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ARTICLE INFO ABSTRACT

Magnetic resonance (MR) brain image segmentation of different anatomical structures or tissue types has
become a critical requirement in the diagnosis of neurological diseases. Depending on the availability of
the training samples, image segmentation can be either supervised or unsupervised. While supervised
learning requires a sufficient amount of labelled training data, which is expensive and time-consuming,
unsupervised learning techniques suffer from the problem of local traps. Semi-supervised algorithms that
includes prior knowledge into the unsupervised learning can enhance the segmentation process without
the need of labelled training data. This paper proposes a method to improve the quality of MR brain tissue
segmentation and to accelerate the convergence process. The proposed method is a clustering based
semi-supervised classifier that does not need a set of labelled training data and uses less human expert
analysis than a supervised approach. The proposed classifier labels the voxels clusters of an image slice
and then uses statistics and class labels information of the resultant clusters to classify the remaining
image slices by applying Gaussian Mixture Model (GMM). The experimental results show that the pro-
posed semi-supervised approach accelerates the convergence and improves the results accuracy when
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comparing with the classical GMM approach.
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1. Introduction

Nowadays, Magnetic resonance imaging (MRI) is extensively
used for the diagnosis of neurological diseases. Currently available
procedures ensure safe, painless, and non-invasive investigation of
the human body and it often identifies abnormalities long before
and diseases symptoms appear. Magnetic resonance imaging, in
particular, is well suited for studying diseases of the nervous sys-
tem due to the high spatial resolution, the high soft tissue contrast,
and the multispectral characteristics of MR images with relaxation
times (i.e., T1 and T2) and proton density (i.e., Pd) information.

Analysis of MRI by a trained human expert is a tedious and dif-
ficult task because the structures of interest in the image shows
complex edge configurations and anatomical borders are not
clearly visible most of the times. In clinical trials, the number of
MR images is often so large that manual analysis by human ex-
perts is too time-consuming. Furthermore, it is not clear how an
expert combines information obtained from different channels
when multispectral MR data are examined. Since, the intra- and

* Corresponding author. Address: Centro de Informatica (CIn), Universidade
Federal de Pernambuco (UFPE), Av. Jornalista Anibal Fernandes, Cidade Universita-
ria, 50740-560 Recife, PE, Brazil. Tel.: +55 81 2126 8430x4346; fax: +55 81 2126
8438.

E-mail addresses: nmp@cin.ufpe.br  (N.M.
(G.D.C. Cavalcanti), tir@cin.ufpe.br (T.I. Ren).
URL: http://www.cin.ufpe.br/~viisar (G.D.C. Cavalcanti).

Portela), gdcc@cin.ufpe.br

0957-4174/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.08.046

inter-observer variability associated with manual segmentations
hinder the reproducibility of the results. For these reasons, auto-
matic or semi-automatic techniques for MR brain image segmen-
tation that can analyze large amounts of 3D multispectral MR data
in a reproducible way are necessary (Suri, Wilson, & Laxminara-
yan, 2005; Zhang, Brady, & Smith, 2001).

A key component in image analysis, regarding quantitative
measurements of the brain anatomy, is to obtain accurate segmen-
tation of the brain image from the different anatomical structures
or tissue types, especially gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). Segmentation of the brain image is
not only widely used for cortical surface mapping, volume mea-
surement, tissue classification, functional and morphological adap-
tation assessment, and characterization of neurological disorders,
but also it is a required preliminary step for many other image pro-
cessing procedures, such as brain registration and voxel-based
morphometry. Therefore, the accurate segmentation of the brain
image has become one of the most important issues in MRI appli-
cations. Segmentation can be based on the image voxel attributes,
neighborhood information, or geometric characteristics. The diffi-
culties to obtain an accurate image segmentation arise from noise,
inhomogeneities, partial volume effects and the highly convoluted
geometry of the cortex.

Depending on the availability of labels for training samples, im-
age segmentation can be either supervised or unsupervised. In gen-
eral, segmentation based on supervised learning, such as neural
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networks (Haykin, 2008) or support vector machine (Duda, Hart, &
Stork, 2001), can yield good results, but it requires a large amount
of training data (labelled voxels) for every type of tissues, which is
expensive and time-consuming.

In contrast, unsupervised learning methods, such as k-means
(MacQueen, 1967), or mixture model based (Everitt & Hand,
1981), has well recognised advantages over supervised segmenta-
tion methods, for example few user interaction. Because almost all
unsupervised techniques are in fact an optimization process that is
governed by an objective function such as the total log likelihood
in mixture modeling or the sum of Euclidean distance in k-means,
the techniques inevitably suffer from the problem of local traps
(minima or maxima). In consequence, they need to be tuned prop-
erly in order to produce satisfactory results (Qian & Li, 2004). In
other words, without any prior knowledge, these methods have
limited performance.

Semi-supervised algorithms that incorporates prior knowledge
in the unsupervised method can improve the results of data classi-
fication without requiring a complete training data set (Chapelle,
Scholkopf, & Zien, 2006; Pao, Chuang, Xu, & Fu, 2008; Song, Huang,
Ma, & Hung, 2011). Recently, some techniques for semi-supervised
brain image segmentation have been proposed. Examples of these
techniques are the semi-supervised maximum a posteriori proba-
bility (ssMAP) (Li, Ogunbona, de Silva, & Attikiouzel, 2011) and
the algorithm proposed by Song et al. (2009) to improve the seg-
mentation results by exploring incomplete training datasets where
the labelled data may be available only for a subset of tissues, that
is, not every type of tissues are labelled. Zhang, Dong, Clapworthy,
Zhao, and Jiao (2010) proposed a MR brain image segmentation
using semi-supervised spectral clustering that improved the re-
sults of the segmented image. They supply some data pairwise
constraints information, instead of labelled voxels, to the spectral
clustering algorithm to obtain a better data assignment.

Here, we propose a method to improve MR brain image seg-
mentation and accelerate the convergence process using clustering
based semi-supervised classification without requiring a set of la-
belled training data and using less manual analysis by human ex-
pert than a supervised approach. Initially, the voxels of only one
image slice are clustered and a human expert labels each resultant
cluster as gray matter (GM), white matter (WM), or cerebrospinal
fluid (CSF). Then, labelled information and clusters statistics mea-
sures, mean, covariance matrix, and prior probability, are used in
the classification process of the others slices in the image. In com-
parison to other semi-supervised techniques, prior knowledge
such as cluster label information and statistics measures are easily
obtained without the demand of any labelled training data.

The remainder of this paper is organized as follows: a back-
ground on the Gaussian Mixture Model based clustering is pre-
sented in Section 2. The proposed method is presented in Section
3. Experimental results on the application of the proposed model
to synthetic MR brain images are presented in Section 4 and con-
clusions are given in Section 5.

2. Clustering based on gaussian mixture model

Let X be an image slice represented by a set of voxels X = {x!, -

X"} where each voxel is denoted by a d-dimensional random
vector X'= (xq, ...Xq) and n is the number of voxels in the slice.
It is assumed that each region j that composes the image follows
a class-conditional distribution with probability density function
pi(x|0;), each one having its own vector of parameters 0;
j=1,...,k, where k is the number of tissue classes in the image.
Therefore. each voxel is drawn independently from the mixture
density that describes the weighted sum of all classes taken
together:

p;(x'|6;) =

p(x'ly) = Z%PJ '16;), (1)

where 7; are the mixture mixing proportions that are positive and
have the summazion equals to one, pj(X|6;) is the component density
associated with region j and y = {0, ... 0,71, . .., 7} is the set of all
mixture parameters. The mixing proportions 7; corresponds to the
prior probability of any voxel belonging to the jth group.

To use mixture model-based clustering approach, it is assumed
that the data to be clustered belongs to a mixture of a specified
number of k groups in various proportion. Each data point is drawn
independently from the mixture density in Eq. (1), where the k
components correspond to the k groups. After the specification of
the parametric form for each component density pj(x|0;), the
parameters can be estimated by maximum likelihood. Once the
mixture is fitted, a probabilistic clustering of the data can be ob-
tained in terms of the fitted posterior probabilities of component
membership for the data. The data clustered into k groups is ob-
tained by assigning each data point to the component to which it
has the highest estimated probability (McLachlan & Peel, 2000).

Assuming that p;(x|0;) are normal with parameters, 0; = {1;,%;},
and the variables x' are independent and identically distributed
(i.i.d). Let i and X; be the unknown mean vector and covariance
matrix of the group j respectively, so that:

exp| 3 (6 )5 o - ). )

2md2| 3|2
where |X| denotes the determinant of .

The step after formalize the model is fit the mixture to the data
through the maximum likelihood (ML) estimation (IMcLachlan &
Peel, 2000). The objective of ML is to obtain the parameters that
maximize the joint probability density function of the available
data (or the data likelihood). This can be performed using the
Expectation Maximization (EM) algorithm (Dempster, Laird, & Ru-
bin, 1977). For convenience, we usually use the log-likelihood va-
lue instead of the likelihood, which is defined as:

In p(X|) = Zln (Zn,pj (x'[0; ) (3)

McLachlan and Peel (2000) introduced an EM algorithm for ML
estimation of the parameters of the component densities for the
case where p;(x|6;) are assumed normal. In the image clustering
approach, the slice voxels are used to update the mixture parame-
ters by alternating the following EM steps until the In p(X|y)
converges:

- Expectation-step

o x19)

Z(Wx') = y , j=1,...k 4
T ?
- Maximization-step
t+1, szl/,p( j=1,...k (5)
Xz:(y X .
j = % i=1...k (6)
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The EM algorithm starts from an initial value y/°. A poor choice
of Y° can hamper the EM convergence, and in some cases where
the likelihood is unbounded on the edge of the parameter space,
the sequence of parameter estimates generated by the EM may di-
verge if 1/° is chosen too close to the boundary. Another problem
with mixture models is that the likelihood equation usually have
multiple roots corresponding to local maxima. Therefore the EM
algorithm should be applied from a wide choice of starting values
in search for the local maxima, which is very time-consuming.

The parameters iy describes the global properties of the mea-
surements X' but they do not show how to assign labels to the vox-
els. After the k-components mixture model is fitted to obtain the
estimate of v, a probabilistic clustering of the n voxels {x!,...,x"}
can be assigned in terms of their fitted posterior probabilities of
component membership. For each x/, the k probabilities p;(1/1]x'),-
D), with ;= {w;,X;,m}, give the estimated posterior prob-
abilities that this observation belongs to the fist, second, ... and k"
components, respectively, of the mixture, Vi. A hard clustering
answer of these voxels can be provided by assigning each x' to
the component of the mixture that has the highest posterior prob-
ability. Let ¥ be the component-label vector such that r} =1 if the
it" voxel belongs to the j™ group, and r]i = 0, otherwise. The prior
probability of any voxel belonging to the j group is 7;, so that Prob
(r]’ﬁ = 1) = m;, Vi. The probability that the voxel x' belongs to the j
group is given by the class-conditional density function p;(x'|0;),
that is taken to be the mixture components. If ri =1, then the
corresponding voxel is generated from the component density
pj(x'|6]), ie.,

p(X|rj = 1) = p;(X|0)). (8)

By Bayes rules, the posterior probabilities of component mem-
bership are given by:
_ Ty (x6) ©
pXy)
where the denominator p(x/|y/) is given by Eq. (1) that is a class con-
stant value dependent of the measurement x'. In general, X' can be
used to estimate p;(y;|x'),vj by applying Eq. (9) if the parameters of
the component densities iy are known. The Bayes classifier could be
used to assign class labels to the voxels, if the parameters iy were
known,

pi(yIx) = Prob(r;i — 1, 1//,.)

j* = argmaxp;(y;|x'). (10)
j

The voxel i is assigned to the class j* that has the highest posterior

probability.

3. Image segmentation based on semi-supervised Gaussian
mixture model

The proposed approach is based on four assumptions of the
available data: (1) the data are produced by a mixture model, (2)
there is a one-to-one correspondence between mixture compo-
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nents and brain tissue classes, (3) the mixture components are
multinomial distributions of individual regions present in the im-
age, and (4) the same brain tissue classes presented in different im-
age slices are assigned to the same distribution.

Let Y ={X',... X™} be a 3D MR image represented by a set of 2D
slices where m is the number of slices in the image. The proposed
method is composed of two modules: a prior clustering module
that associates class labels information with clusters statistics
measures (mean, covariance matrix, and prior probability); and a
classification module that receives prior information from the first
module to produce labelled images. A block diagram summarizing
the overall process is presented in Fig. 1.

In the prior clustering module (Fig. 2), an MR image slice X® is
randomly selected from Y and clustered by the k-means algorithm
(Duda et al., 2001) into three groups. The result is a segmented im-
age without any association between image segments and brain
tissues classes: gray matter (GM), white matter (WM), cerebrospi-
nal fluid (CSF). In the next step, a human specialist evaluates the
clustering result; if the image is well segmented, the human spe-
cialist associates each segmented slice cluster, ¢;, to one of the class
labels, I = {GM,WM,CSF}; otherwise, the slice X8 is segmented again
with different initial parameters, y°. The expert interference corre-
sponds to the supervision in the semi-supervised learning
methods.

At this point, each segment of the X% image has a class label. We
assume a one-to-one correspondence between mixture model
components and tissue classes, and thus use ¢; to indicate the jth
mixture component, as well as the j* class. Given a correspondence
between tissue classes and clusters of X5, the set of mixture param-
eters, ¥ = {1;,%;,m;}, of each class ¢; can be computed over its as-
signed cluster voxels, X',Vj,i,

Il

i = (11)
inecxi
1 = |nj|J ; (12)
i ; T
e, (X — 1) (X — 1
EJ_:erj( 1) (X — 1) 7 (13)

|

where |nj| is the number of voxels belonging to the jth class. The
pairs clusters and labels, and the set of mixture parameters, y;, of
each class represent the prior knowledge of the data set.

In the second module (Fig. 3), the prior knowledge of the data
set is used to cluster the rest of the slices. The set of remaining
slices, Y*, is composed by Y excluding the slice used in the first
module, X5. When a new slice of Y* is presented to the classifier, tis-
sues classes parameters ;= {{;,Z;m;}, Vj, computed earlier are
used as the initial parameters of the GMM to smooth the EM con-
vergence. Since the parameters are extracted from a well seg-
mented image, it is supposed that 1; leads the EM convergence
to the global maxima.

We also assume that the voxels in slice X® that corresponds to a
tissue class ¢; and the voxels in the rest of the slices that corre-

I_I—i
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Fig. 1. Block diagram for the proposed method. Module 1 and Module 2 are detailed in Figs. 2 and 3, respectively.
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Fig. 2. First module: associating class labels information, [, with clusters statistics
measures (mean, pj, covariance matrix, X;, and prior probability, ;).
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Fig. 3. Second module: using prior information (mean, y; covariance matrix, X
prior probability, 7;, and class label, I;) from the first module to produce labelled
images.

sponds to ¢; are generated by the same distribution. Therefore, dif-
ferent regions are assigned to different mixture parameters. Each
mixture component from Eq. (1), pj(xi|0j), corresponds to a tissue
class, and receives the label assigned to the mixture parameters,
¥j, used as the initial parameter. Therefore, after the GMM cluster-
ing is processed using the method described in Section 2, each vox-
el x' is assigned to the labelled component of the mixture in which
it has the highest posterior probability. The result is a segmented
image where all voxels belonging to a cluster receives the class la-
bel of the mixture component assigned to the cluster. In other

words, a new classification step is not necessary to associate the
clusters from the segmentation process with each tissue class.

4. Experimental results
4.1. Image dataset

In order to quantitatively assess the performance of the pro-
posed method, synthetic MR images from the BrainWeb simulated
brain database (Cocosco, Kollokian, Kwan, Pike, & Evans, 1997) are
used. The results reported in next sections are based on a synthetic
normal brain multispectral image composed of proton density, T1-
and T2-weighted images with 181 sagittal slices of dimension
181 x 217 voxels with 1 mm? resolution, 3% noise level, and 0%
intensity non-uniformity.

Since, for the evaluation of the Gaussian density function the in-
verse of the covariance matrix is requires, an estimate of the
covariance matrix is only useful for the classification if it is nonsin-
gular (i.e., invertible). Among the 181 sagittal slices, we selected
those slices that had at least 10 voxels belonging to each tissue
class to ensure that it is be possible to estimate the parameters
of the Gaussian distribution. This results in a total of 133 images.
In this experiments, three classes are considered, white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). A prepro-
cessing step is applied to separate brain from non-brain tissue be-
fore applying the image segmentation. Fig. 4 depicts the original
BrainWeb images for slices number 50, 93 and 120 with 3% noise
and 0% intensity non-uniformity in the left column, the same
images after preprocessing step is shown in center column, and
the respective ground truths is shown in right column. The images
in the left column are a RGB version of the multispectral image
composed of proton density, T1- and T2-weighted images.

4.2. Experimental design

We compare the proposed semi-supervised Gaussian Mixture
Model (GMM%) with two others supervised Gaussian Mixture
Model. The first method is a clustering procedure with random ini-
tialization parameter. The clustering result is a segmented image
without labels, then a classification step is necessary to label the
clusters. This method called GMM"! is composed of 3 stages:
training, clustering and clusters classification. In the training step,
an image slice is randomly selected and clustered using the k-
means algorithm with random parameter initialization. The result-
ing clusters are manually labelled as WM, GM or CSF and their sta-
tistical parameters are computed. As a consequence, each cluster is
associated to a class label I; and to a set of mixture parameters, ;.
In the second stage, the remaining image slices are segmented by a
Gaussian Mixture Model with random parameters initialization.
Next, the resultant clusters are classified by a parametric Bayesian
classifier based on the parameters computed in the first step.

The second method used for comparison purpose is a super-
vised approach of the proposed method called GMMSUP2, Since
the image ground truth contains the class label of the validation
data set, we use this available information to compute the set of
mixture parameters, i, in a supervised way. In the first module de-
scribed in Section 3, the clustering process is eliminated and  is
computed directly from the labelled data using Eqs. (11)-(13).
GMMSUP? yses the second module as described in Section 3.

4.3. Evaluation methodology

To evaluate the classification results, the segmentations of each
class j is compared with the ground truth by using the Dice Simi-
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Fig. 4. (left column) Original BrainWeb images for slices number 50, 93 and 120 with 3% noise and 0% non-uniformity intensity, (center column) the same image after the

preprocessing step, and (right column) the respective ground truth.

larity Index (DSI). The Dice Similarity Index S (j) (Dice, 1945) is de-
fined as:

; 2Nprg ()

PSI=30)= 1,60 + NeGy) )
where N,,.(j) is the number of voxels classified as class j by the pro-
posed method and the ground truth. Nj(j) and Ng(j) represent the
number of voxels classified as class j by the proposed method and
by the ground truth, respectively. The index S (j) tends to 1 if the
proposed method coincides with the ground truth, and decreases
towards 0 as the quality of the segmentation deteriorates. Typically,
a value S (j) > 0.7 means that there is an excellent agreement be-
tween the two segmentations.

Since both implementations are sensitive to initialization, we
run both methods 30 times. In every new execution, a new image
is randomly selected for the first module and the remaining images
are classified.

We use the pairwise t-test to compare the performance of the
methods. The following convention for the p-value are used:
“>" and “ <" mean that the p-value is lesser than or equal to
0.01, indicating a strong evidence that a method results in a greater
or minor value for the effectiveness measure than another method,
respectively; “>" and “ <” mean that the p-value is greater than
0.01 and lesser or equal to 0.05, indicating a weak evidence that
a method results in a greater or minor value for the effectiveness

”»

measure than another method; “ ~” means that the p-value is
greater than 0.05 indicating that it does not have significant differ-
ence when compared the performance of the two method.

4.4. Analysis of experiments

Table 1 shows the DSI values (mean and standard deviation), S
(j), Vj, obtained using different approaches and the class distribu-
tion average over all images. The best results are shown in bold.
Table 2, which is derived form Table 1, shows the t-test results
when comparing the performance of GMM versus GMM>UP! and
GMMSS versus GMMSUP2,

Table 1
Tissue’s DSI (mean +standard deviation) for images segmentation using three
techniques.

Tissue Class Dice similarity index
distribution
GMMSUPI GMMSUPZ GMMSS
Cerebrospinal ~ 18.4% 0.860+0.086 0.872+0.054 0.873+0.053
fluid

Gray matter 46.4% 0.733+0.327 0.825+0.210 0.831+0.203
White matter  35.2% 0.705+0.375 0.864+0.224 0.867 +0.221
Average 0.766 0.854 0.857
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Table 2
Comparison of the three different methods, GMM> x GMMSU"' and GMM>x
GMMSYP2; t-test results.

Tissue Comparative method
GMMSUPI GMMSUP2
Cerebrospinal fluid > ~
GMMSS Gray matter > ~
White matter > ~

GMM®S has statistically significant superior performance than
GMM3YP! for CSF, GM, and WM. The result can be explained by
the fact that GMM clustering is highly affected by a poor choice
of starting parameters and the proposed method avoid these ef-
fects by using the prior knowledge about the parameters provided
by the semi-supervised approach. We can also observe that there is
no statistically significant difference comparing GMMSUP2 with
GMMS for CSF, GM, and WM. This indicates that the prior informa-
tion provided by semi-supervised approach, used in the first mod-
ule without any training data is similar to the information
computed by a supervised approach over a set of training data.

The CPU time to process all 132 test images are obtained to
compare the performance of the methods in relation to computa-
tional costs. The mean and standard deviation of the time in
seconds of the proposed algorithm using an Intel Dual-Core
1.66 GHz Processor, 2G memory, and MATLAB Version 7.0, for the
GMM*U!, GMM®U™ and GMM®® are 709.02 +994.72, 564.65 *
431.23, 609.74 £ 204.37, respectively.

GMMSUr? s faster than GMMSUP! and GMM>S, This result is al-
ready expected because GMM®Y"! and GMM>* use clustering based
semi-supervised approach to compute the set of initial mixture
parameters, /, whereas (GMMSU"?) computes 1 directly using
the information from the ground truth. Thus, the time consumed
by GMM>Y to compute 1 are due mainly to the direct application
of the formulas shown in Eqgs. (11)-(13), that is obviously smaller
than the clustering convergence time considering the same data
set.

However, when a training data set is not available, the GMMSY™
is unable to perform. Therefore GMM* can be used since it per-
forms better than (GMMSU™) yielding a statistically significant
improvement (p-value lesser than 0.01 for a pairwise t-test). This
experiment indicates that, since GMM is sensitive to initialization
technique, the prior knowledge of the parameters results in a faster
convergence for the cluster algorithm.

5. Conclusion

In this paper, we proposed a clustering based semi-supervised
learning algorithm for human brain MR image segmentation. The
proposed method avoids problem arising from poor initial choice
of Y during the mixture models parameter estimation when using
the EM algorithm. We have developed an approach that performs
the classification of human brain regions in MR image slices with-
out requiring a set of labelled training data and using less manual
analysis by human expert than a supervised approach.

The proposed technique is composed of 2 modules. First, an MR
image slice is selected randomly and it is clustered by the k-means
algorithm. Each cluster is labelled by an expert and their statistical
parameters are computed. In the second module, tissues classes
parameters values are used as initial parameters to Gaussian Mix-
ture Model to cluster the remaining slices. Each mixture compo-

nent represents a tissue distribution by keeping its parameter
value as initial parameter. Consequently, after the GMM clustering
process, the resultant clusters are already labelled. In other words,
a new classification step is not necessary to associate the clusters
from segmentation process with each tissue class.

The convergence of the GMM is accelerated by using a semi-
supervised learning algorithm other than a unsupervised learning
with the Bayesian classifier. The time consumed by the semi-
supervised algorithm is smaller than the unsupervised learning
with the Bayesian classifier because the clustering algorithm con-
vergence is faster when the initial parameters are based on prior
knowledge. Since GMM is sensitive to the initialization method,
the prior knowledge of the parameters improves its accuracy. For
future direction, we plan to include a contextual clustering ap-
proach to the proposed method using spatially variant finite mix-
ture model.
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