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Receptive fields and autoassociative memory are brain concepts that have individually inspired many
artificial models, but models using both ideas have not been deeply studied. In this paper, we propose
the AutoAssociative Pyramidal Neural Network (AAPNet), which is an artificial neural network for one-
class classification that uses autoassociative memory and receptive field concepts in its pyramidal archi-
tecture. The proposed neural network performs implicit feature extraction and learns how to reconstruct
a pattern from such features. The AAPNet is evaluated using the object categorization Caltech-101 data-
base and presents better results when compared with other state-of-the-art methods.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by the design and functioning of the human brain,
biological models have been analyzed to develop powerful learning
systems. Receptive fields (Hubel & Wiesel, 1965) and autoassocia-
tive memory (Rolls & Treves, 1998) are concepts that have been
successfully used for the proposal of novel neural networks and
pattern recognition models. Levine and Shefner (1991) defined a
receptive field as ‘‘an area in which stimulation leads to response
of a particular sensory neuron’’. In other words, this area repre-
sents a region of neurons covered by another neuron hierarchically
located above them and tuned to extract features, like edges in spe-
cific orientations. Artificial neural networks have used the concept
of receptive field to implicitly extract features from patterns (Fuku-
shima, 1988; LeCun, Bottou, Bengio, & Haffner, 1998; Perez, Sali-
nas, Estvez, & Valenzuela, 2003). Phung and Bouzerdoum (2007)
and Fernandes, Cavalcanti, and Ren (2009) proposed neural net-
works in which the layers are organized in a pyramidal architec-
ture (Gonzalez & Woods, 2010) that iteratively extract features
through the receptive fields associated to each layer. These models
preserve the spatial topology of the data, therefore, the features are
linked to specific locations of the image.

The human brain uses a type of memory called autoassociative
memory for episodic memory storage and for short term memory
(Rolls & Treves, 1998). In this kind of memory, the learning process
of new patterns is performed very fast, and besides, the entire pat-
tern can be retrieved based only on a part of it. In pattern recogni-
tion, an autoassociative classifier is a particular case of one-class
classifiers (OCC) (Moya, Koch, & Hostetler, 1993). OCC has already
been applied in concept learning, in which the autoassociative
memory is used to learn the inner structure of a class based only
on the features collected from the patterns of this class. The auto-
associative classifiers must learn the mapping of a pattern to a new
feature space and then learn the inverse mapping with respect to
the minimization of the distance between the input pattern and
the output given by the classifier.

In this paper, we propose the AutoAssociative Pyramidal Neural
Network (AAPNet), which is an autoassociative neural network
with pyramidal architecture that receives as input an image, impli-
cit extract features and returns the reconstruction of the input im-
age based on these features. The AAPNet uses the concepts of
receptive field and autoassociative memory in its pyramidal archi-
tecture. The combination of such concepts leads to a neural net-
work model for computer vision that incorporates feature
extraction and classification with closed decision boundaries in
the same structure. This neural network model automatically learn
suitable features to represent a given pattern in a non-local way.
Thus, it is able to represent complex functions with the advantage
of not requiring negative samples in the learning process. Previ-
ously proposed autoassociative neural networks (Hanif, Prevost,
Belaroussi, & Milgram, 2008; Hinton & Salakhutdinov, 2006;
Thompson et al., 2002; Cavalcanti, Pereira, & Filho, 2004) do not
take advantage of the benefits of the combination of receptive
fields concepts, autoassociative memory and pyramidal architec-
ture in the same model.
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The paper is organized as follows. In Section 2, related works
are presented. In Section 3, the architecture of the proposed AAP-
Net is described. The AAPNet is evaluated using the Caltech-101
object categorization database and the results are shown in Sec-
tion 4. Finally, in Section 5, some concluding remarks are given.
2. Related works

The neocognitron (Fukushima, 1988) is a neural network model
based on the concept of receptive fields. It was motivated by the
human brain behavior and the hypothesis of Hubel and Wiesel
(1965) in an attempt to propose a neural network model of the vi-
sual system. The neocognitron performs the learning and recogni-
tion process inside its architecture with implicit feature extraction.
In the neocognitron, the classification process begins with extrac-
tion of local features. The local features are gradually integrated
into global features. The neocognitron was improved by Fukushima
(2003), who proposed several modifications, such as inhibitory
surround in the connections and supervised competitive learning.
Many other models were developed based on the neocognitron,
such as Convolutional Neural Network (CNN) (LeCun et al., 1998),
Table 1
Notation and definitions used to describe the AAPNet.

Symbol Description

ln 2-D pyramidal layer in the position n
L Last 2-D pyramidal layer
R Reconstruction layer
I Input image used as the first layer l0 of the AAPNet

Ik
u;v

Value of the pixel in the (u,v) position of the k-th input image

rn Size of the receptive field of the neurons in the layer ln
on Size of the overlap between the receptive fields of the neurons in

the layer ln
wn

i;j Weight associated with the position (i, j) in the layer ln�1 to the
layer ln

cn Area in the input image covered by a neuron in the layer ln
jn Size of the overlap between covered areas of the neurons in the

layer ln
bl

u;v
Bias of the neuron at (u,v) in the layer l 2 {l1, . . . ,L}

yl
u;v Output of the neuron at (u,v) in the layer l 2 {l1, . . . ,L,R}

wR
i;j

Weight associated with the position (i, j) in the layer L to the layer R

f Activation function

dl;k
u;v

Error sensitivity for the neuron at the

position (u,v) in the layer l 2 {l1, . . . ,L,R}

sl;k
u;v Input weighted sum for the neuron at the

position (u,v) in the layer l 2 {l1, . . . ,L,R}

DðtÞi;j
Adaption rule of the RPROP algorithm

g[+,�] Increase (+) and decrease (�) factors of the RPROP algorithm

Fig. 1. AAPNet architecture in a 2-D bottleneck shape composed of pyramidal layers (lay
layer located at the top of the neural network responsible for the image reconstruction (
previous layer with size rn � rn and an overlap region with size of on. The output of a neur
the connection from the neuron to the next layer, wnþ1

i;j , and it is used as an excitatory s
output of the layer R to the neural network input.
Feature Extraction Network with Multilayer Perceptron
(FEN + MLP) (Perez et al., 2003), Pyramidal Neural Network
(PyraNet) (Phung & Bouzerdoum, 2007), and Inhibitory Pyramidal
Neural Network (I-PyraNet) (Fernandes, Cavalcanti, & Ren, 2008;
Fernandes et al., 2009).

CNN is a neural network composed of two kinds of cells: simple
cells, which perform feature extraction, and complex cells, which
perform subsample of the features in order to focus on the rela-
tionship between them. LeCun et al. (1998) took into consideration
the fact that a specific neural network architecture based on a pri-
ori knowledge is able to improve the generalization ability of the
model. So, CNN was proposed to implicitly extract the features of
the patterns making it a better model to handle the great variabil-
ity and richness of natural data.

Perez et al. (2003) emphasized the ability of simple cells in the
detection of stimulus in specific orientations, while complex cells
are activated every time their receptive fields composed of simple
cells present a strong stimulus in their detection task. They pro-
posed the FEN + MLP neural network simulating the behavior of
such cells for feature extraction. A neural classifier on the top of
the neural network decides the class of each pattern. Perez et al.
(2003) used a genetic algorithm to find the optimal architecture
of the FEN + MLP.

Phung and Bouzerdoum (2007) proposed the PyraNet, a neural
network specifically developed for image recognition tasks. The
PyraNet is based on CNN and on the pyramid images concepts
(Gonzalez & Woods, 2010). The PyraNet learning algorithm tunes
the nonlinear processing of each pyramid level to solve specific
recognition problems. The PyraNet integrates the feature extrac-
tion and pattern classification steps in the same structure. More-
over, the PyraNet also maintains the spatial topology of the input
image and presents a simple connection scheme with lower com-
putational and memory costs than in other neural networks as
demonstrated in Phung and Bouzerdoum (2007).

The I-PyraNet (Fernandes et al., 2008; Fernandes et al., 2009)
extends the PyraNet by incorporating the inhibitory fields concept
in the neural network. The results achieved by Fernandes et al.
(2009) demonstrated that the I-PyraNet is a more stable model
than the PyraNet and obtains higher classification rates in detec-
tion tasks. However, both models are not good approaches to mul-
ti-class classification tasks since the number of free parameters is
not large enough to define many different decision boundaries be-
tween the classes.

Hopfield networks (Hopfield, 1982) have been applied in the
development of autoassociative models. Their applications range
from image restoration and reconstruction (Sun, 2000) to image
storage and retrieval (Ramya, Kavitha, & Shreedhara, 2011). The
autoassociative classifiers map the input pattern to a new feature
space and then learn the inverse mapping that minimizes the
ers l0 to L) responsible for the features extraction of the input pattern and an output
layer R). Each neuron in a pyramidal layer ln is connected to a receptive field in the
on in a pyramidal layer ln, given by yn

i;j , is then multiplied by the weight associated to
timulus by the neurons in the layer ln+1. The AAPNet is trained to approximate the
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distance between the input and the output patterns. Principal
Component Analysis (PCA) is a method that can be applied in such
a way. However, PCA is able only to identify linear correlations in a
data set. Neural networks (Haykin, 2007), like the MLP, are also
used as autoassociative classifiers (Cavalcanti et al., 2004) with
the possibility of identify nonlinear correlations between the vari-
ables. Thompson et al. (2002) applied autoassociative neural net-
works for novelty detection showing that learning happens in a
more substantial way than a simple memorization. On the other
hand, Hinton and Salakhutdinov (2006) presented a model to train
autoassociative neural networks with many hidden layers, leading
to a more stable model. Moreover, Hanif et al. (2008) used an auto-
associative neural network to localize specific facial features.
3. Autoassociative pyramidal neural network

The Autoassociative Pyramidal Neural Network (AAPNet) is a
biologically inspired model designed to implicitly learn suitable
features to represent visual patterns. The AAPNet is a one-class
neural network that represents a specific visual pattern and out-
puts how close an image is to the class represented by the AAPNet.
In this section, we present the neural network architecture (Sec-
tion 3.1), the connectivity model (Section 3.2) and a description
of the training algorithm (Section 3.3). Table 1 presents the nota-
tion and definitions used to describe the AAPNet.

3.1. AAPNet architecture

Fig. 1 presents the AAPNet architecture. The entire network is
connected in cascade, i.e., the output of one layer works as the input
to the next one. The features are iteratively extracted by the neurons
connected to the receptive fields and they are used to reconstruct
the input pattern presented to the AAPNet. The AAPNet presents a
2-D bottleneck shape. Layers arranged in a pyramidal architecture
(layers l0 to L) are responsible for the feature extraction of the input
pattern, and an output layer with the same size of the input image is
responsible for the image reconstruction (layer R). Each neuron in
the last pyramidal layer, L, is connected to a receptive field in the
output layer and the receptive field size is given by the area of the
image covered by such neuron defined in the next section.
Fig. 2. Image samples from the Caltech-101 subset us
The first layer of the AAPNet, l0, is represented by the input im-
age, which is iteratively subsampled through the layers l1 to L.
Then, the image is reconstructed based on the features of the last
feature extraction layer L.

The reconstruction process preserves the spatial topology of the
extracted features since the position of each neuron in the same
layer denotes the position of the respective receptive field in the
previous layer. The output of the neurons in R is the output of
the AAPNet.

The reconstruction layer R has the same size of the input layer l0
and the output of its neurons represents the output of the AAPNet.
The distance between the input image and the AAPNet output is
used to decide whether or not the input image belongs to the vi-
sual pattern represented by the AAPNet.

3.2. Connectivity model

The first layer of the AAPNet, l0, is the input image. Each neuron
in a pyramidal layer ln is connected to a region of affectation in the
previous layer ln�1 and rn � rn is the size of such region, called
receptive field. Adjacent neurons share connections from an over-
lapped area in their receptive fields and the number of overlapped
neurons in ln�1 is given by on. Each neuron in the layer l1, for exam-
ple, is connected to a receptive field composed of r1 � r1 neurons in
the input layer. An adjustable weight, w1

i;j, is associated with each
neuron in the (i, j) position at the layer l0.

Each neuron in the last pyramidal layer L is connected to a spe-
cific area in the reconstruction layer. This area denotes the covered
area of a neuron in the input image, given by c, and it is recursively
calculated from the union of the receptive fields in the previous
layers that are connected to such neuron. Adjacent neurons also
share some connections in the covered area, given by j. These
parameters are calculated by:
cn ¼
r0; if n ¼ 0
ðrncn�1Þ � ððrn � 1Þjn�1Þ; otherwise

�
ð1Þ

jn ¼
o0; if n ¼ 0
ðoncn�1Þ � ððon � 1Þjn�1Þ; otherwise

�
ð2Þ
ed to find the optimal parameters of the AAPNet.
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Fig. 3. Classification rates for different receptive fields configurations with a fixed overlap factor of 1 for both pyramidal layers. Receptive field sizes of the first layer are equal
to: (a) 2, (b) 3, (c) 4, (d) 5, (e) 6.

B.J.T. Fernandes et al. / Expert Systems with Applications 40 (2013) 7258–7266 7261



7262 B.J.T. Fernandes et al. / Expert Systems with Applications 40 (2013) 7258–7266
where cn and jn are the image covered area and the overlap region
size between adjacent covered areas of the layer ln in the input im-
age, respectively.

The output of a neuron is defined as a non-linear activation
function over the weighted summation of the neurons inside its
receptive field. Thus, being (u,v) the position of a neuron in layer
ln, (i, j) the position of the neuron in the previous layer ln�1 and
bn

u;v the bias of the neuron at (u,v), the output yn
u;v of the neuron

in a pyramidal layer is given by:

yn
u;v ¼ f

Xin;0max

i¼in;0
min

Xjn;0max

j¼jn;0
min

wn
i;jy

n�1
i;j þ bn

u;v

0
B@

1
CA: ð3Þ

The output of a neuron in the reconstruction layer, yR, depends
on the output of the neurons in the last pyramidal layer that con-
tains such neuron in their covered area and it is given by:

yR
u;v ¼ f

Xi1maxðc;jÞ

i¼i1minðc;jÞ

Xj1maxðc;jÞ

j¼j1minðc;jÞ

wR
i;jy

L
i;j

0
@

1
A; ð4Þ
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Fig. 4. Classification rates for different overlap configurations with receptive fields of s
overlapped neurons in the first layer equal to: (a) 0, (b) 1, (c) 2.
where wR
i;j denotes the weight associate with the input position

(i,j) at the last pyramidal layer L to the reconstruction layer
R; yL

i;j is the output of the neuron (i, j) and imin,imax,jmin and jmax

are defined as:
ip
minðx; yÞ ¼

uðx� yÞ; p ¼ 0
u�x
x�y

l m
þ 1; otherwise

(
; ð5Þ

ip
maxðx; yÞ ¼

uðx� yÞ þ x; p ¼ 0
u�1
x�y

j k
þ 1; otherwise

(
; ð6Þ

jp
minðx; yÞ ¼

vðx� yÞ; p ¼ 0
v�rn
x�y

l m
þ 1; otherwise

(
; ð7Þ

jp
maxðx; yÞ ¼

vðx� yÞ þ x; p ¼ 0
v�1
x�y

j k
þ 1; otherwise

(
: ð8Þ
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3.3. AAPNet training

The AAPNet is a supervised neural network and its objective is
to reduce the difference between the input image and the obtained
output. This is performed by adjusting the weights in the AAPNet.

The error sensitivity d for each neuron in the reconstruction
layer for an input image I is given by:

dR;k
u;v ¼ yR

u;v � Ik
u;v � f 0 sR;k

u;v

� �
; ð9Þ

where sR;k
u;v is applied as the weighted sum input for the neuron (u,v)

at the reconstruction layer, f0 is the differential of the activation
function f and k is the index representing each training image.
Moreover, the error sensitivity for the neurons in the last pyramidal
layer is given by:

dL;k
u;v ¼ f 0 sn;k

u;v

� �
�wR

u;v �
Xi0maxðc;jÞ

i¼i0minðc;jÞ

Xj0maxðc;jÞ

j¼j0minðc;jÞ

dR;k
i;j : ð10Þ

The error sensitivity for the neurons in the other pyramidal layers is
given by:

dl;k
u;v ¼ f 0 sn;k

u;v

� �
�wnþ1

u;v �
Xi1maxðrnþ1 ;onþ1Þ

i¼i1minðrnþ1 ;onþ1Þ

Xj1maxðrnþ1 ;onþ1Þ

j¼j1minðrnþ1 ;onþ1Þ

dnþ1;k
i;j : ð11Þ

Furthermore, the error gradient of the weights and the biases can be
derived as shown in the next equations:

� Last pyramidal layer:
@E
@wR

i;j

¼
XK

k¼1

yL;k
i;j �

Xi0maxðc;jÞ

i¼i0minðc;jÞ

Xj0maxðc;jÞ

j¼j0minðc;jÞ

dR;k
u;v

8<
:

9=
;: ð12Þ
� Other pyramidal layers:
@E
@wn

i;j

¼
XK

k¼1

yn�1;k
i;j �

Xi1maxðrn ;onÞ

i¼i1minðrn ;onÞ

Xj1maxðrn ;onÞ

j¼j1minðrn ;onÞ

dn;k
u;v

8<
:

9=
;: ð13Þ
� Biases:
@E
@bn
¼
XK

k¼1

dk
n;

@E
@bu;v

¼
XK

k¼1

dk
u;v : ð14Þ
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Fig. 5. Box plot for different number of classe
Finally, the weights in the neural network might be updated fol-
lowing a given learning rule. Resilient Propagation rule (Riedmiller
& Braun, 1993) is used in this regard in the paper. Thus, the
weights are adaptively updated based on the gradient signal,
according to the following rule:

wðtÞi;j ¼ wðtÞi;j � �sign
@E

@wðtÞi;j

ðtÞ
 ! !

� DðtÞi;j ð15Þ

and DðtÞi;j is the adaptation rule given by:

DðtÞi;j ¼

gþ � Dðt�1Þ
i;j ; @E

@wðtÞ
i;j

ðtÞ � @E
@wðtÞ

i;j

ðt � 1Þ > 0

g� � Dðt�1Þ
i;j ; @E

@wðtÞ
i;j

ðtÞ � @E
@wðtÞ

i;j

ðt � 1Þ < 0

0; otherwise

8>>><
>>>:

ð16Þ

where g+ > 1 and 0 < g� < 1 are the increase and decrease factors,
respectively, that define the jump given in each learning step.

4. Object categorization

Object categorization algorithms aims to assign a category to an
image. This is a challenging task because objects may present var-
iation in shape, texture, position, occlusion, noise, or background
clutter (Galleguillos & Belongie, 2010). The AAPNet is evaluated
using the Caltech-101 object categorization database (Fei-Fei, Fer-
gus, & Perona, 2006) and its results are compared with other of
state-of-the-art methods.

4.1. Methodological protocol

The used AAPNet has three pyramidal layers, including the in-
put layer and one reconstruction layer. The activation function
used in all the neurons of the AAPNet is the sigmoid-logistic. An
ensemble averaging (Verikas, Lipnickas, Malmqvist, Bacauskiene,
& Gelzinis, 1999) of AAPNets is trained for each class. In this com-
mittee, there is one neural network for each training image. The
test pattern is classified based on the minimum distance between
the neural network input and the reconstructed image. The closer
is the input image to the AAPNet output, the higher is the
probability of the image be associated to the category represented
by the AAPNet.
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s with (a) 15 and (b) 30 training images.



0 100 200 300 400 500 600 700 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Distance

F
re

qu
en

cy

Airplanes
Others

(a)

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Distance

F
re

qu
en

cy

Faces
Others

(b)

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Distance

F
re

qu
en

cy

Faces
Others

(c)
Fig. 6. Comparison between the distances: (a) from airplanes to objects from other classes; (b) from faces to objects of other classes; (c) from faces to objects of other classes
without the ‘‘faces_easy’’ patterns.

Table 2
Classification rate (%) for object categorization in the Caltech-101 database with the
standard deviation in parenthesis.

Classifier 15 training images 30 training images

AAPNet 59.38(0.64) 65.64(0.46)
Serre et al. (2005) 35.00 42.00
Mutch and Lowe (2006) 51.00 56.00
Wolf et al. (2006) 51.18(1.20) �
Wu et al. (2007) 52.16(1.00) 60.23(0.80)
Linear SVM (Maji et al., 2013) 38.79(0.94) 44.33(1.33)
Kernel SVM (Maji et al., 2013) 44.27(1.45) 50.13(1.19)
IKSVM (Maji et al., 2013) 50.10(0.65) 56.59(0.77)

The characters in bold present the best classification rate for each training
configuration.
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The Caltech-101 object database has varied images from 101
objects. The images were converted to gray scale, had their histo-
gram equalized and were downsampled to 40 � 40 pixels.

A subset of the Caltech-101 containing seven classes (anchor,
barrel, crocodile, joshua tree, ketch, lotus and nautilus) was used
to determine the best configuration of the AAPNet. Five training
images were randomly chosen per class and the remaining images
were used for testing. Fig. 2 presents one image example from the
seven classes contained in the Caltech-101 subset. The configura-
tion used in the test with the complete database is the one that
presents the highest classification rate in the parameter determi-
nation step presented in Section 4.2.

In the experimental setup for the test with the complete data-
base, 15 or 30 images are randomly chosen per class for training
and the remaining images are used for testing. Such procedure is
repeated ten times and the average results are presented. Wu,
Zheng, You, and Du (2007) used the same experimental setup to
present their results. Section 4.3 presents the results achieved by
the AAPNet using the whole Caltech-101 database.
4.2. Parameters determination

Fig. 3 presents the classification rate obtained with different
receptive field configurations in order to find the optimal parame-
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ters for the AAPNet in the object categorization task. The receptive
fields sizes range from 2 to 6 neurons in both pyramidal layers.

A large receptive field size leads to a bad classification rate, as
shown in the configuration with receptive field size 6 for both
pyramidal layers. This is an expected behavior since the receptive
field of a layer increases when the number of neurons in the layer
is reduced, leading to fewer features extracted and creating larger
homogeneous regions in the neural network output. For example,
if there is only one neuron in the last feature extraction layer L
of the AAPNet, the output of all the neurons in the reconstruction
layer R is the same. On the other hand, if the size of the receptive
field is too small, many features are going to be extracted and the
model is more sensitive to the variance in the objects. The optimal
configuration of the receptive fields sizes is 3 and 2 for the first and
the second pyramidal layers, respectively. This configuration ob-
tained a classification rate of 68.21% in the subset used to deter-
mine the optimal configuration.

Fig. 4 presents the classification rate obtained with different
overlap configurations using the optimal receptive fields configu-
ration shown in Fig. 3. The overlap sizes range from 0 to 2 in the
first pyramidal layer and from 0 to 1 in the second pyramidal layer.

The overlap configuration of size 1 for both pyramidal layers
presented the highest classification rate. The absence of an overlap
between adjacent receptive fields in both layers led to the worst
classification rate. It can be speculated that this absence reduces
the neural network fault tolerance since no redundancy is shown
between the neurons.

4.3. Experimental results

Fig. 5(a) and (b) show the performance of the AAPNet with the
parameters determined in the previous section varying the number
of classes (20,40,60,80 and 101) with 15 and 30 training images
per class, respectively. The experiments were performed with 20,
40, 60, 80, and 101 classes randomly selected and it is presented
as a box plot defined based on 10 runs for each number of classes.
The difference between the upper and lower quartiles increased
with a reduced number of classes which indicates that some clas-
ses are more difficult to be recognized or that there are very similar
classes. The results obtained with 101 classes presented the lowest
skewness and median classification rate since all the classes are
used in each run.

Fig. 6(a) and (b) present a histogram comparing the distances
from the categories ‘‘airplanes’’ and ‘‘faces’’ to the objects of the
other 100 classes, respectively. The frequency in the histogram re-
sults from the number of images with the distance to the class
belonging to intervals of size 10. The category ‘‘faces’’ presents a
big region of overlap with short distances with some patterns in
the Caltech-101 database. However, it is important to note that
the Caltech-101 has another face class, called ‘‘faces_easy’’.
Fig. 6(c) presents the comparison between the distances from the
‘‘faces’’ to the objects of other classes without the ‘‘faces_easy’’ pat-
terns. In this scenery, the distance overlap of the ‘‘faces’’ patterns
from patterns of the other classes is much lower. The area under
the ROC curve (Fawcett, 2006) for these categories are: 0.98 for
‘‘airplanes’’; 0.97 for ‘‘faces’’; and approximately 1.00 for ‘‘faces’’
without the ‘‘faces_easy’’ patterns. The results show that the AAP-
Net is able to detect objects and to define a large separation surface
between true and false examples.

Table 2 shows the results obtained with the AAPNet in the com-
plete Caltech-101 database compared with the results obtained by
state-of-the-art approaches. Two experiments, with 15 or 30
images randomly chosen per class for a single training run, were
performed. Wu et al. (2007) proposed a biologically inspired meth-
od for learning the visual features and presented the highest clas-
sification rate among the state-of-the-art classifiers. The AAPNet
achieved the best classification rate in both experiments with
7.22 and 5.41 percentile points higher than the ones obtained by
Wu et al. (2007) for 15 and 30 training images, respectively. The
AAPNet and the Support Vector Machines (SVMs) (Maji, Berg, &
Malik, 2013) do not use any feature extraction step, but the former
presents a recognition rate of nearly 10 percentiles points higher
than the latter. Moreover, the AAPNet is shown as the most stable
model since its standard deviation is the lowest one.
5. Concluding remarks

This work presented a novel neural network with implicit fea-
ture extraction for visual pattern recognition, called AAPNet. The
motivation for the development of such neural network relies on
the good results presented by the models that use the concepts
of receptive fields and autoassociative memory. The AAPNet is an
autoassociative pyramidal neural network that is able to learn
the inner structure of the patterns without the need of negative
examples. The experiments herein performed demonstrated that
the AAPNet is a valuable alternative in pattern recognition tasks.
The AAPNet obtained the best classification results in the object
categorization task. Another advantage of the AAPNet is its modu-
larization, where the emergence of a new class leads to the con-
struction of a new classifier without affecting the other already
trained neural networks. Moreover, the AAPNet does not need neg-
ative information to find the boundaries of a given pattern and it
can be appropriately applied in other pattern recognition tasks
with the advantages of the one-class classifiers.

We are currently investigating approaches to automatically find
the best parameters for the AAPNet architecture. In AAPNet, the
size of the receptive fields is the same for all neurons located in
a given layer. Another direction for future research is to develop
an algorithm to calculate a different receptive field size per neuron.
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