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a b s t r a c t

The gain or loss of an investment can be defined by the movement of the market. This
movement can be estimated by the difference between themagnitudes of two stock prices
in distinct periods and this difference can be used to calculate the volatility of the markets.
The volatility characterizes the sensitivity of a market change in the world economy.
Traditionally, the probability density function (pdf) of the movement of the markets is
analyzed by using power laws. The contributions of this work is two-fold: (i) an analysis
of the volatility dynamic of the world market indexes is performed by using a two-year
window time data. In this case, the experiments show that the pdf of the volatility is
better fitted by exponential function than power laws, in all range of pdf; (ii) after that,
we investigate a relationship between the volatility of the markets and the coefficient of
the exponential function based on the Maxwell–Boltzmann ideal gas theory. The results
show an inverse relationship between the volatility and the coefficient of the exponential
function. This information can be used, for example, to predict the future behavior of the
markets or to cluster the markets in order to analyze economic patterns.

© 2011 Elsevier B.V.

1. Introduction

Recent advances on the understanding of the economic phenomena and its statistical properties using concepts and
methods of physics have attracted the interest of researchers of different areas, such as physicists, mathematicians and
economists. The market fluctuation (volatility) analysis is very important to model the dynamic of the markets and is also
relevant for practical applications such as risk estimation and portfolio optimization [1].

The volatility [2] is a statistical measure of the deviation or dispersion of returns for a given share or market index. Its
value can be estimated by using some deviation measure, like mean of differences, variance or standard deviation between
returns from that same share or market index. Normally, the higher the volatility, the riskier the share. There are several
forms of volatility [2–5], for example historical volatility, implied volatility or more sophisticated models, such as the
exponentially weighted moving average (EWMA) used by RiskMetrics and GARCH process [6]. In particular, the GARCH
process is introduced in order to model long-range autocorrelations in absolute returns, as found in empirical data [7], and
to generate power-law tails in the distribution of returns [8]. Besides in autocorrelations, long-memory property has been
found in cross-correlations between different financial variables [9]. Here, the volatility is estimated by the mean of the
absolute differences between returns [4,10],

VT (t) =
1
n

t+n−1−
t ′=t

| ln S(t ′ + 1t) − ln S(t ′)|, (1)
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over a time window T = n · 1t , where n is a positive integer and 1t is the time-lag (in this work, for all data, 1t = 1 day).
This equation represents the average of the n data values and can be referred to as the sample average for the scale n. If n is
small, the average is more sensitive to high frequency data. If n is large, the average is more sensitive to low frequency data.
This scale n can variate from 1 to the maximum number of time series observations (here, n has the 1/day unit).

In the literature, many approaches for market modeling have been developed observing the return series (volatility
fluctuations) of the financial markets. Bachelier [11] proposed the Brownian motion to model the stochastic process of the
return. Based on the central limit theorem, this approach concluded that the return over a time scale 1t follows a Gaussian
Distribution. Other works developed by Mandelbrot [12,13], Fama [14] and Mantegna and Stanley [15] have claimed that
the distributions of the returns can be approximated by a symmetric Lévy stable law.

Other studies also analyzed the returns of the series. For example, Cont et al. [16] proposed the use of exponentially
truncated stable distributions, Eberlein et al. [17] have considered normal inverse Gaussian with asymptotical decay as
power law multiplied by an exponential and Longin [18] studied the distribution of minima and maxima with a Fréchet
distribution. Laherrere and Sornette [19] suggested to fit the distributions of stock returns by the Stretched Exponential
(SE) law. Recently, Queiros et al. [20] proposed the fitting of financial data with a q-Gaussian distribution. Podobnik et al.
[21,22] analyzed approximately 8000 stocks comprising Nasdaq and NewYork Stock Exchange (annually recorded). In these
works the pdf of the aggregated returns are approximated by Laplace distributions (double exponential) in the broad central
region.

Among several approaches to model the dynamics of the volatility fluctuations of the financial markets, the probability
density function (pdf) [21,22,16] is rather important. The pdf is a function used to represent the probability distribution of a
determined variable. In Econophysics, this analysis represents the relationship between high volatilities and low volatilities
as the probability of occurrence of each one. This information can be used to understand economic phenomena of markets
and provide new insights about the economic fluctuations, extreme events as crashes and high valorization in the value of
indexes of markets, temporal evolution of money, etc [1,23,5,24,25,2].

The focus of this paper is to understand the dynamics of the world market indexes by studying all range of volatilities,
using the probability density function of the series in a short window time. The idea is to find an approach that fits better to
data adhering to all regions of data.

Matia et al. [3] shown that the pdf of the volatility for the Indian stocks is fitted by an exponential law, while the pdf
of the volatility for American stocks is fitted by a power law in the distribution tail suggesting the existence of two classes
of markets. In this way, the motivation of this work is to indicate the best approach to model the world index markets
for all distribution range, thus a comparison is made with classical Econophysics approaches [1,26,27,3,28,29]: exponential
function and power laws.

Eq. (2) describes the power laws, where a and k are the proportionality constant and the exponent, respectively. The
power laws are quite widespread in the Econophysics literature [1,5,24,25,20] and are extensively used in various analysis,
including scaling properties, relation between large and small volatilities and observation of extreme events.

y = a · xk. (2)

The exponential function can be seen in Eq. (3), where the coefficients a and B are constants: a is the initial amplitude
(x = 0) and B is a decay rate. Dragulescu and Yakovenko [27,30,31] used the exponential function [32–34,19] to analyze the
distribution of money between the agents of a system. The study concluded that the distribution of money between rich
and poor agents follows the Maxwell–Gibbs Distribution. This distribution is governed by an exponential function similar
to

P(x) = a · e−B·x. (3)

Herein we use 17 world market indexes, from developed and developing economies, in order to evaluate exponential
function and power laws in the volatility analyses task.

This paper is organized as follows. Section 2 describes themethodology of the proposed analysis. Evidences and a possible
analogy between the dynamics of particle movements of an ideal gas, described by the Maxwell–Boltzmann Distribution,
and the dynamics of the stock markets is presented in Section 3. Finally, Section 4 discusses the final remarks.

2. Methodology

To test the approaches, exponential function and power laws, for a short window time observation, the daily returns of
seventeen world market indexes were analyzed for the period between January 2008 and January 2010. The chosen indexes
are from both developed and developing markets. The elected indexes are: United States of America (S&P500 and Dow
Jones Industrial Average), England (FTSE 100), Japan (Nikkei 225), Germany (Dax 30), French (CAC 40), Canada (GSPTSE),
Spain (Ibex 35), South Korea (Kospi), Italy (MIB), Sweden (OMX), Norway (OSEAX) and Singapore (STI), Argentine (Merval),
Mexico (IPC), India (Bse Sensex) and China (SSEC). Table 1 shows the indexes. In order to compare the performance of the
exponential function against the power laws in the adjustment of all the points of the probability density function, we design
the following steps:
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Table 1
Fitting errors (MSE) in semi-log and log-log scales.

Indexes (countries) Volatilities of indexes Least squares Trust region Levenberg–Marquardt Coefficient B
Log–log Semi-log Log–log Semi-log Log–log Semi-log B (LS) B (TR) B (LM)

Bse Sensex 1.8630 0.4244 0.0042 0.4244 0.0042 0.4244 0.0042 0.9448 0.9448 0.9448
OSEAX 1.8398 0.2909 0.0303 0.2909 0.0303 0.2909 0.0303 0.7874 0.7874 0.7874
SSEC 1.8074 0.3182 0.0064 0.3182 0.0064 0.3182 0.0064 0.8875 0.8875 0.8875
Merval 1.7870 0.2653 0.0182 0.2653 0.0182 0.2653 0.0182 0.8771 0.8771 0.8771
Nikkei 225 1.6716 0.2521 0.0250 0.2521 0.0250 0.2521 0.0250 0.8844 0.8844 0.8844
Dax 30 1.5733 0.2244 0.0305 0.2244 0.0305 0.2244 0.0305 0.8629 0.8629 0.8629
MIB 1.5399 0.2284 0.0392 0.2284 0.0392 0.2284 0.0392 0.8078 0.8078 0.8078
OMX 1.5234 0.2517 0.0069 0.2517 0.0069 0.2517 0.0069 0.9316 0.9316 0.9316
CAC 40 1.4942 0.1934 0.0106 0.1934 0.0106 0.1934 0.0106 0.9841 0.9841 0.9841
IBEX 35 1.4853 0.2436 0.0116 0.2436 0.0116 0.2436 0.0116 0.9559 0.9559 0.9559
S&P500 1.4807 0.2270 0.0174 0.2270 0.0174 0.2270 0.0174 0.8547 0.8547 0.8547
GSPTSE 1.4725 0.2422 0.0279 0.2422 0.0279 0.2422 0.0279 0.8274 0.8274 0.8274
Kospi 1.4054 0.2257 0.0292 0.2257 0.0292 0.2257 0.0292 0.8613 0.8613 0.8613
IPC 1.4028 0.2500 0.0123 0.2500 0.0123 0.2500 0.0123 0.8786 0.8786 0.8786
STI 1.3767 0.2462 0.0093 0.2462 0.0093 0.2462 0.0093 0.9003 0.9003 0.9003
FTSE 100 1.3609 0.2253 0.0432 0.2253 0.0432 0.2253 0.0432 0.9300 0.9300 0.9300
Djia 1.3561 0.2240 0.0427 0.2240 0.0427 0.2240 0.0427 0.9500 0.9500 0.9500

1. The return series is defined for each index as

g(t) =
(ln S(t + 1t) − ln S(t))

δ
, (4)

where 1t = 1 day, S(t) is the market index value at time t , and δ is the standard deviation of (ln S(t + 1t) − ln S(t)).
This formula [3] describes how the return series are constructed from the index series;

2. For each index, the volatility [10] described in Tables 1 and 2 was calculated by Eq. (1) with n = N , where N is the total
number of time series observations. The historical volatility is used and it is based on the average of the deviation for
the range of two years; here we used the historical volatility based on the average deviation of data on the period of two
years.

3. The probability density function (pdf) of the return series is estimated.
4. The power law adjustment and the exponential function adjustment are compared based on four algorithms: Least

Squares (LS) [35], Trust Region (TR) [36], Levenberg–Marquardt (LM) [37] and Maximum Likelihood Estimation (MLE)
[38,39]. The Mean of Squared Errors (MSE) is used as measure to evaluate the results for the LS, TR and LM methods.
For the MLE methodology, the negative log-likelihood [6] is used to evaluate the results, where lower the negative log-
likelihood result better the adjustment.

At first we analyze the pdf of series (in all range) using linear function: LS algorithm in log–log and semi-log scales. In the
semi-log scaling, the fitting corresponds to the adjustment by the exponential function, while in log–log scaling the fitting
corresponds to the adjustment made by the power law adjustment. In the second step, the original data (pdf of the return
series) was used and the fitting procedure was done based on three algorithms: TR, LM and MLE. We used exponential
function and power laws to adjust the data without any transformation, and after that, a comparison was made with the
linear fit.

The LM is an iterative algorithmwhich aims tominimize the cost function that is expressed as the sumof squares of a non-
linear real-valued function. This algorithm is widely adopted in a broad spectrum of disciplines, such as Mathematics [37]
and Computer Science [40]. The LM algorithm can be thought as a combination between the Gauss–Newton algorithm [41]
and the gradient descent method [42]. When the current solution is far from the correct one, the algorithm behaves like a
steepest descent method, guaranteeing the convergence.

The TR algorithm, also known as restricted stepmethod, searches for the region which solves theminimization problem.
In order to achieve it, the TR algorithm uses a model function (often a quadratic one). When the TR algorithm finds
a model to the objective function, the region is expanded, trying to find new promising regions to solve the problem,
conversely, if the adjustment is poor, the region is contracted, and the algorithm searches for other regions that can solve the
problem.

The Maximum Likelihood Estimation was originally developed by Fisher in the 1920s and is used for fitting the
parameters of a statistical model to the data. The method selects values of the parameters that maximize the probability
(likelihood) of the sample data and produce themost likely distribution. TheMLEmethods are versatile and can be applied to
most models and to different types of data. They provide efficient methods for quantifying uncertainty through confidence
bounds.

The TR and the LM provide numerical solutions to the problem of functionminimization. The LM andMLE are non-linear
algorithms, while the TR is a linear search method.
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Fig. 1. Comparison of linear adjustments using LS algorithm. (a–b) Fitting to Ibex 35 index (Spain) in semi-log and log–log scales, respectively. (c–d) Fitting
to BSE Sensex index (India) in semi-log and log–log scales, respectively. The black line is the probability density function (pdf) of indexes and gray line is
the fit line.

Table 2
Fitting errors (MSE and likelihood) using power laws and exponential function.

Indexes (countries) Volatilities of indexes Trust region MLE Levenberg–Marquardt Coefficient B
Power law Exponential Power law Exponential Power law Exponential B (TR) B (LM) B (MLE)

Bse Sensex 1.8630 0.00114 0.00011 −203.97 −513.7 0.00169 0.00011 0.9448 0.9448 0.9928
OSEAX 1.8398 0.00037 0.00031 −200.65 −541.4 0.00060 0.00031 0.9848 0.9848 0.9403
SSEC 1.8074 0.00026 0.00006 −224.19 −555.5 0.00089 0.00006 0.9070 0.9037 0.9146
Merval 1.7870 0.00058 0.00017 −312.87 −485.2 0.00107 0.00017 1.0370 1.0370 1.0499
Nikkei 225 1.6716 0.00024 0.00013 −217.01 −489.7 0.00072 0.00013 1.0580 1.0580 1.0406
Dax 30 1.5733 0.00123 0.00031 −147.77 −460.7 0.00067 0.00031 1.1280 1.1280 1.1016
MIB 1.5399 0.00121 0.00039 −175.07 −513.4 0.00067 0.00039 1.0240 1.0240 0.9934
OMX 1.5234 0.01503 0.00068 −215.17 −545.2 0.01860 0.00112 0.9892 0.9614 0.9334
CAC 40 1.4942 0.00160 0.00018 −173.07 −498.1 0.00123 0.00018 1.0690 1.0690 1.0314
IBEX 35 1.4853 0.00103 0.00013 −183.36 −515.9 0.00102 0.00013 1.0270 1.0270 0.9962
S&P500 1.4807 0.00083 0.00018 −174.47 −468.4 0.00064 0.00018 1.0720 1.0720 1.0929
GSPTSE 1.4725 0.00003 0.00001 −187.12 −501.0 0.00007 0.00001 1.0340 1.0340 1.0255
Kospi 1.4054 0.00084 0.00014 −170.61 −477.3 0.00065 0.00014 1.0820 1.0820 1.0740
IPC 1.4028 0.00047 0.00034 −235.28 −498.4 0.00101 0.00034 1.0540 1.0540 1.0308
STI 1.3767 0.00147 0.00011 −241.79 −510.7 0.00147 0.00011 0.9966 0.9966 1.0064
FTSE 100 1.3609 0.00071 0.00022 −215.51 −492.0 0.00071 0.00022 1.0660 1.0660 1.0437
Djia 1.3561 0.00061 0.00012 −215.83 −474.1 0.00061 0.00012 1.0570 1.0570 1.0807

3. Analysis

Table 1 shows the results found in first step, as described in Section 2. The results are in descending order of the volatilities.
Analyzing the results, it can be seen that the best ones were obtained when the semi-log scaling was used.

Fig. 1 shows two examples of the linear fit in the semi-log and log–log scales. The black points represent the experimental
observations and the gray lines are the fits. In the semi-log scale (Fig. 1a and c), the linear fit adheres better to the index
probability density function because it is capable of obtaining a good adjust for all regions of the pdf of the volatility. In the
log–log scale the fitting is poor because the adjustment was done for all data and not only for the tail showed in Fig. 1b and
d. When the model is adjusted only for tail, the results found in the literature [1,5,24,25] show that a linear fit is a good
choice.

In the second step, the exponential function and the power laws were used as described in Section 2. The results found
by the three fittingmethods (TR, LM andMLE) are shown in Table 2 in descending order of the volatilities. It can be seen that
the exponential function obtained a better fit than the power laws in all the indexes when the TR method was used, based
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Fig. 2. Comparison of adjustments using Trust Region algorithm in semi-log scale. (a–b) Fitting to Ibex 35 index (Spain) with exponential function and
power laws, respectively. (c–d) Fitting to BSE Sensex index (India) with exponential function and power laws, respectively. The black line is the probability
density function (pdf) of indexes and gray line is the fit line.

on the MSE. Besides, the difference between two function adjustments is an order of magnitude in the MSE. Similarly, when
the LM method was used, the exponential function was better than the power laws in the analyzed indexes. The results
obtained through the Maximum Likelihood Estimation shows that all indexes are best fitted by exponential function.

Figs. 2–5 show examples of the fitting generated by the exponential function and by the power laws, where the black
points are the experimental observations and the gray lines are the fits. The exponential function adheres better to the index
probability density function because it is capable of doing a good adjust for all regions of the pdf, including the beginning
and the end of the tail, where the pdf has a more instable behavior. However, if just the end of the tail is considered, the
power law fit is very accurate and can describe this region of the pdf, as reported by Matia et al. [3] and by other works
[1,5,24,25].

This instable behavior at the end of the tail occurs due to the high values in the return series. These are the cases where
the investor has a higher gain or a higher loss, which can represent a possible crash [1]. Therefore, it is very important to
understand the dynamics of this part of the return series, even knowing that it occurs with a low probability.

In the economic theory, there are two basic hypotheses about the stock markets: the random walk hypothesis and the
non-randomwalk hypothesis. The randomwalk hypothesis is a financial theory stating that stockmarket evolves according
to a random walk model. Therefore, the market cannot be predicted [43,44]. However, some economic scientists believe
that the market is predictable to some degree (in general, weakly predictable). They believe in the non-random walk
hypothesis [45,46].

If the stock markets are formed by particles (agents) and these particles do not interacting with each other (random
walk hypothesis) or have a weak interaction (non-random walk hypothesis), such a system can be viewed as an ideal
gas. Therefore, it is possible to suppose an analogy between the financial values of the stocks and the energy of the
particles, each particle can change its energy (or velocity) with a probability that decays exponentially with the magnitude
of its energy change (as observed in the pdf of the return series). This analogy, in the classical description, should
follow the Maxwell–Boltzmann Distribution. Based on this assumption, it is possible to define the temperature of the
market.

It is reasonable to associate the volatility with the temperature of the market. If the market is agitated its temperature is
high, otherwise, if the market is not agitated its temperature is low. Temperature implies thermal energy; therefore, if the
market is observed from the point of view of an ideal gas, the markets should be characterized by a given temperature (or
volatility).

The Maxwell–Boltzmann Distribution [47] describes the probability function of the particle energy (or velocity), where
the particles do not constantly interact with each other but move freely between short collisions (random shocks). This
statistics is used to describe the distribution of the particles over various energy states in thermal equilibrium. Discarding
the quantumeffects, this thermal equilibrium is characterized by the lowdensity of the particles andby thehigh temperature
of the system. This variation in the velocity of particle generates thermal energy, resulting in an increase (or decrease) of
the agitation of the particles.
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Fig. 3. Comparison of adjustments using Trust Region algorithm in log–log scale. (a–b) Fitting to Ibex 35 index (Spain) with exponential function and
power laws, respectively. (c–d) Fitting to BSE Sensex index (India) with exponential function and power laws, respectively. The black line is the probability
density function (pdf) of indexes and gray line is the fit line.

Fig. 4. Comparison of adjustments usingMaximumLikelihood Estimation in semi-log scale. (a–b) Fitting to Ibex 35 index (Spain)with exponential function
and power laws, respectively. (c–d) Fitting to BSE Sensex index (India) with exponential function and power laws, respectively. The black line is the
probability density function (pdf) of indexes and gray line is the fit line.

Based on the context of an ideal gas, the companies’ shares negotiated by investors could be compared with particles.
Thus, if this assumption is plausible, the companies’ shares could be described by a Maxwell–Boltzmann Distribution.

With this inmind, the temperature of an ideal gas can be related to the volatility of themarket. Thus, higher temperature
leads to higher volatility and lower temperature of the economic system leads to lower volatility of the market.
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Fig. 5. Comparison of adjustments usingMaximum Likelihood Estimation in log–log scale. (a–b) Fitting to Ibex 35 index (Spain) with exponential function
and power laws, respectively. (c–d) Fitting to BSE Sensex index (India) with exponential function and power laws, respectively. The black line is the
probability density function (pdf) of indexes and gray line is the fit line.

A relationship between Eq. (5) (the Maxwell–Boltzmann Statistics) and Eq. (3) (exponential function) is given by Eq. (6).

y = a · e−E/kb·t (5)

B =
1

kb · t
. (6)

This theory corroborates with the dynamics found between the coefficients of an exponential function (Eq. (3)) and the
volatility of the indexes used in this paper. The relationship found between the B coefficients of the exponential function
and the system temperature (Eq. (6)) can be extrapolated to the market system, as observed in Fig. 6 and in Tables 1 and 2:
when the volatility decreases (the energy decreases or the temperature decreases), the B coefficient increases. Fig. 7 shows
that the relation between the B coefficient and the volatility tends to be a constant, as can be demonstrated by Eq. (7)

B ∝
1

Volatility
⇒ B · Volatility = C (7)

where C is the proportionality constant between the B coefficient and the volatility. For the experiments with the
LS algorithm, the constant found was C = 1.38 ± 0.08, for the TR and LM experiments, C = 1.53 ± 0.07, and for MLE
experiments, C = 1.58 ± 0.07.

These facts indicate that the Maxwell–Boltzmann theory can be valid to analyze the pdf of the return series presented in
this article. Thus, the market system could be treated like a gas system [48].

The performed experiments corroborate with the relationship between the B coefficient and the volatility given by
Eq. (7). The financial risk of a given market over a specified time can be quantified by the volatility or by the B coefficient. In
other words, they measure the instability/fluctuation of the markets.

The Maxwell–Boltzmann theory describes the relationship between the particle’s speeds of an ideal gas and the
temperature of the system. Thus, the degree of the market’s fluctuation may be supposed as the particle’s energy, which
is proportional to the temperature. In Eq. (6), the same relationship can be seen: the B coefficient is inversely proportional
to the temperature of the system. This is a valuable information which can be used to cluster different markets or to predict
the behavior of different markets.

4. Conclusions

To evaluate the exponential and power law approaches, several testswere performed to find the best fitting to probability
density function of the return series. The pdf describes the dynamics of the volatility fluctuations of the financial markets.
The tests were performed in two steps: first, a linear fitting was done using three algorithms, Least Squares (LS) [35],
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(a) Least Squares. (b) Trust Region.

(c) Levenberg–Marquardt. (d) Maximum Likelihood Estimation.

Fig. 6. Comparison between the volatility and the B coefficient: (a) by Least Squares, (b) by Trust Region Method, (c) by Levenberg–Marquardt method
and (d) by Maximum Likelihood Estimation. In both plots, the dots are the volatilities of the indexes and the stars are the B coefficients of the indexes. The
solid line and dashed line are the linear fitting of the volatilities and B coefficients, respectively.

(a) Least Squares. (b) Trust Region.

(c) Levenberg–Marquardt. (d) Maximum Likelihood Estimation.

Fig. 7. Relationship between volatility and B coefficient calculated by (a) the Least Squares, (b) the Trust Region, by (c) the Levenberg–Marquardt and by
(d) the Maximum Likelihood Estimation. In both plots, the dots are the product B · Volatility and the solid line is the mean value of these dots.

Trust Region (TR) [36] and Levenberg–Marquardt (LM) [37], after that, the fitting was performed on the original data
using the exponential function and the power laws with the TR, LM and Maximum Likelihood Estimation (MLE) [38]
algorithms.

The observed fitting error with the exponential function is smaller than the adjustment error obtained by the power laws
for the analyzed data. The exponential function fits all regions of data while the power law fits only the tail. The exponential
approach can bring insights about the modeling of the stock market volatility. This initial study demonstrates that, in the
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period studied, the indexes of the developing markets can be modeled by exponential function as well as the indexes of the
developed markets. Therefore, this conjecture seems to be promissory to the development of a new approach to model the
dynamic of the market.

The investigated series are formed by two-year observations, while the observations generally found in the literature of
the Econophysics have ten or more years. Matia et al. [3] observed that developed markets (or stable markets) are guided
by power laws, and developing markets are guided by an exponential function. Here, both types of markets (developed and
in developing) are guided by an exponential function and the analysis is made in all range of the pdf, not only in the head
or the tail. In this sense, the pdf of the volatility of the market, when analyzed in all data range, is better described by an
exponential function than power laws. One possible explanation for the best performance of exponential adjust can be the
short window of time used. In this case, the terms of short memory may be prevailing in relation to terms of long memory.
Therefore, new experiments will be done with different time window sizes. The idea is to test other time window sizes
and to analyze their behavior. Probably, there is a minimal size of the time window, that can be possible to distinguish low
temperature markets from high temperature markets, through power laws and exponential function as Matia et al. [3].

Furthermore, maybe a critical length of time windows also can exist, where from this length the developed markets are
described by a power law. Then, if the developmentmarkets depends on length of timewindow,maybe it should be possible
to make a connection with critical phenomena and phase transition on markets, as studied by Sornette [49] in his theory of
bubbles and crash in markets. These analyses also will be done.

Based on the Maxwell–Boltzmann Distribution, a relationship between volatility and the B coefficient is established for
all experiments. In a finance system, the volatility can be seen as the temperature, when comparedwith an ideal gas system.
The larger the market agitation, the higher the temperature of the markets and the higher the volatility of the index. These
conclusions are supported by the results and strengthen the Maxwell–Boltzmann approach to model financial time series.

A relevant fact is the existence of a relationship between volatility and the B coefficient and this coefficient could be used
as a new measure to quantify the movement of the markets. The B coefficient, according to the point of view of the market
as an ideal gas system, could be used to estimate the market volatility in order to compare different markets. Normally,
developed markets have a high value of B coefficient and developing economies have a small value of B coefficient. Thus,
the investor can forecast the behavior of the market or can understand the relationship between high and small volatilities.
This can be an interesting tool for financial market analysis.
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