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One of the main problems in pattern recognition is obtaining the best set of features to represent the data.
In recent years, several feature extraction algorithms have been proposed. However, due to the high
degree of variability of the patterns, it is difficult to design a single representation that can capture the
complex structure of the data. One possible solution to this problem is to use a multiple-classifier system
(MCS) based on multiple feature representations. Unfortunately, still missing in the literature is a meth-
odology for comparing and selecting feature extraction techniques based on the dissimilarity of the fea-
ture representations. In this paper, we propose a framework based on dissimilarity metrics and the
intersection of errors, in order to analyze the relationships among feature representations. Each represen-
tation is used to train a classifier, and the results are compared by means of a dissimilarity metric. Then,
with the aid of Multidimensional Scaling, visual representations are obtained of each of the dissimilarities
and used as a guide to identify those that are either complementary or redundant. We applied the pro-
posed framework to the problem of handwritten character and digit recognition. The analysis is followed
by the use of an MCS built on the assumption that combining dissimilar feature representations can
greatly improve the performance of the system. Experimental results demonstrate that a significant
improvement in classification accuracy is achieved due to the complementary nature of the representa-
tions. Moreover, the proposed MCS obtained the best results to date for both the MNIST handwritten digit
dataset and the Cursive Character Challenge (C-Cube) dataset.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The selection of the feature extraction algorithm is known to be
an important factor in the performance of any recognition system
(Trier, Jain, & Taxt, 1995). However, designing a single feature
extraction algorithm in a complex recognition problem that can
recognize every kind of pattern is unlikely, because of the high de-
gree of variability of the data. Some features might present a better
result for a predetermined class of patterns. For instance, in the
problem of handwritten character recognition, one feature extrac-
tion algorithm might represent lowercase letters better, while an-
other is a more robust performer for uppercase letters. Moreover,
every feature extraction technique represents a different aspect
of the image, such as concavities (Oliveira, Sabourin, Bortolozzi,
& Suen, 2002), character structure (Kavallieratou, Sgarbas, Fakota-
kis, & Kokkinakis, 2003), edges (Chim, Kassim, & Ibrahim (1998)),
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projections (Chim et al., 1998), and directional information based
on the gradient (Ping & Lihui, 2002).

In our opinion, the information captured by different feature
extraction techniques can be complementary, and a multiple-clas-
sifier system (MCS) developed using multiple feature representa-
tions achieves higher classification performance. Unfortunately,
there is no framework in the literature for comparing and analyz-
ing the relationships among feature representations. Feature
extraction techniques are only compared based on classification
accuracy, and none analyzes the diversity among them.

In the MCS context, the system can only perform better than the
best individual classifier when there is diversity among the
classifiers (Shipp & Kuncheva, 2002), so that they achieve different
solutions. In other words, we seek significantly different represen-
tations because they produce different solutions – combining
techniques that perform identically is not useful.

In this paper, we propose a novel framework to study the rela-
tionships among the various feature representations. Each feature
extraction technique is used to train a classifier. Their results are
evaluated based on dissimilarity/diversity measures (Giacinto &
Roli, 2001; Shipp & Kuncheva, 2002). Then, the relationships
obtained are used to project each representation onto a space
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(Classifier Projection Space Pekalska, Duin, & Skurichina, 2002).
Each feature extraction technique is represented by a point, and
the distance between two points corresponds to the difference be-
tween them. In this way, a spatial relationship is achieved between
different representations. Feature representations that are close to
one another produce similar results, and so may be redundant.
Combining them is unlikely to improve the accuracy of the system,
and they could be removed from the system without a significant
loss in performance. Those that are far apart are able to correctly
recognize different classes of images, and should be considered
for an MCS.

The purpose of our proposed framework in this context is two-
fold: to perform an analysis of the complementarity within a sub-
set of feature extraction methods, and to serve as a methodology
for identifying and removing feature representations that produce
similar results. In this way, a more efficient MCS is achieved.

We apply this framework to the problem of handwritten char-
acter and digit recognition. This is an important area in the field
of pattern recognition, because of the many practical applications
that exist, such as mail sorting, bank check analysis, and form pro-
cessing, all of which depend on quality feature extraction tech-
niques. Pattern recognition in handwritten documents is a major
challenge, owing to the diversity of handwriting styles. A writer
can, for example, change his writing style as a result of a change
in his neurological status, the type of pen he uses, and his hand po-
sition (Schomaker & Bulacu, 2004), especially if the shapes of the
characters are complex (Srihari, Tomai, Zhang, & Lee, 2003).

A total of nine feature extraction techniques for handwritten
recognition are evaluated here. Two of them, Modified Edge-Maps
and Multi-Zoning, are based on classical algorithms. We selected
techniques that capture different views of the image, such as con-
cavities and projections, as well as techniques that capture the
same type of information, such as directional information based
on the gradient, but are extracted using different algorithms. Our
analysis enables us to answer the following questions:

1. Do different feature extraction techniques present complemen-
tary information (i.e. are they able to correctly classify different
images)?

2. Are feature extraction techniques that use a similar approach
(e.g. different methods for extracting the gradient) less comple-
mentary than techniques that use different characteristics (e.g.
edges, concavities)?

3. Can the proposed framework be used to select a subset of fea-
ture representations?
Fig. 1. Overview of the proposed feature representation selection scheme. Each Fi repres
output of each pair (feature representation, classifier), we compute the dissimilarity ma
scaling (MDS). The matrix eD is used to analyze the complementarity of the feature repr
We perform an analysis of feature representations, which serves
as the basis on which we propose a novel MCS for handwritten rec-
ognition. The proposed system is applied to two different hand-
written recognition tasks: digit recognition, and cursive character
recognition. For the handwritten digit recognition problem, we
use the MNIST database, which is a very well-known benchmark.
For cursive character recognition, we use the Cursive Character
Challenge database (C-Cube). We carry out a sensitivity analysis
for both cases, and demonstrate that the use of complementary
feature representations greatly improves recognition performance.
We also show that a scheme that includes a Multi-Layer Percep-
tron (MLP) neural network trained to combine the classifiers pre-
sented the highest accuracy rates in both cases, and these rates
are also the best results obtained for these databases to date.

This paper is organized as follows. The framework for feature
representation analysis is introduced in Section 2. Section 3 de-
scribes the nine feature extraction techniques studied in this paper.
The evaluation of each feature extraction algorithm and the sensi-
tivity analysis of these algorithms are shown in Section 4. Section 5
shows the performance of the system when an MCS is designed
based on different feature representations. Finally, our conclusion
is presented in the last section.

2. Feature representation analysis

This section describes the feature representation selection
scheme shown in Fig. 1. The first step in this approach is to extract
m different feature representations, F1, . . . ,Fm, of the patterns from
the data (DB). These feature representations are used to train m
classifiers, C1, . . . , Cm, separately. Then, the dissimilarity matrix D
(Section 2.1) and its projection onto the classifier space eD (Sec-
tion 2.2) are computed. The matrix eD contains the spatial relation-
ship between the classifiers that is equivalent to their
dissimilarities (matrix D). That spatial relationship is used to per-
form the sensitivity analysis (Section 2.3), from which redundant
representations can be identified. Finally, a subset m0 �m of the
feature representations is selected.

2.1. Dissimilarity matrix

The matrix D is an m �m symmetrical matrix, where each
member d(i, j) represents the dissimilarity between the classifiers
Ci and Cj. In order to compute D, we first need to select an appro-
priate metric that measures the difference between feature repre-
sentations. There are many diversity measures in the literature
ents one feature representation, and it is used to train the classifier Ci. Based on the
trix D that is used to perform the classifier projection eD through multidimensional
esentations and perform the selection.
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(Shipp & Kuncheva, 2002). We selected the Double Fault (Giacinto
& Roli, 2001), because it has already been demonstrated that this
measure presents a positive correlation with ensemble accuracy
(Kuncheva & Whitaker, 2003). Eq. (1) shows the Double Fault mea-
sure between a pair of classifiers Ci and Cj.

dði; jÞ ¼ N00

N00 þ N01 þ N10 þ N11 ð1Þ

where Nij is the number of examples correctly classified (1) or mis-
classified (0) for the classifiers Ci and Cj respectively. In other words,
the Double Fault measures the probability that the same pattern is
misclassified by both classifiers.

2.2. Classifier Projection Space

After the dissimilarity matrix D has been obtained, the next step
is to project each feature representation onto the Classifier Projec-
tion Space (CPS). The CPS is a Rj space, where each classifier is rep-
resented as a point, and the Euclidean distance between two
classifiers represents their dissimilarity (Pekalska et al., 2002).
Classifiers that are similar are closer together in the CPS, while
those that are less similar are further apart. In this way, it is possi-
ble using CPS to obtain the spatial representations of all the classi-
fiers. This spatial representation provides a better understanding
of the relationships among the classifiers than when only the value
of the diversity measure is used. The diversity measure only de-
scribes the relationship between a pair of classifiers, while the
CPS shows the relationships among all the classifiers. A two-
dimensional CPS is used for better visualization. In order to obtain
a two-dimensional classifier projection, a dimensionality reduction
of the data is required. This can be achieved using Multidimensional
Scaling (MDS) (Cox & Cox, 2000; Pekalska et al., 2002), which refers
to a group of methods used to visualize high-dimensional data
mapped to a lower dimensional space (Pekalska & Duin, 2002).

Given the dissimilarity matrix D, a configuration X of m points
in Rk; ðk 6 mÞ is computed using a linear mapping, called classical
scaling (Cox & Cox, 2000). The process is performed through rota-
tion and translation, such that the distances after dimensionality
reduction are preserved. The projection X is computed as follows:
first, a matrix of the inner products is obtained by the square dis-
tances B ¼ � 1

2 JD2J, where J ¼ I � 1
m UUT , and I and U are the identity

matrix and unit matrix respectively. J is used as a normalization
matrix, so that the mean of the data is zero. The eigendecomposi-
tion of B is then obtained, B = QKQT, where K is a diagonal matrix
containing the eigenvalues (in decreasing order) and Q is the ma-
trix of the corresponding eigenvectors. The configuration of points
in the reduced space is determined by the k largest eigenvalues.
Therefore, X is uncorrelated in the space Rk, X ¼ Qk

ffiffiffiffiffiffi
Kk
p

. In our
case, k = 2.

MDS is obtained by applying the Sammon mapping over X. The
Sammon mapping is a nonlinear projection that preserves the dis-
tances between the points (Cox & Cox, 2000; Pekalska et al., 2002).
The mapping is performed by defining a function, called stress
function S (Eq. (2)), which measures the difference between the
original dissimilarity matrix D and the distance matrix of the pro-
jected configuration, eD, where ~dði; jÞ is the distance between the
classifiers i and j in the projection X, as defined in (2):

S ¼ 1Pm�1
i¼1

Pm
j¼iþ1dði; jÞ2

Xm�1

i¼1

Xm

j¼iþ1

ðdði; jÞ � ~dði; jÞÞ ð2Þ

In other words, the objective of S is to minimize the difference
between D and eD, and so the projection onto the CPS is found in
iterative fashion. The algorithm starts with an initial representa-
tion of points in Euclidean space (the configuration of points in X
with its corresponding distance matrix eD). Then, the configuration
of the points is adjusted to minimize S. A scaled gradient algorithm
(Pekalska et al., 2002) is used for this purpose. In the end, the dis-
tances between the classifiers correspond to an approximation of
their original dissimilarity.

Fig. 2 shows an example of the CPS space for different feature
representations extracted from the Iris dataset.1 This dataset con-
sists of four features. In order to simulate different feature represen-
tations, we use random combinations of two and three features. Ten
different representations were generated: FS I to FS VI are combina-
tions of two features, FS VII to FS IX are combinations of three fea-
tures, and FS X is a representation consisting of all four features. A
Perceptron was used as the classifier for each feature representation.
2.3. Sensitivity analysis

The first step in the sensitivity analysis is to use the CPS as a vi-
sual tool to group feature representations based on the spatial
information provided by the CPS. In Fig. 2, we can observe that
there are three feature representations that are really close to-
gether: FS V, FS IX, and FS X. Consequently, they are probably
redundant. In contrast, some feature representations, such as FS
II and FS VI, are far apart, and can be considered to be from differ-
ent groups. We can see that the CPS is used to identify groups of
representations that perform in similar fashion.

The second step is to analyze the performance of some combi-
nations of feature representations. This is achieved using the con-
cept of the Oracle, which produces the best possible result of any
combination of classifiers (Kuncheva, 2002b). It considers that
the ensemble obtains the correct classification if at least one clas-
sifier produces the true label. So, based on the analysis of the error
performed by Oracle, it is possible to know whether or not individ-
ual classifiers are able to correctly recognize different patterns.

From the analysis in Fig. 2, we constructed two diagrams. The
first is composed of feature representations that are close together:
FS V, FS IX, and FS X (Fig. 3(a)). The second is composed of repre-
sentations that are far apart, and can be considered to belong to
different groups: FS II, FS III, and FS VI (Fig. 3(b)). The number in-
side each circle indicates the number of errors committed by each
classifier. The area where the classifiers intersect represents the er-
rors committed by all of them, and can be viewed as the error ob-
tained by the Oracle combination (i.e. (FS V \ FS IX) is the number
of patterns misclassified by the Oracle combination).

The total number of errors obtained using FS X is 28 (Fig. 3(a)).
However, none of these errors was committed by this feature rep-
resentation alone (i.e. an individual error). The majority of the er-
rors lie at the intersection of the three feature spaces. In other
words, 23 patterns are misclassified in the three feature subspaces,
while 4 and 2 are common errors obtained by the intersections (FS
X \ FS IX) and (FS X \ FS V), respectively. So, errors committed by
classifiers in the same group are likely to occur in the same pat-
terns, which means that combining them is unlikely to improve
recognition performance.

In contrast, when representations that are far apart are com-
bined (i.e. they belong to different groups, such as FS II, FS III,
and FS VI) (Fig. 3(b)), we can observe that the intersection of the
errors produces a lower value. For instance, from the 19 errors
committed by FS III, 16 occur individually. The intersections (FS
III \ FS II) and (FS III \ FS VI) produce errors of 1 and 2, respectively.
Moreover, looking at the intersection of the three techniques, we
note that no pattern was misclassified by all the techniques, as op-
posed to 23 in Fig. 3(a). Therefore, these feature representations
can be considered complementary, since they can correctly recog-
nize different patterns.

http://archive.ics.uci.edu/ml/
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Fig. 2. Example of a two-dimensional CPS plot for different feature representations extracted from the iris dataset.
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Fig. 3. Oracle error analysis for different feature representations trained on the Iris
dataset. (a) Representations that belong to the same cluster. (b) Representations
that belong to different clusters.
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Consequently, we can identify representations that are redun-
dant using the sensitivity analysis. From the point of view of an
MCS, there is no advantage to combining FS V with FS IX and FS
X for the Iris dataset, as they behave almost identically. So, instead
of using m representations, we can use the sensitivity analysis to
select a more efficient set m0 = 3 (FS II, FS III, and FS VI) that consists
only of dissimilar representations. We expect that the subset m0

produces results that are better than, or at least comparable to,
the whole set m. Applying this methodology in the context of fea-
ture representations, it is possible to compare different representa-
tions and select only the most dissimilar ones. The selected feature
representation is used to construct a more robust MCS for pattern
recognition problems.

3. Feature extraction methods

Feature extraction can be defined as a means for obtaining the
most relevant information to be used in the classification proce-
dure (Devijver & Kittler, 1982). There are several feature extraction
techniques, and choosing a technique can be considered the most
important factor in the achievement of high accuracy rates in a
pattern recognition problem (Trier et al., 1995). A total of nine fea-
ture extraction algorithms are summarized below. Feature sets I to
VII have been proposed by others (Camastra, 2007; Chim et al.,
1998; Kavallieratou et al., 2003; Oliveira et al., 2002; Zhang, Bui,
& Suen, 2007), and feature sets VIII and IX are new contributions.
3.1. Feature set I: Structural Characteristics

This feature set is obtained by combining projections and pro-
files in a single feature vector. First, the input image is scaled to
a 32 � 32 matrix. Then, three types of histogram (horizontal, verti-
cal, and radial) and two types of profile (radial in-out and radial
out-in) are computed.

The horizontal and vertical histograms (Fig. 4(b) and (c)) are
calculated by summing the number of black pixels in each line
and column respectively. So, 32 features are generated for each
histogram.

The radial histogram (Fig. 4(d)) is computed as the number of
black pixels in 72 directions at 5� intervals. The process progresses
from the centroid of the image to its border, and 72 features are
generated.

Radial in-out and radial out-in profiles are defined by the posi-
tion of the first and last black pixel respectively, from a search that
progresses from the centroid of the image to its border in 72 direc-
tions at 5� intervals. In this way, each profile generates 72 features.
These features form a 280-dimensional feature vector (32 horizon-
tal projections + 32 vertical projections + 72 radial projections + 72
in-out profiles + 72 out-in profiles). Details of this technique are
described in Kavallieratou et al. (2003).

3.2. Feature set II: Image Projections

This method consists of extracting the radial and diagonal pro-
jections. The diagonal projections are computed by grouping the
pixels in two diagonal lines (45� and �45�). A total of 32 features
are obtained for each diagonal.

To extract the radial projections, the image must first be divided
into four quadrants: top, bottom, right, and left. The quadrants are
used to remove rotational invariance, which is an undesirable char-
acteristic in handwritten recognition, since it makes it impossible
to distinguish between some digits (e.g. digits 6 and 9).

For each quadrant, the radial projections are obtained by group-
ing pixels from its radial distance to the centroid of the image. The
values of each projection are normalized to a [0 � 1] range. The
normalized features are combined into a single vector containing
128 features (16 for each radial projection and 32 for each diagonal
projection). More details about this procedure are described in
Chim et al. (1998).
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3.3. Feature set III: Concavity Measurement

These features are obtained using the following steps: The im-
age (Fig. 5(c)) is scaled to a matrix 18 � 15, and divided into six
zones. Each part contains its own 13-dimensional feature vector,
(a) (c)

(b)

(d)

(e)
Fig. 5. Feature set V: the Concavity Measurement procedure. (a) Main directions. (b) Auxi
vector.
and the position of each feature vector corresponds to one of the
13 possible configurations (Fig. 5(d)).

For each white pixel (background), the algorithm conducts a
search, starting from that pixel and moving in each of the four
‘‘main directions’’ (Fig. 5(a)). The search continues until a black
liary directions. (c) Query image. (d) The thirteen possible configurations. (e) Feature
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pixel (foreground) is found, or when the end of the image is
reached. Finally, the number of directions ending with a black pixel
is computed, as are the directions themselves, each of which corre-
sponds to one of the 13 possible configurations (Fig. 5(d)). So, the
configuration in the feature vector corresponding to the result of
the search is incremented.

However, in some cases, the search may find a black pixel in the
four ‘‘main directions’’, but that pixel is not in a closed area. In or-
der to guarantee that the white pixel is in a closed region, a new
search is performed using the ‘‘auxiliary directions’’ (Fig. 5(b)). If
the search using one of the auxiliary directions reaches the end
of the image without finding a black pixel, the correct configura-
tion (from the 10th to the 13th) is incremented. Otherwise, the
point is in a closed region (9th position of the feature vector).

To better understand the method, we analyze two cases. In the
case of P1, the search finds a black pixel in three directions: top,
bottom, and left. So, the configuration corresponds to the 6th posi-
tion of the vector (Fig. 5(e)), and this position is incremented. In the
case of P2, the search in the four main directions finds a black pixel.
However, using the auxiliary directions, the search also finds that
the point is not in a closed region (no black pixel was found
in the bottom right auxiliary direction). Therefore, P2 corresponds
to the 13th configuration.

These steps are computed for the six zones separately. At the
end of the process, the feature vectors of each zone are combined
into a single vector with 78 (13 � 6) features. A detailed descrip-
tion of the algorithm is presented by Oliveira et al. (2002).

3.4. Feature set IV: MAT-based Directional Gradient

This algorithm computes the gradient components of a gray-
scale image. So, the first step in this procedure is to transform a
binary image into a pseudo-grayscale image using the Medial Axial
Transformation (MAT) algorithm. The Sobel operators in the hori-
zontal Sx and vertical Sy directions are applied to the pseudo-gray-
scale image Im, generating the X-gradient image Imx and the Y-
gradient image Imy . These are defined as:

Imx ¼ Im � Sx ð3Þ

Imy ¼ Im � Sy ð4Þ

For each pixel, the magnitude r(i, j) and the phase H(i, j) are de-
fined as:

rði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

mx
ði; jÞ þ I2

my
ði; jÞ

q
ð5Þ

Hði; jÞ ¼ tan�1
I2
my
ði; jÞ

I2
mx
ði; jÞ

ð6Þ

In order to generate a fixed number of features, the phase of
each pixel H(i, j) is quantized into eight directions at p/4 intervals
each. Then, the image is divided into 16 equally spaced sub images,
and, for each sub image, the number of pixels in each of the eight
directions is used as a feature. So, the feature vector size is equal to
128 (16 sub images � 8 directions). Details of this feature extrac-
tion algorithm can be found in Zhang et al. (2007).

3.5. Feature set V: Binary Directional Gradient

This algorithm computes the gradient components of a binary
image. The gradient is computed using the same procedure as that
of a MAT-based Directional Gradient, defined in Section 3.4, except
that no MAT transform is needed, because a binary image is used
instead of a grayscale one. A total of 128 features are extracted
per image.
3.6. Feature set VI: Median Gradient

In this technique, the image is first enhanced using a median fil-
ter to remove noise. Next, the Robert operators (Gonzalez &
Woods, 2006) in the horizontal Rx and vertical Ry directions are ap-
plied to the filtered image to generate the X-gradient image Imx and
the Y-gradient image Imy .

Imx ¼ Im � Rx ð7Þ

Imy ¼ Im � Ry ð8Þ

The gradient is computed using the same procedure as de-
scribed in Section 3.4 section, generating 128 features. This method
is described in detail by Zhang et al. (2007).

3.7. Feature set VII: Camastra 34D

This feature extraction algorithm was proposed by Camastra
(2007). The image is divided into 16 sub images (cells), forming a
4 � 4 grid with a small overlap between them. Two operators are
computed for each cell. The first is similar to the Zoning algorithm,
and computes the number of black pixels (foreground) relative to
the total number of black pixels in the whole image. The difference
is that, in the Zoning algorithm, the number of black pixels is com-
puted relative to the number of pixels in each zone. The second is a
directional operator, which estimates the directions of the pixels.
The method defines N equally spaced lines in the selected direc-
tion, after which the number of black pixels in each line is com-
puted. The same steps are performed for the orthogonal
direction. The difference between the selected direction and the
orthogonal direction is used as a feature. The direction selected
in this implementation was 0�, having the orthogonal direction of
90�. This results in a feature vector with 32 values. Two additional
pieces of information were used as global features: The width/
height ratio and the portion of the character that is below the base-
line. The final vector consists of 34 features (16 � 2 local fea-
tures + 2 global features).

3.8. Proposed feature extraction algorithms

3.8.1. Feature set VIII: Multi-Zoning
The idea behind using multiple configurations of zones simulta-

neously is to compute information from the image at different lev-
els of detail. Using larger zones, global information about the shape
of the character can be computed. In smaller zones, the focus is on
local details, which are important for distinguishing between char-
acters with similar shapes (e.g. digits 2 and 3). As a result, both glo-
bal and local information is extracted at the same time.

This algorithm works as follows: an M � N image is divided into
several sub images, and the percentage of black pixels in each sub
image is used as feature. To achieve better recognition perfor-
mance, many different divisions (Fig. 6) are selected and grouped
to form the feature vector. A total of thirteen different configura-
tions (3 � 1,1 � 3,2 � 3,3 � 2,3 � 3,1 � 4,4 � 1,4 � 4,6 � 1,1 �
6,6 � 2,2 � 6, and 6 � 6) were chosen, resulting in 123
(3 + 3 + 6 + 6 + 9 + 4 + 4 + 16 + 6 + 6 + 18 + 18 + 36) features.

The Multi-Zoning technique differs from previous zoning tech-
niques, such as the one described by Impedovo, Lucchese, and Pirlo
(2006), in that the latter use only one zoning configuration. In the
proposed method, instead of searching for an optimal division, we
use multiple divisions, in order to have a representation of the im-
age at different levels of detail. Moreover, we expect to achieve a
better result using multiple configurations, since it is difficult to
find a single configuration that can deal with the high degree of
variability among handwriting styles.



Fig. 6. Feature set VIII: thirteen configurations used in the Multi-Zoning technique.
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3.8.2. Feature set IX: Modified Edge Maps
This algorithm is a modified version of the Edge Maps algorithm

of Chim et al. (1998). An M � N image is first thinned using the
Zhang and Suen algorithm (1984) and scaled to a 25 � 25 matrix.
Then, the Sobel operators Gonzalez and Woods (2006) are used
to extract four distinct edge maps: one horizontal, one vertical,
and two diagonal (45� and �45�). Fig. 7 shows the four edge maps
and the image after the thinning process has been performed.

The four edge maps and the thinned image are then divided into
25 sub images of 5 � 5 pixels each. The features are obtained
through the computation of the percentage of black pixels in each
sub image (25 features for each map). They are then combined to
form a single feature vector containing 125 (25 � 5) features. The
original algorithm, the Edge Maps algorithm of Chim et al.
(1998), does not compute the percentage of black pixels per sub
Fig. 7. Feature set IX: example of the process fo
image, but instead uses the value of each pixel in greyscale as
features.

4. Empirical evaluation of feature extraction techniques

The analysis of the feature extraction techniques was performed
by conducting experiments using two different handwritten recog-
nition problems: digit recognition and cursive character recogni-
tion. In the latter experiment, the Cursive Character Challenge
database was used, while the handwritten digit recognition exper-
iment was performed using the MNIST database. Both databases
are publicly accessible, and both have been widely used as
benchmarks.

4.1. C-Cube database

C-Cube is a public database available on the Cursive Character
Challenge website Camastra, Spinetti, and Vinciarelli (2006). It
consists of 57,293 images, including both uppercase and lowercase
letters, manually extracted from the CEDAR and United States Post-
al Service (USPS) databases. As reported by Camastra et al. (2006),
there are three advantages to using this database:

1. It is already divided into training sets and test sets, and so the
results of different researchers can be rigorously compared.

2. It contains not only images, but also their feature vectors
extracted using the algorithm proposed by Camastra (2007).

3. The results obtained using the state-of-the-art methods still
leave room for significant improvement.

The database is divided into 38,160 (22,274 lowercase and
15,886 uppercase) images for training, and 19,133 (11,161 lower-
case and 7972 uppercase) images for testing. All the images are
binary and variable in size. For each image, four additional pieces
of information are provided as global features: the distance be-
tween the base and the upper line, the distance between the upper
extremity and the baseline, the distance between the lower
r obtaining the features for a character ‘‘A’’.



1000

1500

2000

2500

 o
f p

at
te

rn
s 

in
 th

e 
C

−C
ub

e 
da

ta
ba

se

3820 R.M.O. Cruz et al. / Expert Systems with Applications 40 (2013) 3813–3827
extremity and the baseline, and the width/height ratio. The sam-
ples, which varied in number per class, were selected based on
their frequency of occurrence in the documents extracted from
the CEDAR and USPS datasets. Figs. 8 and 9 show the distribution
of the lowercase and uppercase letters respectively.

Thornton, Blumenstein, Nguyen, and Hine (2009) observed that
the image files (test.chr and training.chr) available on the C-Cube
website do not match the feature vectors (test.vec and training.vec).
For this reason, they labeled the dataset with the feature vectors as
Split A and the dataset with the image files as Split B. In this work,
only Split B is used, since the image files of the Split A are not
available.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

500

letters

N
um

be
r

Fig. 9. Distribution of uppercase letters in the C-Cube database.
4.2. MNIST database

MNIST is a well-known handwritten digit recognition database.
It contains 60,000 images for training and 10,000 images for test-
ing. All the images in the dataset are size-normalized and centered
to a 28 � 28 image.

The advantage of using this database is twofold. First, the
images are already preprocessed. Second, the database is already
divided into a test set and a training set. This makes it easy to com-
pare the results obtained by different researchers.
4.3. Experimental protocol

All the experiments were conducted using a three layer MLP,
trained with the Resilient Backpropagation (RPROP) (Riedmiller &
Braun, 1993) algorithm. This algorithm was chosen because it fea-
tures a faster convergence rate and produces a better result than
the conventional Backpropagation (Cruz, Cavalcanti, & Tsang,
2010a, 2010b).

The training set was divided into two parts: 80% for training,
and 20% for validation. In addition, the division was performed
maintaining the distribution of each class, so the MLP network is
capable of estimating the Bayesian a posteriori probability (Richard
& Lippmann, 1991). Consequently, their results can be combined
through a probabilistic framework.

In every experiment, the number of nodes in the hidden layer
was selected by means of the crossvalidation method using the
training data. The search was performed by varying the number
of nodes from 150 to 600 at 10-point intervals. Then, we replicated
the configuration that achieved the best Results 10 times to obtain
the average result. The weights of the neural networks were ran-
domly initialized before each execution.
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Fig. 8. Distribution of lowercase letters in the C-Cube database.
4.4. Results for the C-Cube database

For each feature set, the global information provided by the
database (width/height ratio, distance between the baseline and
the upper line, distance from the baseline to the upper extremity,
and distance from the baseline to the lower extremity) were in-
cluded in the feature vector. These features contributed to an aver-
age increase of two percentile points in the recognition rate.

Two different experiments were performed. The first was con-
ducted to evaluate the performance of the technique for the upper-
case and lowercase letters separately (split case). It is important to
do this, since some applications need to recognize either uppercase
or lowercase letters specifically. The second experiment was con-
ducted using both; however, characters that present similar shapes
in the two cases were combined in a single class (joint case). An
analysis to verify whether or not the uppercase and lowercase
forms of the same letters are similar in shape was performed in
Camastra (2007). The letters (C, X, O, W, Y, Z, M, K, J, U, N, F, V) pre-
sented the greatest similarity between the two cases and were
combined in a single class. This resulted in 39 classes in the second
experiment.

The results for the split and joint cases are shown in Tables 1
and 2, respectively. The results are ordered by the recognition
rates. The proposed Modified Edge Maps algorithm presented the
best result overall.

Most feature sets presented better accuracy for the upper case
letters. The exceptions are Image Projections, Concavity Measure-
ment, and Camastra 34D. This fact supports the claim that it is dif-
ficult to design a feature extraction method that can deal with the
variability of the patterns. In addition, the aim is to recognize both
uppercase and lowercase letters, and so it is an advantage to com-
bine techniques that are expert in each task.

4.5. Results for the MNIST database

For the Modified Edge Maps and Directional Gradient methods,
the number of nodes in the hidden layer is 300. For the Zoning,
Structural Characteristics, Concavity Measurement, and Image Pro-
jection techniques, the number of nodes in the hidden layer is 360,
340, 175, and 330, respectively. Table 3 shows the results for each
feature set.

Table 3 shows that some feature sets have better discriminative
power for certain classes of digits. A clear example of this occurs in
digits with complex shapes, such as 8 and 9, where the difference
between the largest and smallest values can be more than six per-



Table 1
Recognition rate by feature set for the C-Cube database. Uppercase and lowercase letters. # Nodes is the number of nodes in the hidden layer, and Mean is the average
performance considering both uppercase and lowercase letters.

Method # Nodes Upper case (%) Lower case (%) Mean (%)

Modified Edge Maps 490 86.52 81.13 83.55 ± 0.27
Binary Grad. 490 86.35 79.89 82.58 ± 0.18
MAT Grad. 300 85.77 79.22 81.95 ± 0.19
Median Grad. 360 85.10 79.48 81.81 ± 0.21
Camastra 34D 400 79.63 84.37 81.74 ± 0.35
Zoning 450 84.46 78.07 80.74 ± 0.41
Structural 320 81.94 77.70 79.53 ± 0.56
Concavities 530 73.35 81.89 76.90 ± 0.16
Projections 500 71.73 79.90 75.10 ± 0.39

Table 2
Feature set results for the C-Cube database (Joint case). # Nodes is the number of
nodes in the hidden layer.

Method # Nodes Recognition rate (%)

Modified Edge Maps 490 82.49 ± 0.27
Binary Grad. 490 81.46 ± 0.18
MAT Grad. 300 80.83 ± 0.19
Median Grad. 360 79.96 ± 0.21
Camastra 34D 400 79.97 ± 0.35
Zoning 450 78.60 ± 0.41
Structural 320 77.07 ± 0.56
Concavities 530 74.90 ± 0.16
Projections 500 73.85 ± 0.39
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centile points. For the digits 0, 1, 4, 6, 7, 8, and 9, the Structural
Characteristics method achieved the best results, while for the dig-
its 2, 3, and 5, the proposed Multi-Zoning technique obtained a bet-
ter recognition rate.

The techniques that presented the best results for the MNIST
database, Structural Characteristics and Multi-Zoning, are among
the worst performers for the C-Cube database (Tables 1 and 2).
The proposed Modified Edge Maps presented the best accuracy
for the C-Cube database, and the second worst result for the MNIST
database. This is another reason to use multiple feature extraction
techniques.
4.6. Sensitivity analysis

The validation dataset was used to compute the dissimilarity
matrix D and its projection onto the two-dimensional CPS eD.
Fig. 10 shows the CPS for the C-Cube database. Based on visual
analysis, four groups of feature representation can be observed.
The Modified Edge Maps and Image Projection techniques are a
long way from every other point, and can be considered an atomic
cluster. The Structural Characteristics and Concavity Measurement
techniques make up another group. The last cluster is composed of
the gradient methods (MAT Gradient, Binary Gradient, and Median
Gradient), as well as the Camastra 34D and Zoning techniques. The
fact that the three gradient methods are close to one another is an
interesting finding, and the reason for their proximity is that the
gradient-based techniques extract similar information (direc-
tional), with a slight difference in the preprocessing of the image.
The Camastra 34D method also computes directional information.

Fig. 11 presents the Oracle error analysis for the C-Cube data-
base. We compare feature representations that are next to one an-
other against representations that are far apart. Fig. 11(a) shows
the Oracle error analysis for three techniques that are close to-
gether in the CPS and can be considered to be from the same group.
In this case, the three methods that extract information based on
gradients (MAT-based Gradient, Binary Gradient, and Median Gra-
dient) are compared. The total number of errors committed using
the MAT-based Gradient representation is 3668. Approximately
20% of the errors (692 images) are misclassified by this feature rep-
resentation alone. The intersection between the MAT-based Gradi-
ent and the Binary Gradient methods shows that 2113 images are
misclassified, while 1849 images are misclassified when MAT-
based and Median Gradient representations are used. In addition,
986 images are misclassified based on the intersection of the three
techniques. Therefore, as the majority of errors of these three tech-
niques occur in the same images, combining them is unlikely to re-
sult in improved performance.

In contrast, Fig. 11(b) shows the Oracle error analysis for the
MAT-based Gradient with two representations that are far apart
in the CPS: Projections, and Edge-Maps. In this case, we can easily
see that the majority of errors committed by the MAT-based Gra-
dient, 2058 happens only individually. Both the pair-wise intersec-
tions and the intersection of the three techniques produce a much
lower number of errors, and only 252 images are misclassified con-
sidering these three feature representations. This number is
approximately 10 times less than the number of images that are
misclassified when only the MAT-based Gradient is considered
(2058). So, the errors made by the three techniques occurred in
distinct patterns, and therefore can be considered complementary,
since they are able to correctly classify different images.

Fig. 12 shows the CPS plot for the MNIST database. We can iden-
tify three feature representations that are far away from all the
others: Concavities, Zoning, and Structural Characteristics. As with
the C-Cube experiment, the results of the gradient-based methods
and the Camastra 34D representation are close together, forming a
group of similar feature representations. The Modified Edge Maps
representation results lie between the Zoning and Projections rep-
resentation results, and these methods can also be considered to
belong to a distinct group.

Fig. 13(a) shows the Oracle error analysis among three meth-
ods: Structural Characteristics, Multi-Zoning, and Concavity Mea-
surement. Only nine images were misclassified by the three
methods used simultaneously. Moreover, the pairwise intersection
of the three techniques also reduces the number of errors. As a re-
sult, these three techniques together are able to correctly classify
different images. Fig. 13(b) shows the intersection of three tech-
niques that are closer together on the CPS plot (Structural Charac-
teristics, Edge Maps, and MAT-based Gradient). In this case, the
intersection of errors shows that it is possible to reduce the indi-
vidual errors, since they present complementary information.

So, based on the proposed framework, we can answer two of the
questions posed in this paper: Do different feature extraction tech-
niques present complementary information? We demonstrate that
different feature extraction techniques are indeed complementary.
The majority of the techniques are far apart in the CPS for both
datasets. Furthermore, combining them using the Oracle analysis
can reduce the individual error by a factor of as high as 10 for
the C-Cube dataset (Fig. 11(b)), and can result in a very low error
rate for the MNIST dataset (Fig. 11(a)).



Table 3
Results for each feature extraction method for the MNIST database.

Digit Structural Edge Maps Projections Multi-Zoning Concavity MAT Grad. Binary Grad. Median Grad. Camastra 34D

0 98.88 97.86 98.17 98.88 96.13 97.96 98.46 98.06 98.46
1 99.12 98.15 98.42 98.95 98.33 98.68 99.03 99.11 99.03
2 96.03 95.26 95.26 96.23 95.66 95.16 96.22 96.31 96.22
3 96.14 94.76 94.76 96.84 91.69 94.46 96.23 96.23 96.23
4 97.25 92.15 96.33 97.05 92.98 96.94 98.16 97.45 98.16
5 95.63 94.73 93.61 96.96 95.56 96.30 95.62 95.96 95.62
6 97.81 96.66 97.18 97.08 96.35 97.39 96.45 96.76 96.45
7 96.89 93.77 95.43 95.62 94.38 95.04 95.81 94.94 95.81
8 96.00 93.54 93.74 95.90 89.64 95.54 93.83 93.42 93.83
9 95.60 90.58 93.85 95.16 92.11 92.66 94.44 95.14 94.44
Mean 96.95 ± 0.29 94.78 ± 0.15 95.72 ± 0.13 96.84 ± 0.18 94.31 ± 0.25 95.83 ± 0.13 96.47 ± 0.12 96.38 ± 0.12 96.47 ± 0.32
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Fig. 11. Oracle error analysis for the C-Cube dataset. (a) Comparison of feature
representations that belong to the same cluster. (b) Comparison of feature
representations that are far apart.
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The exceptions are the representations that extract the gradi-
ents of the images. Therefore, in answer to the second question:
Are feature extraction techniques that use a similar approach
(e.g. different methods to extract gradients) less complementary
than techniques that use different characteristics (e.g. edges, con-
cavities)? According to Figs. 10 and 12, the gradient-based meth-
ods based (MAT-based Gradient, Binary Gradient, and Median
Gradient) are really close to each other, creating a cloud of points.
In addition, the results of the Oracle analysis (Fig. 11(b)) demon-
strate that the number of errors that are common to the three tech-
niques is higher than the number of individual errors. From this,
we can conclude that techniques using similar approaches are less
complementary, and are likely to misclassify the same images.
5. Multiple-classifier systems

MCS have been widely studied as an alternative means of
increasing efficiency and accuracy in pattern recognition systems
(Kittler, Hatef, Duin, & Matas, 1998; Kuncheva, 2002a, 2004). The
main motivation for using classifier ensembles comes from the
observation that errors committed by classifiers trained with dif-
ferent feature extraction methods do not overlap. Another reason
to use them is based on the divide-and-conquer paradigm: instead
of using a single set consisting of all feature sets, the idea is to use
each feature extraction method separately and combine their re-
sults. There are many examples in the literature that show the effi-
ciency of an ensemble of classifiers in various tasks, such as
signature verification (Batista, Granger, & Sabourin, 2010), pedes-
trian detection (Xu, Cao, & Qiao, 2011), and image labeling (Singh
& Singh, 2005).

The advantage of combining classifiers that deal with distinct
feature sets is that they represent different transformations of
the image into the feature space. Suppose, for example, that a pat-
tern is located near the decision boundary. The recognition of this
pattern is a difficult task in the feature space used. It is still difficult
when multiple classifiers are applied over the same feature space.
However, if different feature spaces are used, this pattern might be
close to the decision boundary in one feature space, but the same
pattern might be far from the decision boundary of another feature
space, as its transformation is completely different. In this way, the
pattern can be easily recognized.
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5.1. Trained combiner

Duin (2002) concluded that fixed combination rules only
achieve the best results in very strict conditions. Normally, these
results are suboptimal, and the performance of these rules falls
far short of the performance of the Oracle. For instance, the Product
rule is known to fail if one of the classifiers’ estimates is close to
zero, or is accidentally zero. So, if one feature set is not suitable
for the query image, the system is likely to fail. The majority vote
rule only produces the correct classification if at least half the clas-
sifiers predict the correct class. However, there are certain images
that are correctly classified in only one or two of the nine feature
sets, and so we cannot achieve a performance close to the Oracle
using this combination rule either.

Consequently, we decided to use a trained combiner in order to
achieve a more robust combination of classifiers. Trained combin-
ers usually perform better, since the combiner can adapt to the
classification problem (Duin, 2002). In this methodology, the out-
puts of the base classifiers are used as input features for a new clas-
sifier that is trained to aggregate the results. During the training
phase, the combiner learns how to deal with difficult situations,
such as, for example, when a small subset of the base classifiers
produces the correct answer.

In the experimental study, the trained combiner is an MLP net-
work with one hidden layer. Neural networks are good candidates
for use as trained combiners, because they are robust to noise. This
means that the MLP combiner can still predict the correct output,
even when the majority of the base classifiers present errors.
5.2. Experimental protocol

In this section, the results obtained by combining the feature
extraction techniques are presented. For the combination module,
the MLP combiner is compared to well-known fixed combination
rules. The fixed rules considered are Sum, Product, Maximum,
Median, Voting, and Oracle. The theoretical framework for the
fixed combination rules is described in Kittler et al. (1998) and
Kuncheva (2002b).

The experiment was conducted using 10 iterations, in order to
obtain the mean and standard deviation for the results. For each
iteration, the base classifiers were retrained following the protocol
described in Section 4.3. This replication is important, since the re-
sults are sensitive to the initial weight configuration of the base
classifiers.

For each image in the training set, the a posteriori probability for
each feature set is estimated and used as an input feature to train
the MLP combiner. Two experiments were conducted using this
combiner: MLPall, which consists of the nine feature representa-
tions, and MLPselection, which consists of a subset using feature rep-
resentations selected based on the sensitivity analysis.

For the MLPselection configuration, the MAT-based Gradient, Bin-
ary Gradient, Median Gradient, and Camastra 34D techniques are
considered redundant for both datasets (Section 4.6). As we use
only the Binary Gradient to represent this group of techniques,
because it achieved the highest accuracy, the configuration
MLPselection consists of only 6 feature representations: Modified
Edge Maps, Concavity Measurement, Multi-Zoning, Structural
Characteristics, Binary Gradient, and Image Projections.

In every experiment, combiner training is accomplished using
the Resilient Backpropagation algorithm. The number of nodes in
the hidden layer of the MLP combiner was selected using the cross-
validation method with the training data. The search was conducted
by varying the number of nodes from 10 to 300 at 10-point inter-
vals. The number of nodes in the hidden layer of the MLP combiner
for the C-Cube and MNIST datasets were 300 and 50, respectively.

5.3. Results for the C-Cube dataset

Tables 4 and 5 show the results of the combination for the C-
Cube database. A Kruskal–Wallis non parametric statistical test
(95% confidence level) applied to the difference in accuracy rates
showed that the results with the combination rules are statistically



Table 4
Results of each combination method for the C-Cube database. Uppercase and
lowercase letters.

Method Upper case (%) Lower case (%) Mean (%)

Sum 91.21 86.94 88.92
Product 85.92 79.52 82.37
Maximum 89.83 85.22 87.14
Median 91.00 87.33 88.86
Maj. Vote 90.99 87.44 88.92
MLPall 91.39 88.45 89.67
MLPselection 90.89 88.25 88.85
Oracle 96.87 97.24 97.09

Table 5
Results of each combination rule for the C-Cube database (Joint case).

Method Best (%) Mean (%)

Sum 88.51 88.22 ± 0.19
Product 86.99 85.52 ± 0.89
Maximum 85.48 85.73 ± 0.67
Median 88.84 88.04 ± 0.53
Maj. Vote 89.22 88.00 ± 0.81
MLPall 89.65 89.28 ± 0.22
MLPselection 89.54 88.98 ± 0.50
Oracle 97.78 97.25 ± 1.72
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significant when compared to the classifiers trained using a single
feature extraction technique. This can be explained by the fact that
the feature extraction techniques considered in this analysis pres-
ent complementary information; the majority of them are far apart
in the CPS (Fig. 10). This means that the recognition performance
could be improved any combination rule.

The only exception was the Product rule. Its results for the sep-
arate case were not statistically better than those of the Modified
Edge Maps technique. This might be explained by the fact that
there was a large difference in the accuracy of the feature
representations.

Fig. 14 shows the box plot with the results for the combination
rules for the C-Cube database. The gain in recognition performance
for the MLP combiner is statistically significant when compared
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Fig. 14. Boxplot diagram comparing the combination rules for the CCUBE database. M
representation and the reduced feature representation set respectively.
with that of the fixed combination rules. The MLPall combiner pre-
sented the best mean result. However, based on the Kruskal–Wallis
test, the results were not statistically better than those of the re-
duced combination, MLPselection.
5.4. Results for the MNIST database

Table 6 shows the results obtained by the combination methods
for the MNIST database. The recognition performance of all the
combination rules was a great improvement over all the (feature
extraction, classifier) pairs shown in Table 3. The Kruskal–Wallis
non parametric statistical test with a 95% confidence level was also
used, and the result obtained by every combination rule was statis-
tically better. Once again, the gain in performance is explained by
the fact that the majority of feature representations considered
presents complementary information.

As with the C-Cube dataset, the trained combiner outperformed
the other combination rules. The MLPselection combination achieved
an accuracy rate close to the Oracle performance (which was
100%). This is due to the ability of the network to learn how to per-
form the best combination using the training set. In addition, the
standard deviation of the trained combiner is 0.04%, which is
approximately six times less than the standard deviation for the
Maximum rule. Even when one or more feature sets produce a very
inaccurate result, the trained combiner is still able to predict the
correct output. Fig. 15 shows the box plot for the combination
rules. The median result of both MLPall and MLPselection achieved
a lower error rate than the best results of the other combination
rules.

Furthermore, the result of the MLP combiner is followed by the
Maximum rule that also presented a high recognition rate. This is
because of the ability that some of the feature extraction methods
have to recognize certain types of digits.

In both experiments, the results using all the feature represen-
tations (MLPall) and the configuration following the sensitivity
analysis (MLPselection) are statistically equivalent. Nevertheless, for
the C-Cube dataset, the MLPselection achieved a Result 0.04 percen-
tile points higher than that of MLPall. This is an interesting finding,
since MLPselection is composed of a small number of feature repre-
sentations. The redundant nature of MLPall might interfere with
dian Maj. Vote MLPall MLPselection

nation rule

−CUBE Dataset

LPall and MLPselection are the MLP combiner for the experiment using every feature



Table 6
Results of each combination rule for the MNIST database.

Method Best (%) Mean ± std dev (%)

Sum 99.23 98.96 ± 0.42
Product 99.55 99.27 ± 0.34
Maximum 99.58 99.43 ± 0.23
Median 99.12 98.85 ± 0.25
Maj. Vote 98.98 98.63 ± 0.49
MLPall 99.72 99.70 ± 0.01
MLPselection 99.76 99.72 ± 0.04
Oracle 100 100 ± 0.00

Table 7
Comparative results for the C-Cube database. RBF = Radial Basis Network with 5120
centers, HVQ = Hierarchical Vector Quantization, MDF = Modified Directional Fea-
tures, SVM = SVM with Radial basis Kernel.

Algorithm Recognition rate (%)

HVQ-32 (Thornton et al., 2008) 84.72
HVQ-16 (Thornton et al., 2008) 85.58
MDF-RBF (Thornton et al., 2009) 80.92
34D-RBF (Thornton et al., 2009) 84.27
MDF-SVM (Thornton et al., 2009) 83.60
34D-SVM + Neural GAS (Camastra, 2007) 86.20
34D-MLP (Camastra, 2007) 71.42
Proposed 89.28 ± 0.22
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the performance of the combination. This means that we can an-
swer the third question posed in the introduction, as follows:
The proposed framework selects feature representations that can
be used to construct an efficient MCS in terms of accuracy rates.

5.5. Computational time

Analyzing the proposed system when the trained combiner is
used, the average computational time per image is 4 ms for the
MNIST and 9 ms for the C-Cube dataset. The application was devel-
oped using C++ running on a 2.40 Ghz machine with four cores.

We measured the difference in computational cost of the MLP
combiner and the fixed combination rule. That difference is mea-
sured in microseconds, and does not affect the overall computa-
tional time of the system. This was expected, since the MLP
combiner has a total of 30,000 connections (60 inputs � 50 hidden
nodes � 10 output nodes), while the network trained with the
Structural Characteristics feature set has 952,000 connections
(280 inputs � 340 hidden nodes � 10 output nodes). In other
words, the cost of computing the combination is approximately
31 times less than the cost of computing a single feature set.

5.6. Comparison with the state of the art

The best results obtained for the C-Cube database are shown in
Table 7. To the best of our knowledge, the proposed combination
scheme outperforms all the previous results in the Split B of this
database. Furthermore, it is important to observe that the past best
results are based on Support Vector Machines (SVM) using the one-
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Fig. 15. Boxplot diagram comparing the combination rules for the MNIST database. ML
representation and the reduced feature representation set respectively.
versus-the-rest approach (Scholkopf & Smola, 2001). This method
trains one specific classifier for each class. For this problem, a large
number of classifiers is required, which is one of the drawbacks of
these approaches. As far as we know, the proposed system is the
first to show high accuracy using only MLPs.

The best results obtained for the MNIST database are shown in
Table 8. The proposed combination scheme outperformed all the
previous results for this database. It is also important to observe
that many of the best results (Ciresan, Meier, Gambardella, & Sch-
midhuber, 2010; Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009;
Lauer, Suen, & Bloch, 2007; LeCun, Bottou, Bengio, & Haffner,
1998; Simard, Steinkraus, & Platt, 2003; Ranzato, Boureau, & Le-
Cun, 2008) are based on large neural networks, such as Convolu-
tional Neural Networks or Deep Neural Networks. In addition,
the techniques used previously need to expand the training data
by creating new images through distortions (Ciresan et al., 2010;
Kussul, Baidyk, Wunsch, Makeyev, & Martin, 2006; Lauer et al.,
2007; LeCun et al., 1998; Simard et al., 2003; Ranzato et al.,
2008). Our approach to achieving high performance in handwritten
recognition is different, in that no additional training data is
required.
6. Conclusion

We have proposed a new framework for analyzing the relation-
ship between different feature representations. Each representa-
tion is used to train a single classifier, and the dissimilarities
dian Maj. Vote MLPall MLPselection

ation rule

Pall and MLPselection are the MLP combiner for the experiment using every feature



Table 8
Comparative Results for the MNIST Database.

Method Distortions Recognition rate (%)

Boosted LeNet-4 (LeCun et al., 1998) Affine 99.30
unsupervised sparse features + SVM (Labusch et al., 2008) – 99.41
Trainable feature extractor + SVM (Lauer et al., 2007) Affine 99.46
Large convolutional network + unsupervised pretraining (Jarrett et al., 2009) – 99.47
PNCN classifier (Kussul et al., 2006) Skewing 99.56
Cascade ensemble classifier (without rejection) (Zhang, 2006) – 99.59
Convolutional neural networks (Simard et al., 2003) Elastic 99.60
Large convolutional network + unsupervised pretraining (Ranzato et al., 2008) Elastic 99.61
6 Layers MLP 841-2500-2000-1500-1000-500-10 (Ciresan et al., 2010) Elastic 99.65
Proposed – 99.72 ± 0.04
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between them are computed to generate a dissimilarity matrix.
Through the Multidimensional Scaling method (Sammon Map-
ping), this dissimilarity matrix is embedded in a two-dimensional
space (CPS) where the Euclidean distance between two feature
representations reflects their dissimilarity. Based on this two-
dimensional plot, a sensitivity analysis is performed in order to
determine whether the representations are complementary or
redundant.

We have applied the proposed framework to two handwritten
recognition datasets: the Cursive Character Challenge (C-Cube)
for handwritten letters, and the MNIST dataset for handwritten
digits. The results demonstrate that feature representations using
distinct approaches (edges, projections, gradient, and concavities)
extract information that is dissimilar. Consequently, they are com-
plementary. Techniques that use the same observations, using a
different rule to compute the features (e.g. the MAT-based Gradi-
ent, Median Gradient, and Binary Gradient) perform in a similar
fashion. They appear close to each other in both experiments and
are likely to commit errors on the same images. As a result, they
can be considered redundant.

A multiple-classifier system using distinct feature extraction
techniques was designed based on the feature representation anal-
ysis. As the majority of techniques considered present complemen-
tary information, the results of every combination rule outperform
the best individual classifier for both datasets. With the aim of
searching for the optimal combination rule, we used a neural net-
work as a combiner. The results show that the proposed approach
presents better accuracy when compared with state-of-the-art
techniques.

The two experiments that were performed: one using all the
feature representations, and the other a reduced set of representa-
tions based on a sensitivity analysis, demonstrate that the strate-
gies are statistically equivalent. In some cases, the reduced set of
representations can even achieve higher performance, as redun-
dant classifiers can negatively affect performance. This shows that
our framework can also be used to perform feature representation
selection. In this paper, however, we use the empirical analysis of
the CPS and the Oracle error analysis manually, in order to make
this selection. An algorithm designed to perform the selection
automatically using our framework is currently being developed.
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