ = {ci,...,cun},

Classifier accuracy is the most commonly used criterion fot?neré M is the pool size, is generated using the training
dynamic classifier and ensemble selection techniquesg], [ dat@set/. The Bagging technique [28] is used in this work in
[10], [20], [21], [12], [22]. Techniques that are based oisth order to build a diverse pool of classifiers.
paradigm first define a local region around the test instanceB -
called the region of competence. This region is computengusi > Méta-Training
either the K-NN algorithm [11], [9], [10] or by Clustering In this phase, the meta-features are computed and used
techniques [20], [23]. For example, the OLA technique [9]to train the meta-classifiek. We select five subset of meta-
selects the classifier that obtains the highest accura@y rateatures derived from the three categories presented in Sec
in the region of competence. The Local classifier accuracyion Il. As shown in Figure 1, the meta-training stage cadssis
(LCA) [9] selects the classifier with the highest accuracy inof three steps: sample selection, meta-features extraptio-
relation to a specific class label and the K-Nearests Oracleess and meta-training. A different dataggtis used in this
(KNORA) technique [11] selects all classifiers that achiave phase to prevent overfitting.
perfect accuracy in the region of competence. The drawback
of these techniques is that their performance ends up limite
by the algorithm that defines the region of competence [10].

1) Sample selectionWe focus the training ok on cases in
which the extent of consensus of the pool is low. Thus, we em-
ploy a sample selection mechanism based on a thresheld

.. called the consensus threshold. For eagh.qin, € 7», the

B. Decision Templates degree of consensus of the pool, denotedHi ; i qin, » C),

In this class of methods, the goal is also to select patternis computed. IfH (x; trqin,, C) falls below the threshold/
that are close to the test samplg. However, the similarity is  2.c» Xj train, 1S passed down to the meta-features extraction
computed in the decision space through the concept of decisi Process.

templates [24]. This is performed by transforming both &8t ) Meta-feature extraction:The first step in extracting

instancex; and the validation data into output profiles using the meta-features is to compute the region of competence

the transformatior?’, (T' : x; = x;), wherex; € R and X, trainy, denoted byf; = {xi,...,xx}. The region

x; € zM [25], [18] (M is the pool size). The output profile of competence is defined in thE, set using the K-Nearest

of a patternx; is denoted byx; = {X;1,X;2,...,X;m},  Neighbor algorithm. Thenx; is transformed into an output

where eachx; ; is the decision yielded by the classifier  profile, x; by applying the transformatiofi’ (Section 1I-B).

for x;. Based on the information extracted from the decisionthe similarity betweenx,; and the output profiles of the

space, the K-Nearest Output Profile (KNOP) [25] is similarinstances in7, is obtained through the Manhattan distance.

to the KNORA technique, with the difference being that theThe most similar output profiles are selected to form the

KNORA works in the feature space while the KNOP works in get ¢; = {X1,...,%Xx,}, where each output profil&; is

the decision space. The Multiple Classifier Behaviour (MCB)associated with a labek; ;. Next, for each base classifier

technique [15] selects the classifiers that achieve a peeioce . ¢ O, five sets of meta-features are calculated:

higher than a given threshold. The problem with using such

information lies in the fact it neglects the local perforroan e fi1 - Neighbors’ hard classification:First, a vector

of the base classifiers. with K elements is created. For each pattegn be-

longing to the region of competenég, if ¢; correctly

C. Extent of Consensus or confidence cIaSS|f|gasx{€,_thek-th position of the vector is set to 1,

otherwise it is 0. Thusk’ meta-features are computed.
In this class of techniques, the first step is to generate

a population of an ensemble of classifiers (EoC);, =

{C},C5,...,Cypy (M is the number of EoC generated)

using an optimization algorithm such as a genetic algosthm

or greedy search [26], [27]. Then, for each new query inganc

x;, the level of competence of each EoC is computed using

techniques such as the Ambiguity-guided dynamic selection

(ADS), Margin-based dynamic selection (MDS) and Class- e  f3 - Overall Local Accuracy:The accuracy of; over

strength dynamic selection (CSDS) [14], [17]. The drawback the whole region of competeneg is computed and

of these techniques is that they require the pre-computatio encoded ags.

e f> - Posterior Probability: First, a vector with K
elements is created. Then, for each pattegn be-
longing to the region of competende, the posterior
probability of ¢;, P(w; | xx) is computed and inserted
into the k-th position of the vector. Consequently,
meta-features are computed.
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Fig. 1. Overview of the proposed framework. It is divided itioee steps 1) Overproduction, where the pool of classifiees {c1,...,cas} is generated,

2) The training of the selectox (meta-classifier), and 3) The generalization phase wherasengleC’ is dynamically defined based on the meta-information
extracted fromx; ;. and the poolC' = {c1,...,cap}. The generalization phase returns the labelof x; tcs:. ho, K and K, are the hyper-parameters
required by the proposed system.

e f4 - Outputs’ profile classification:First, a vector 3) Training: The last step of the meta-training phase is the
with K, elements is generated. Then, for each membetraining of A\. The datase?,* is divided on the basis of 75%
X, belonging to the set of output profiles;, if the  for training and 25% for validation. A Multi-Layer Perceptr
label produced by; for x,, is equal to the labeb; ; of (MLP) neural network with 10 neurons in the hidden layer is
X1, thek-th position of the vector is set to 1, otherwise used as the meta-classifigr The training process is stopped
it is set to 0. A total ofK,, meta-features are extracted if its performance on the validation set decreases or fails t
using output profiles. improve for five consecutive epochs.

e f5 - Classifier's confidence:The perpendicular dis-
tance betweerx; and the decision boundary of the
base classifier; is calculated and encoded #s

C. Generalization

Given an input test sampte; ;.; from the generalization
datasetg, first, the region of competend& and the set of
output profilesy;, are calculated using the samples from the
dynamic selection datasész. For each classifier; € C,
the meta-features are extracted (Section 111-B2), retgrihe
meta-features vectar, ;.

A vectorv, ; = {fiU foU fsU faU f5} is obtained at
the end of the process. H correctly classifiest;, the class
attribute ofv; ;, o; ; = 1 (i.e.,v; ; corresponds to the behavior
of a competent classifier), otherwiag; = 0. v; ; is stored in

the meta-features datasgf. Next, v; ; is passed down as input to the meta-classifier



A, which decides whethet; is competent enough to classify .
X;test- If ¢; IS considered competent, it is inserted into the .
ensemble’’ . After each classifier of the pool is evaluated, the . 2 e
majority vote rule [2] is applied over the ensemldlé giving
the labelw; of x;..s. Tie-breaking is handled by choosing
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the UCI machine learning repository, and two, artificialng ® © * ™ oc Penomance ® ®

erated using the Matlab PRTOOLS toolBoXhe experiment
was conducted using 20 replications. For each replication,
the datasets were randomly divided on the basis of 25% fofrig. 2. Correlation between the performances of the prop@#8, and
training (7), 25% for meta-training’, 25% for the dynamic  Ap- » = 0-88.

selection dataset{sgr) and 25% for generalizatiorGj. The
divisions were performed maintaining the prior probaypilit
of each class. The pool of classifiers was composed of 1! =
Perceptrons. The value of the hyper-parameferd<,, andh. . . 5 5
were 7, 5 and 70% respectively. They were selected empyrical .
based on previous results [10].

—— Caorrelation

+ Pima
Liver

* Breast

® Blood

*  Banana

O Vehicle

A Lithuanian
Sonar

We evaluate three different scenarios for the training
of the meta-classifiet\. For the following definitions, let
D ={D;,D,,..., D11} be the eleven classification problems
considered in this paper, and = {\1, \a,..., A1} a set of
meta-classifiers trained using the meta-training datasgf, | e
related to a classification problef,. 7 B o

L L
85 90 95 100

Selector Performance

1) Scenario | -\ dependeni(p): The selector); is
trained using the meta-training dafg ;, and is used  gig 3 Correlation between the performances of the propBsEs; and ;.
as the classifier selector for the same classification = 0.42.
problem D;. This scenario is performed in order
to answer the first research question of this paper:
Can the use of meta-features lead to a more robughe meta-classifier performance are presented. We compare
dynamic selection technique? each pair of results using the Kruskal-Wallis non-paraimetr
2) Scenario Il -\ independeni(;): The selector)\; is  statistical test with a 95% confidence interval. Resultg tha
trained using the meta-training defg,;, and is used improved the accuracy significantly are underlined.

as the classifier selector for a different classification . .
problemD; | i # j. The objective of this scenario The A-dependent scenario (DB$ obtained the best re-

is to answer the second question posed in this worksults. The only exception is for the Vehicle problem, where

Is the training of the meta-classifier application inde-the Aary achieved the best result. Furthermore, when the

pendent? performance of the meta-clas;ifier is §igr_1i'ficantly bettieg, _
3) Scenario Il -\a;;: Here, we train a single meta- accuracy of the DES system is also significantly better. This
classifierA 4, using the meta-training data derived finding shOV\(s how the performance of the meta-classmer is
from all classification problem®; € D, T; ,,,; = correlated with the accuracy of its corresponding DES syste
S ~ The independent scenarid;, presented the lowest results for
{ a1 UT, U---aUTﬁuh The objective of this poth the DES system (DEHand meta-classifier() in all
scenario is to answer the third question posed incases. The accuracies &f and DES are also significantly
this paper: Can we improve the performance ofworse when compared to the other two scenarios.
the meta-classifier using knowledge from different

classification problems? We also study the correlation between the accuracy of the

DES system and the performance of the meta-classifier for
For the rest of this paper, we refer to each scenaridms the three scenarios. Figures 2, 3 and 4 show the correlation
A; and \4... We refer to DES,, DES; and DES,;;, the  between the accuracy of the proposed DES system and the
DES system created using each training scenario, resplctiv performance of the meta-classifier for the, A\ and Aarr
scenarios, respectively. We compute the correlation coexfl,

A. Results p, using the Pearson’s Product-Moment.
Table | shows a comparison of the results achieved related Scenario | achieved the highest correlation coefficient
to scenarios I, Il and Ill. Both the DES performance ande = 0-88, while Scenario A4, ., presented a slightly lower

coefficient, p = 0.76. Thus, the use of knowledge from a
2www.prtools.org different classification problem also reduced the coriatat




TABLE I. M EAN AND STANDARD DEVIATION RESULTS OF THE ACCURACY FOR THE TIREE SCENARIOS THE BEST RESULTS ARE IN BOLD RESULTS
THAT ARE SIGNIFICANTLY BETTER (p < 0.05) ARE UNDERLINED.

Datasets DESp DES; DES4LL AD AJ AALL

Pima 77.74(2.34) 72.14(3.69) 77.18(2.99) 73.20 (3.48) 68.53(1.79) 72.57(2.12
Liver 68.83(5.57) 59.22(3.64) 65.53(3.20) 68.92(2.22) 52.90(3.66) 62.29(3.14
Breast 97.41(1.07) 96.99(3.64) 96.96(1.00) 97.54(1.04) 85.66(6.84) 96.97(1.15
Blood 79.14(1.88) 75.39(5.55) 75.79(2.62) 82.83(5.57) 69.32(2.90) 74.28(2.87
Banana 90.16(2.09) 82.52(13.24) 85.98(1.73) 91.14(3.09) 83.58(6.09) 80.21(8.97
Vehicle 82.50(2.07) 80.25(3.73) 83.53(1.26)| 82.38(2.34) 73.70(3.85) 88.67(3.15)
Lithuanian | 90.26(2.78) 79.48(13.56) 87.40(1.87) 89.42(3.41) 82.20(6.31) 81.70(3.97
Sonar 79.72(1.86) 53.14(6.66) 80.38(4.32)| 76.15(2.43) 60.70(7.34) 75.42(2.91
lonosphere | 89.31(0.95) 86.69(6.94) 88.97(2.51) 89.18(2.31) 67.44(3.42) 89.52(3.72)
Wine 96.94(3.12 94.39(10.91) 95.11(6.69) 93.33(1.56) 90.86(4.49) 78.11(6.69
Haberman | 76.71(3.52) 72.77(6.34) 77.63(2.55)| 76.31(2.35) 71.88(2.72) 76.23(4.91

selection technique? As the result of the proposed DES
significantly better in eight datasets, the use of metaalagr
indeed leads to a more robust dynamic ensemble selection
technique.
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V. CONCLUSION
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In this paper, we present a novel DES framework using
meta-learning. Different properties of the behavior of aeba
classifier are extracted from the training data and encoded
as meta-features. These meta-features are used to train a
meta-classifier that can estimate whether a base classfier i
competent enough to classify a given input sample. Based
on the proposed framework, we perform three experiments
considering three different scenarios for the training loé t
meta-classifier.

Fig. 4. Correlation between the performances of the propBdesl, ;,;, and
Aarr. p=0.76.

Experimental results show that the training of the pro-
sed meta-classifier is problem-dependent as the dependen
scenario\p, outperformed both; and 41.1.. In addition, the
correlation between the performances\gf and the accuracy

Therefore, experimental results indicate that the trainin of the corresponding DESis also higher than that of the other

of the meta-classifier is problem-dependent. The behavior dwo scenarios.

a competent classifier differs according to each classificat
problem. Furthermore, as they;; selector performed worse
than the) p, we failed to improve the performance of the meta:
classifier and DES system by adding knowledge derived fro
other classification problems. However, the loss in acgurac
might be explained by the use of classification problems wit
completely different distributions and data complexiti2s].

between the meta-classifier and the accuracy of the DESO
system. The correlation between and DES wasp = 0.42,
which is significantly lower than Scenarios | and lIl.

A comparison with the state-of-the-art dynamic ensemble
_selection techniques shows that the propo$eHdSp out-
nperforms current techniques. Moreover, the gain in acgurac
observed with our system is also statistically significdimis,

e can conclude that the use of multiple properties of the
ehavior of a base classifier in the classification envirarime
indeed leads to a more robust DES system.

B. Comparison with the state-of-the-art Future works on this topic will involve:

In Table Il, we compare the recognition rates obtained by 1)
the proposed DES against dynamic selection techniques in
the literature (KNORA-Eliminate [11], KNORA-Union [11],
DES-FA [10], LCA [9], OLA [9] and KNOP [17]). We 2)
compare each pair of results using the Kruskal-Wallis non-
parametric statistical test with a 95% confidence intervae
results of the proposed DESover the Pima, Liver Disorders,
Blood Transfusion, Vehicle, Sonar and lonosphere datasets
are statistically superior to the result of the best DES from
the literature. For the other datasets, Breast, Banana and
Lithuanian, the results are statistically equivalent.

The evaluation of a different training scenario using
only classification problems with similar data com-
plexity for the training of the meta-classifier.

the design of new meta-features in order to improve
the performance of the meta-classifier, and conse-
quently, the DES system.
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Vehicle 82.5(2.07) 81.19(1.54) 82.08(1.70) 80.20(4.05) | 80.33(1.84)| 81.50(3.24)| 80.09(1.47)
Lithuanian Classes | 90.26(2.78)|  88.83(2.50) 87.95(2.64) 92.23(2.46) | 88.10(2.20)| 87.95(1.85)| 89.33(2.29)
Sonar 79.72(1.86) 74.95(2.79) 76.69(1.94) 77.52(1.86) | 76.51(2.06)| 74.52(1.54)| 75.72(2.82)
lonosphere 89.31(0.95) 87.37(3.07) 86.22(1.67) 86.33(2.12) | 86.56(1.98)| 86.56(1.98)| 85.71(5.52)
Wine 96.94(3.12) 95.00(1.53) 96.13(1.62) 95.45(1.77) | 95.85(2.25)| 96.16(3.02)| 95.00(4.14)
Haberman 76.71(3.52) 71.23(4.16) 74.40(2.27) 74.47(2.41) | 70.16(3.56)| 72.26(4.17)| 75.00(3.40)
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