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Abstract. In Dynamic Ensemble Selection (DES), only the most competent clas-
sifiers are selected to classify a given query sample. A crucial issad fa DES

is the definition of a criterion for measuring the level of competence df base
classifier. To that end, a criterion commonly used is the estimation of thpesom
tence of a base classifier using its local accuracy in small regions oé#teré
space surrounding the query instance. However, such a criterioocachieve
results close to the performance of the Oracle, which is the upper limibrperf
mance of any DES technique. In this paper, we conduct a dissimilaritysassa
between various DES techniques in order to better understand the reigiibas
tween them and as well as the behavior of the Oracle. In our experinsntiy]

we evaluate seven DES techniques and the Oracle using eleven publietslatas
One of the seven DES techniques was proposed by the authors anchetses
learning to define the competence of base classifiers based on diffeteria.

In the dissimilarity analysis, this proposed technique appears closer todoeO
when compared to others, which would seem to indicate that using diffieitsn

of information on the behavior of base classifiers is important for inipopthe
precision of DES techniques. Furthermore, DES techniques, sudBAasQLA,

and MLA, which use similar criteria to define the level of competence oé bas
classifiers, are more likely to produce similar results.

Keywords: Ensemble of classifiers, dynamic ensemble selection, dissimilarity
analysis, meta-learning

1 Introduction

In recent years, ensembles of Classifiers (EoC) have beetlywstudied as an alter-
native for increasing efficiency and accuracy in patterogadion [1, 2]. Classifier en-
sembles involve two basic approaches, namely, classi&ritand dynamic ensemble
selection. With classifier fusion approaches, each classifthe ensemble is used, and
their outputs are aggregated to give the final predictiorwéi@r, such techniques [1,
3] present two main problems: they are based on the assumtptid the base classi-
fiers commit independent errors, which rarely occurs to fingkal pattern recognition
applications.



On the other hand, Dynamic Ensemble Selection (DES) teaksifd] rely on the
assumption that each base classifisran expert in a different local region of the fea-
ture space. DES techniques work by measuring the level opetence of each base
classifier, considering each new test sample. Only the namapetent(s) classifier(s)
is(are) selected to predict the class of a new test samplecd¢he key issue in DES
is defining a criterion for measuring the level of competeoica base classifier. Most
DES techniques [5-8] use estimates of the classifier’s lacaliracy in small regions
of the feature space surrounding the query instance ashseareria to carry out the
ensemble selection. However, in our previous work [7], wadestrated that this crite-
rion is limited, and cannot achieve results close to thequardnce of the Oracle, which
represents the best possible result of any combinatiorestiflers [2]. In addition, as
reported by Ko et al. [5], addressing the behavior of the @rescmuch more complex
than applying a simple neighborhood approach, and the fdluoing out its behavior
based merely on the pattern feature space is not an easy one.

To tackle this issue, in [9] we proposed a novel DES framewrwhich multi-
ple criteria regarding the behavior of a base classifier aegl to compute its level of
competence. In this paper, we conduct a dissimilarity aiglyetween different DES
techniques in order to better understand their relatigmshie analysis is performed
based on the difference between the levels of competencbadeaclassifier estimated
by the criterion embedded in each DES technique. All in al,cempare the DES cri-
teria of seven state-of-the-art DES techniques, includingproposed meta-learning
framework. In addition, we also formalize the Oracle as @aidES technique (i.e., a
DES scheme which selects only the classifiers of the pookitteatict the correct class
for the query instance) to be used in the analysis.

The dissimilarities between different DES criteria are poied in order to gener-
ate a dissimilarity matrix, which is then, used to projeatle®ES technique onto a
two-dimensional space, called the Classifier Projecticac8gCPS) [10]). In the CPS,
each DES technique is represented by a point, and the déstetween two points cor-
responds to their degree of dissimilarity. Techniques dipgiear close together present
similar behavior (i.e., they are more likely to produce thens results), while those
appearing far apart in the two-dimensional CPS can be cereiddifferent. Thus, a
spatial relationship is achieved between different teqphe@s. The purpose of the dis-
similarity analysis is twofold: to understand the relatibip between different DES
techniques (i.e., whether or not the criteria used by DEBriggies present a similar
behavior), and in order to determine which DES techniquegmts a behavior that is
closer to the behavior of the ideal DES scheme (Oracle).

This paper is organized as follows: Section 2 introducedXB8 techniques from
the literature that are used in the dissimilarity analy$ise proposed meta-learning
framework is described in Section 3. Experiments are caeduic Section 4, and fi-
nally, our conclusion is presented in the last section.

! The term base classifier refers to a single classifier belonging to an klesema pool of
classifiers



2 Dynamic ensemble selection techniques

The goal of dynamic selection is to find an ensemble of classiit’ c C contain-
ing the best classifiers to classify a given test sampleThis is different from static
selection, where the ensemble of classifi€fsis selected during the training phase,
and considering the global performance of the base classifier a validation dataset.
In dynamic selection, the classifier competence is measuretie-fly for each query
instancex;.

The following DES techniques are described in this sectiverall Local Accuracy
(OLA) [6], Local Classifier Accuracy (LCA) [6], Modified Lod&ccuracy (MLA) [8],
KNORA-Eliminate [5], K-Nearest Output Profiles (KNOP) [1ddd Multiple Classifier
Behavior (MCB) [12].

For the definitions below, let; = {x;,...,xx} be the region of competence of
the test sample; (K is the size of the region of competence), defined on the wadida
data,c; a base classifier from the po6! = {ci,...,cp} (M is the size of the pool),
wy the correct label ok; andd; ; the level of competence of for the classification of
the input instance ;.

Overall Local Accuracy (OLA)

In this method, the level of competengg; of a base classifier; is simply computed
as the local accuracy achieved d@yfor the region of competenceg. (Equation 1). The
classifier with the highest level of competerige is selected.

K
0ij = ZP(wz | Xx € wi,c;) (1)
k=1

Local Classifier Accuracy (LCA)

This rule is similar to the OLA, with the only difference bgithat the local accuracy of
¢; is estimated with respect to the output classggw; is the class assigned far; by
¢;) for the whole region of competenag, (Equation 2). The classifier with the highest
level of competencs; ; is selected.

_ Zxkewl P(wl ‘ Xk7c’i)
Zf:l P(U}l ‘ Xk’vci)

(2)

4,3

Modified Local Accuracy (MLA)

The MLA technique works similarly to the LCA. The only diffamce is that each in-
stancex;, belonging to the region of competenggis weighted by its Euclidean dis-
tance to the query samplg. The classifier with the highest level of competefiggis
selected.



KNORA-Eliminate (KNORA-E)

Given the region of competendeg, only the classifiers that achieved a perfect score,
considering the whole region of competence, are considayetpetent for the classi-
fication of x;. Thus, the level of competendg ; is either "competent’y; ; = 1 or
"incompetent”p; ; = 0. All classifiers considered competent are selected.

Multiple Classifier Behavior (MCB)

Given the query pattern;, the first step is to compute its K-Nearest-Neighbarsk =

1,..., K. Then, the output profiles of each neighisgr are computed and compared
to the output profile of the test instange according to a similarity metri© o, prof.

If Doutproy > threshold, the pattern is removed from the region of competence.
The level of competencg, ; is measured by the recognition performance of the base
classifierc; over the filtered region of competence. The classifier withhighest level

of competencé; ; is selected.

K-Nearest Output Profiles (KNOP)

This rule is similar to the KNORA technique, with the onlyfdifence being that KNORA
works in the feature space while KNOP works in the decisiacspusing output pro-
files. First, the output profiles’ transformation is appl@eer the inputx;, giving x;.
Next, the similarity betweest; and the output profiles from the validation set is com-
puted and stored in the sgt. The level of competencg ; of a base classifier; for
the classification ok; is defined by the number of samplesdn that are correctly
classified bye;.

Oracle

The Oracle is classically defined in the literature as aegjsathat correctly classifies

each query instance; if any classifierc; from the pool of classifier§’ predicts the

correct label forx;. In this paper, we formalize the Oracle as the ideal DES tecien

which always selects the classifier that predicts the cbtagelx; and rejects other-

wise. The Oracle as a DES technique is defined in Equation 3:

4;; =1, if ¢; correctly classifiesx; 3)
d;; =0, otherwise

In other words, the level of competengg; of a base classifier; is 1 if it predicts
the correct label fox;, or 0 otherwise.

3 Dynamic ensemble selection using meta-learning

A general overview of the proposed meta-learning framevi@depicted in Figure 1.
Itis divided into three phases: Overproduction, Metarirag and Generalization. Each
phase is detailed in the following sections.
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Fig. 1. Overview of the proposed framework. It is divided into three stepsvEr@oduction 2)
Meta-training and 3) Generalization. [Adapted from [9]]

3.1 Overproduction

In this step, the pool of classifiers = {c1,...,ca}, whereM is the pool size, is
generated using the training datagefrhe Bagging technique [13] is used in this work
in order to build a diverse pool of classifiers.

3.2 Meta-Training

In this phase, the meta-features are computed and usedrtditeameta-classifiek.
As shown in Figure 1, the meta-training stage consists ektteps: sample selection,
the meta-features extraction process and meta-trainigfféxent datasef, is used in
this phase to prevent overfitting.

Sample selectionWe focus the training ok on cases in which the extent of consensus
of the pool is low. Thus, we employ a sample selection meamabiased on a threshold
hc, called the consensus threshold. For eagh...n, € 7, the degree of consensus
of the pool, denoted b¥ (x; rqin,, C), is computed. tH (x; trqin, , C) falls below
the thresholdvc, x; 1rqin, 1S Passed down to the meta-features extraction process.

Meta-features extraction In order to extract the meta-features, the region of com-
petence 0K; /rqin,, denoted by; = {x1,...,xx} must be first computed. The re-
gion of competence is defined in thg set using the K-Nearest Neighbor algorithm.



Then,x; is transformed into an output profil&,; by applying the transformatiof,

(T : x; = x;), wherex; € R andx; € ZM [11]. The output profile of a patter;

is denoted byk; = {x;1,X;2,...,X;n}, Where eacl;; is the decision yielded by
the classifier; for x;. The similarity betweert; and the output profiles of the instances
in 7, is obtained through the Euclidean distance. The most similgut profiles are
selected to form the set; = {5(1, . ,chp}, where each output profite; is associ-
ated with a labely; ;.. Next, for each base classifier € C, five sets of meta-features
are calculated:

f1 - Neighbors’ hard classification: First, a vector withK elements is created. For
each instance;,, belonging to the region of competeritgif c; correctly classifies
X, thek-th position of the vector is set to 1, otherwise itis 0. Thiisneta-features
are computed.

f2 - Posterior probability: First, a vector with/” elements is created. Then, for each
instancex;, belonging to the region of competenég the posterior probability
of ¢;, P(w; | xx) is computed and inserted into theth position of the vector.
Consequently’ meta-features are computed.

f3 - Overall local accuracy: The accuracy of; over the whole region of competence
6; is computed and encoded fs

fa - Output profiles classification: First, a vector with,, elements is generated. Then,
for each membek;,, belonging to the set of output profilgs, if the label produced
by ¢; for x,, is equal to the labeb; ;, of x;, thek-th position of the vector is set to
1, otherwise it is 0. A total ok, meta-features are extracted using output profiles.

f5 - Classifier's Confidence: The perpendicular distance between the input sample
X;.train, and the decision boundary of the base classifiés calculated and en-
coded asfs. f5 is normalized to 0 — 1] range using the Min-max normalization.

Avectorv; ; = {fi U fo U fsU f4 U f5} is obtained at the end of the process. It
is important to mention that a different vectar; is generated for each base classifier
¢;. If ¢; correctly classifiesx; +rqin,, the class attribute of; ;, a; ; = 1 (i.e., v;;
corresponds to the behavior of a competent classifier)notbec; ; = 0. v; ; is stored
in the meta-features dataset (Figure 1).

Training With the meta-features datasgf;, on hand, the last step of the meta-training
phase is the training of the meta-classiflerThe datase?" is divided on the basis
of 75% for training and 25% for validation. A Multi-Layer Reptron (MLP) neural
network with 10 neurons in the hidden layer is considereti@selectoi. The training
process for\ is performed using the Levenberg-Marquadt algorithm, arstopped if
its performance on the validation set decreases or failmpodve for five consecutive
epochs.

3.3 Generalization

Given an input test sample; ;.; from the generalization datasgt first, the region of
competencd; and the set of output profiles;, are calculated using the samples from
the dynamic selection datasBtsg;, (Figure 1). For each classifier € C, the five



subsets of meta-features are extracted, returning thefemtiares vector; ;. Next,v; ;
is passed down as input to the meta-classijevhich decides whethes;, is competent
enough to classifk; ;. In this case, the posterior probability obtained by theamet
classifier) is considered as the estimation of the level of competépne®f the base
classifierc; in relation tox; ¢cs:.

After each classifier of the pool is evaluated, the majorifevrule [2] is applied
over the ensembl@’, giving the labely; of x; ;.. Tie-breaking is handled by choosing
the class with the highest a posteriori probability.

4 Experiments

We evaluated the generalization performance of the praptesghnique using eleven
classification datasets, nine from the UCI machine learnépgsitory, and two artifi-
cially generated using the Matlab PRTOOLS toolhdkhe experiment was conducted
using 20 replications. For each replication, the datasete wandomly divided on the
basis of 25% for trainingX), 25% for meta-training,, 25% for the dynamic selection
dataset Dsgr) and 25% for generalizatiorG§. The divisions were performed while
maintaining the prior probability of each class. The poatleksifiers was composed of
10 Perceptrons. The values of the hyper-paraméter&’, andh. were setas 7, 5 and
70%, respectively. They were selected empirically basegremious publications [7,
9l.

4.1 Results

Table 1. Mean and standard deviation results of the accuracy obtained for thega® meta-
learning framework and the DES systems in the literature. The best reseailis bold. Results
that are significantly bettep(< 0.05) are underlined.

Database Proposed [KNORA-E| MCB LCA OLA MLA KNOP Oracle
Pima 77.74(2.34)73.16(1.86)73.05(2.21)72.86(2.98)73.14(2.56)73.96(2.31) 73.42(2.11) 95.10(1.19
Liver Disorders |68.83 (5.57)63.86(3.28)63.19(2.39)62.24(4.01)62.05(3.27)67.10(3.29) 65.23(2.29) 90.07(2.41
Breast Cancer |97.41(1.07)96.93(1.10)96.83(1.35)97.15(1.58)96.85(1.32)96.66(1.34)95.42(0.89) 99.13(0.52
Blood Transfusion|79.14(1.88)74.59(2.62))72.59(3.20)72.20(2.87)72.33(2.36)70.17(3.05) 77.54(2.03) 94.20(2.08
Banana 90.16(2.09)88.83(1.67)88.17(3.37)89.28(1.89)89.40(2.15)80.83(6.15)85.73(10.65)94.75(2.09
Vehicle 82.50(2.07)81.19(1.54)80.20(4.05)80.33(1.84)81.50(3.24)71.15(3.50) 80.09(1.47) 96.80(0.94
Lithuanian Classes90.26(2.78)88.83(2.50)89.17(2.30)88.10(2.20)87.95(1.85)77.67(3.20) 89.33(2.29) 98.35 (0.57

Sonar 79.72(1.86)74.95(2.79)75.20(3.35)76.51(2.06)74.52(1.54)74.85(1.34) 75.72(2.82) 94.46(1.63
lonosphere | 89.31(0.95)87.37(3.07)85.71(2.12)86.56(1.98)86.56(1.98)87.35(1.34) 85.71(5.52) 96.20(1.72

Wine 96.94(4.08)95.00(1.53)95.55(2.30)95.85(2.25)96.16(3.02)96.66(3.36) 95.00(4.14) 100.00(0.21)
Haberman  |76.71(3.52 71.23(4.16332.86(3.65 70.16(3.56)72.26(4.17)65.01(3.20) 75.00(3.40) 97.36(3.34

In Table 1, we compare the recognition rates obtained byrthgosed meta-learning
framework against dynamic selection techniques explaiméus paper: Overall Local
Accuracy (OLA) [6], Local Classifier Accuracy (LCA) [6], Mdiied Local Accuracy
(MLA) [8], KNORA-Eliminate [5], K-Nearest Output ProfileKNOP) [11] and the
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Multiple Classifier Behavior (MCB) [12]. We compare eachrpafi results using the

Kruskal-Wallis non-parametric statistical test with a 98&#fidence interval. The re-
sults of the proposed framework over the Pima, Liver DismgdBlood Transfusion,

Vehicle, Sonar and lonosphere datasets are statisticgigrior to the result of the best
DES from the literature. For the other datasets, BreastaBa@and Lithuanian, the re-
sults are statistically equivalent.

4.2 Dissimilarity Analysis

In this section, we conduct a dissimilarity analysis betwdgstinct DES techniques.
The analysis is performed based on the difference betwedevkl of competencs ;
estimated by each DES technique for a given base classifter each query sampte;
(Section 2). The goal of the dissimilarity analysis is twdfdo understand the behavior
of different DES techniques (i.e., whether or not the cidgteused by DES techniques
present a similar behavior), and in order to see which DE®r@h is closer to the
behavior of the criterion used by the ideal DES scheme (®ydal the estimation of
the competence level of a base classifier.

Given 8 dynamic selection techniques, the first step of the disanityl analysis is
to compute the dissimilarity matri®. This matrixD is an8 x 8 symmetrical matrix,
where each elementy p represents the dissimilarity between two different DE$itec
niques,A and B. Given that§A anchBj are the levels of competence gfin relation
to x; for the techniquest andB respectively, the dissimilarity 4, 5 is calculated by
the difference betweerf;‘} and(SFj‘ (Equation 4).

A,B = NM ZZ 5A _53 (4)

whereN andM are the size of the validation dataset and the pool of classjfiespec-
tively.

For each dataset considered in this work, a dissimilarityyimge.g.,D pima, DLiver
) is computed, with the mean dissimilarity values over 2Qicagions. Then, the aver-
age dissimilarity matrixD is obtained by computing the mean and standard deviation
of the eleven dissimilarity matrices. Table 2 shows the ayerdissimilarity matrixD.
Both the average and the standard deviation values arenpees&ach line or column
of the dissimilarity matrix can be seen as one axe in8ftedimensional space. Each
axe in this space represents the distance to a specific DBEBidee, for instance, the
first axe represents the distance to the proposed metadgdramework; the second
represents the distance to the KNORA technique and so forth.

Classifier Projection SpaceThe next step is to project the dissimilarity matfixonto

the Classifier Projection Space (CPS) for a better visuidizaof the relationship be-
tween all techniques. The CPS is R space where each technique is represented
as a point and the Euclidean distance between two techniquegual to their dis-
similarities [10]. Techniques that are similar to one arothppear closer in the CPS
while those with a higher dissimilarity are more distantughit is possible to obtain



Table 2. The average dissimilarity matri®. The values are the mean and standard deviation
computed over the eleven dissimilarity matrix.

Meta-Learning| KNORA | MCB LCA OLA MLA KNOP \ Oracle
Meta-Learning 0 0.36(0.06)0.46(0.15)0.40(0.07)0.36(0.06)0.40(0.04)0.53(0.08)0.54(0.03
KNORA 0.36(0.06) 0 0.89(0.06)0.42(0.01)0.44(0.01)0.71(0.04)0.74(0.11)0.68(0.01
MCB 0.46(0.15) |0.89(0.06 0 0.58(0.01)0.89(0.06)1.06(0.07)0.75(0.03)0.72(0.08
LCA 0.40(0.07) |0.42(0.01)0.58(0.01 0 0.42(0.01)0.45(0.02)0.31(0.04)0.60(0.06
OLA 0.36(0.06) [0.44(0.01)0.89(0.06)0.42(0.01] 0 0.71(0.04)0.74(0.11)0.68(0.11
MLA 0.40(0.04) [0.71(0.04)1.06(0.07)0.45(0.02)0.71(0.04 0 0.54(0.01)0.63(0.07
KNOP 0.53(0.08) [0.74(0.11)0.75(0.03)0.31(0.04)0.74(0.11)0.54(0.01] 0 0.86(0.12
Oracle 0.54(0.03) (0.68(0.01)0.72(0.08)0.60(0.06))0.68(0.11)0.63(0.07)0.86(0.12 0

a spatial representation of the dissimilarity betweenemhhiques. A two-dimensional
CPS is used for better visualization. To obtain a two-dinered CPS, a dimensionality
reduction of the dissimilarity matri® in theR® to D in theR? is required. This reduc-
tion is performed using Sammon mapping [14]; that is, a rieear Multidimensional
Scaling (MDS) projection onto a lower dimensional spaceéhdhat the distances are
preserved [10, 14].

Given the dissimilarity matrixD, a configurationX of m points inR*, (k < m)
is computed using a linear mapping, called classical sgdlid]. The process is per-
formed through rotation and translation, such that theadisg#s after dimensionality
reduction are preserved. The projecti@his computed as follows: first, a matrix of
the inner products is obtained by the square distaiites —%JDQJ, whereJ =
I— %U U™, andI andU are the identity matrix and unit matrix, respectivelyis used
as a normalization matrix such that the mean of the data & Zdre eigendecompo-
sition of B is then obtained a®3 = QAQT, whereA is a diagonal matrix containing
the eigenvalues (in decreasing order) @hds the matrix of the corresponding eigen-
vectors. The configuration of points in the reduced spacetirohined by thé: largest
eigenvalues. Therefor&l is uncorrelated in th&*, X = Q,+/A; space. In our case,
k=2.

The CPS projection is obtained by applying Sammon mappieg the matrixX .
The mapping is performed by defining a function, called stfesctionS (Equation 5),
which measures the difference between the original digsiityi matrix D and the dis-
tance matrix of the projected configuratidh, wherecZ(i, j) is the distance between the
classifiersi andj in the projectionX .

m—1

S

1 e -
= d(i,j) —d(i,j 5
ST i) j;l( (i,5) — d(i, 5)) (5)

The two-dimensional CPS plot is shown in Figure 2. Figurg gf@ws the average
CPS plot obtained considering the average dissimilarityrimaD, while Figure 2(b)
shows an example of the CPS plot obtained for the Liver DisardataseD ;e -

An important observation that can be drawn from Figure Z#)at the LCA, OLA
and MLA appear close together in the dissimilarity space.dNVimeans, that the cri-
teria used by these three techniques to estimate the leeehgbetence of a base clas-
sifiers present similar behaviors when averaged over desfassification problems.
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Thus, they are very likely to achieve the same results [1Bis Tan be explained by
the fact that these three techniques are based on the samaaribn (the classification
accuracy over a defined local region in the feature spac#),little difference regard-
ing the use of a posteriori information by the LCA techniqueveights for the MLA
technique.

The meta-learning framework appears closer to the Oradieeiwo-dimensional
CPS (Figures 2(a) and (b)). In addition, the meta-learningnéwork is also closer to
the techniques from the local accuracy paradigm (LCA, OLA &H_A) than to any
other DES technique, which can be explained by the fact kinaétout of the five meta-
features comes from estimations of the local regighsf. andf3).

Table 3 presents the dissimilarity measure for each DEShigah in relation to
the Oracle. Results show that the proposed meta-learnamgefvork is closer to the
behavior of the Oracle as it presents the lowest dissimyladlue on averagd).54.
The LCA technique comes closer, with an average dissiryilaalue of0.60. Thus, we
suggest that the use of multiple criteria to estimate thellef’competence of a base
classifier results in a DES technique that obtains a estmafithe level of competence
of a base classifier closer to that provided by an ideal DESmeh(Oracle).

Table 3. Mean and standard deviation of the dissimilarity between each DES teclroguéhe
Oracle for each classification problem. The smallest dissimilarity valgekighlighted.

Database Meta-Learning| KNORA-E| MCB \ LCA OLA MLA KNOP
Pima 0.32(0.04) |0.43(0.01)[0.47(0.08)0.36(0.06)0.43(0.01)0.44(0.07)0.41(0.02
Liver Disorders | 0.50(0.04) | 0.61(0.01)[0.67(-008)0.56(0.06)0.61(0.01)0.60(0.07)0.51(0.02
Breast Cancer 0.59(0.35) |1.22(0.10)[1.20(0.10)0.69(0.01)1.20(0.10)0.77(0.03)1.20(0.10
Blood Transfusion| 0.33(0.03) |0.40(0.01)[0.46(0.01)0.36(.003)0.40(0.01)0.44(0.08) 0.4(0.01)
Banana 0.33(0.10) |0.29(0.01)0.36(0.01)0.24(0.01)0.29(0.01)0.36(0.01)0.34(0.01
Vehicle 0.36(0.07) | 0.49(0.01)0.48(0.02)0.36(0.04)0.49(0.01)0.37(0.05)0.47(0.02
Lithuanian Classes 0.47(0.14) | 0.49(0.02)0.56(0.02)0.39(0.04)0.49(0.02)0.54(0.01)0.51(0.03
Sonar 0.58(0.10) | 0.91(0.04)0.88(0.01)0.70(0.01)0.91(0.04)0.85(0.02)0.84(0.06
lonosphere 0.62(0.22) | 0.89(0.05)0.88(0.06)0.70(0.07)0.89(0.05)0.68(0.02)0.88(0.06
Wine 1.03(0.20) | 0.88(0.11)0.98(0.11)0.73(0.02)0.88(0.11)0.93(0.06)0.82(0.14
Haberman 0.79(0.04) | 0.89(0.05)1.01(0.05)0.82(0.02)0.89(0.05)0.92(0.04)0.86(0.06
Mean 0.54(0.05) | 0.68(0.01)0.72(0.08)0.60(0.06)0.68(0.11)0.63(0.07)0.86(0.12

5 Conclusion

In this paper, we conducted a study about the dissimilagtyben different DES tech-
niques. These dissimilarities are computed in order to ggaea dissimilarity matrix.
Through Sammon Mapping, the dissimilarity matrix is embatioh a two-dimensional
space, called the Classifier Projection Space (CPS), wher&uclidean distance be-
tween two feature representations reflects their dissiityila

Based on the visual representation provided by the CPS, werzav two conclu-
sions:



— The proposed technique is closer to the Oracle in the diksityi space, which

indicates that the use of different types of informationwthtbe behavior of base
classifiers is indeed necessary in order to achieve a DES&itpehthat is closer to
the Oracle.

— Techniques that use the same kind of information to comghaddvel of com-

petence of the base classifiers, such as LCA, OLA and MLA, ayeerfikely to
present the same results when their performance is aveoagedeveral problems.

Future works in this topic include: i) The design of new setsneta-features;

if) Carrying out a comparison of different meta-featurestees in order to achieve
a set of features that can better address the behavior ofrti@eand, iii) Increasing
the number of classification problems in the analysis.
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