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Hybrid Solution for the Feature Selection in Personal Identification
Problems through Keystroke Dynamics
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Abstract Techniques based on biometrics have been
successfully applied to personal identification systems. One
rather promising technique uses the keystroke dynamics of each
user in order to recognize him/her. In this work, we present the
development of a hybrid system based on support vector
machines and stochastic optimization techniques. The main
objective is the analysis of these optimization algorithms for
feature selection. We evaluate two optimization techniques for
this task: genetic algorithms (GA) and particle swarm
optimization (PSO). In the present study, PSO outperformed
GA with regard to classification error and processing time, but
was inferior regarding the feature reduction rate.

I. INTRODUCTION

Jnformation security systems based on keystroke dynamics
'have been currently attracting considerable attention as a
cheap solution that is more transparent to the user than
fingerprint or iris recognition [1]. In this type of system, a
user is identified by a login, a password and a keystroke
pattern, the latter of which is a unique trait that is far more
difficult to copy than the others and runs no risk of ever
being lost. This system could be used in any setting where
the user needs a password in order to gain access to
particular information and/or functionalities, including
Internet access [2].

Personal verification systems through some type of
behavioral biometric characteristic, such as signature, voice
or keystroke dynamic, are normally constructed from a set of
examples that define the user. In the case of keystroke
dynamic, it would be necessary for the user to type his/her
name or password a number of times in order for the system
to be able to extract the relevant features that uniquely
represent the user. However, the task of typing one's name
over and over is both tiring and tedious, which could lead
users to alter their normal pattern. Thus, most systems based
on biometrics are required to work with a summarized set of
information from which to extract knowledge. In order to
reduce this problem, we could eliminate some features of the
original dataset, selecting only the best ones in terms of class
cohesion. Another advantage that emerges is: reducing the
number of features to be learned (thereby increasing the
accuracy of the system), we also diminish the processing
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time required. One way to reduce this set of information
would be to have a specialist delete the less representative
data, but such a task is subjective and subject to errors [1]. It
is expected that a system of this type should be executed
automatically, where the user only has the task of typing
his/her data repeatedly. The entire recognition process is
accomplished by the system automatically. In the present
work, we propose a feature selection approach based on
Particle Swarm Optimization (PSO) [3], [4], [5], which is an
evolutionary computation optimization technique based on
the flocking behavior of birds. The results are compared with
a technique based on genetic algorithms (GA) that was
previously investigated by Yu and Cho [1].

In the next section, the Support Vector Machine (SVM)
model is introduced and in the Section III, the PSO
algorithm is introduced. In Section IV, it is presented an
approach used to feature selection. Section V presents the
methods used in the pre-processing of the data. Section VI
describes the acquisition and division of the database. The
experiments performed and their results are presented in
Sections VII and VIII, respectively. Finally, in Section IX,
we have the conclusions and suggestions for further studies.

II. SUPPORT VECTOR MACHINE

In recent works, such as [6] and [7], SVM models have
been proposed to solve novelty detection problems. The
basic idea of this approach is the creation of a region that
encloses the vast majority of data pertaining to a particular
class, making it possible that some authentic patterns of the
class are not contained within this region. The model would
generate the smallest possible region that could enclose the
majority of data. Besides that, it would define a particular
threshold that indicates how far a particular pattern could be
outside this region and still be considered an authentic
pattern. The idea behind SVM is to map the input dataset in
a high-dimensional feature space, corresponding to the
kernel function, and then separate them from the origin with
a maximum margin. The algorithm would find a function f
that returned +1 in the region that encompasses the majority
of patterns contained in the input dataset, and -1 for data
outside this region. After finding this function, any new
pattern that was presented to this algorithm would have its
value f(x) determined by the indication of which side of the
hyperplane it was found in the feature space (returning +1
for patterns considered authentic and -1 for novel patterns),
as shown in Figure 1.
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h(x)= Z, aik(xi,x)-p,
1 SV

where the sum is only valid for the multipliers associated to
the support vectors. p is the threshold, which is calculated
during training (for further details, see [8]).

Origin

Novel Data

Figure 1 - SVM model for novelty detection.

The most used kernel function in novelty detection
problems is Gaussian, given by Equation 1:

K(x, y) = exp(- x-y) /2T2, (1)

where the parameter u is responsible for the variation in the
different estimates of regions in which the authentic data
would be contained. It is important to point out that the
Gaussian kernel ensures Mercer's condition, in which, for
every value of u, K(x,y) corresponds to the internal product
between patterns x and y, after these patterns have been
mapped for the set of features, as we can see in Equation 2.

K(x, y) = ($(x) @(y)). (2)
The regions founded by the SVM algorithm are

determined by the training dataset. These regions are

determined by border patterns, if a pattern is inside the
regions (authentic pattern), otherwise it is outside the regions
(novelty). The data that compose this subset are called
support vectors.

Without going into great detail, in order to separate
authentic patterns from unauthentic ones, the SVM algorithm
attempts to optimize the following expression:

III. PARTICLE SWARM OPTIMIZATION

PSO was introduced in the mid 1990s by Kennedy and
Eberhart [4] and is a stochastic search technique that aims to
optimize an objective function. It was developed through
attempts to graphically simulate the movement patterns of
birds in searching food. Later, in the search for theoretical
foundations, studies were carried out on the manner in which
individuals in society generally interact, exchanging
information and reviewing their concepts in the search for
better solutions to their problems [5].

In PSO, a population (swarm) of solutions (particles) is
maintained. Let s be the size of the swarm, n be the
dimension of the problem and t be the current instant, each
particle 1 < i < s has a position xi(t) E Rn in the space of
solutions and a velocity vi(t) E Rn that governs the direction
and range of its movement. Moreover, each particle has a

memory yi(t) E Rn of the best individual position visited
until instant t, and the swarm has a memory of the best
position it has visited so far.
As the algorithm runs, the velocity of each particle is

calculated according to two main references: the best
individual position visited yi(t) (cognitive term of
optimization) and the best position visited by the swarm

y (t) (social term of optimization). After calculating the

velocity by Equation 6, the position of the particle is updated
by Equation 7.

Vi(t+1) = w0vi(t)+cr1j(y, (t)-xi (t))+C2r2 (At)-xi (t)) , (6)

xi(t+ )=xi(t)+vi(t+) (7)
minYE aiaiXkk(x, ),
a

subjected to the following restrictions:

Eau =1, Vi O<a < 1

X vd

(3)

(4)

where d represents the dimensionality of the data and v is a

free parameter that acts as both the upper bound for patterns
considered fraudulent and the lower bound for the support
vectors [8]. v can take on values between 1/n and 1, where n

is the number of patterns. The ai variables represent the
Lagrange multipliers; there is one for each pattern contained
in the original set. The task of the algorithm is to find the
values of these coefficients. It is important to stress that only
the Lagrange multipliers associated to the set of support
vectors have values different from zero. When these
multipliers are obtained, the decision function is defined as:

Item w is the weight of inertia (term ofmomentum), which
multiplies the velocity of the previous instant t and makes the
search more explorative at the beginning and more exploitive
at the end, as its value generally drops linearly from 0.9 to
0.4. The terms ri and r2 are random variables taken from
U1(0, 1) and U2(0, 1), respectively. Both possess the
function of randomizing the influences of each term of
expression (individual and global). The coefficients of
personal and global acceleration, 0< ci, c2 < 2, respectively,
generally possess fixed, equal values and are responsible for
controlling how far a particle will move in a single iteration.

The best position visited yi(t) of each particle is updated
by Equation 8, whereas the updating of the best position
visited by the swarm is accomplished by Equation 9.
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(1fy,(t), se f(xi(t+1)) f(yi (t)){itx+(t+ 1), sef(x,(t+1)) f(.y,(t))'

3(t+1)=argminf(y1(t+1)), l<i<s. (9)

The calculated velocity vi(t + 1) in each cycle is generally
limited to the interval [-v x, vmax], with Vmax = kXmax, 0.1 <
k < 1. 0 which does not ensure that the particle is always
within the boundaries of the search space, but limits the
maximum distance the particle can move in a single iteration.
Figure 2 displays the complete algorithm of the PSO pattern.
The characteristics frequently attributed to PSO are rapid
convergence into unimodal functions, with a good success

rate, and the premature convergence into multimodal
functions, with a high correlation between components.
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Figure 2 - PSO algorithm.

IV. FEATURE EXTRACTION

To capture keystroke dynamic, it would be necessary for
users to type their own name a number of times. The system
would set about capturing these features using two methods
regarding the time (in milliseconds) that a particular user

maintains the key pressed and the time elapsed between
releasing one key and pressing the next (latency time).
Hence, we have, for example, a pattern that represents the
user "ABCD", illustrated in Figure 3, formed by a size 7
timing vector. The first element of the vector is the length of
time in which the first key remains pressed; the second
element is the latency time between releasing the first key
and pressing the second; the third element is the length of
time in which the second key remains pressed, and so on. In
general, for a word of size n, a vector will be formed made
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Figure 3 - Timing vector corresponding to a pattern "ABCD".

up of features the size of 2n-1. In this case, we have n
features that represent the lengths of time in which the keys
remained pressed and n-I features that represent the time
elapsed between consecutive keys. In the present work, each
pattern is formed by a vector with these lengths of time in
milliseconds.

V. PRE-PROCESSING OF THE DATA

In the pre-processing step of the features, a clean-up of the
data is performed in order to improve the performance of the
system. In the present work, this step includes data
normalization and feature selection. We use the sample
standard deviation of the features to normalize the data [9]. It
is important to point out that these methods are performed by
class in order to create a system that is customized to the
user.
As mentioned above, most pattern recognition systems

based on behavioral biometrics (online and offline
signatures, keystroke dynamic, etc.) have few data with
which to represent the classes and a considerable amount of
features to learn. The idea of the selection task is to obtain a
subset of features that allows better rates of correct
identification (with increased system performance) than with
the entire set of features. This subset is obtained
automatically. The user only has the work of presenting the
training data to the system. The system then generates the
feature selection model.

Feature selection is an optimization problem, since the aim
is to obtain any subset that minimizes a particular measure
(classification error, for instance). As we know, an
optimization problem can be solved through stochastic
algorithms. In [1], the authors used genetic algorithms (GA)
to perform the selection task. In the present study, we
propose an approach based on particle swarm optimization
(PSO) algorithm.

In [8], it was shown that the feature selection task can be
classified into two categories: filter and wrapper. The filter
approach does not depend upon the algorithm used for
verification, whereas the wrapper approach does depend
upon this algorithm. Therefore, the filter approach is far
more efficient (in terms of computational time) than the
wrapper approach, as there is no need to train a particular
algorithm numerous times with various possible subsets of
features. Selection through a filter simply discards irrelevant
features through a given measure. In [9], for instance, the
features that presented the largest coefficients of variance
(CV = c7/X ) were discarded because they exhibited
considerable variation between patterns, which tends to
hinder the recognition task. In the wrapper approach, the
idea is to generate several subsets of features, evaluate them
through a given algorithm and choose the subset that
represents the best solution. This approach achieves better
results than the filter approach, but is only viable if the
algorithm used to train the classifier is efficient.



In the present work, we present a feature selection model
that uses PSO as the optimization algorithm and SVM as the
verification algorithm due to its known accuracy in pattern
recognition problems [10]. The proposed model follows the
structure displayed in Figure 4

In [1], GA was used to optimize a vector with binary
features, where 1 indicates the presence of the feature and 0
indicates its absence. Each particle of a PSO is formed by a
vector of real numbers and the algorithm optimizes this
vector. In the present work, therefore, we decided to use this
vector of real numbers as the likelihood of a feature being
present in the subset, because these numbers represent the
influence about the features. Thus, we normalize their values
between 0 and 1. We also define a likelihood threshold that
indicates that the feature is present in the subset if it has a
value equal to or greater than this threshold and is absent
otherwise. Thus, the final vector is formed by binary
characters, as presented in [1]. In the present work, the
function to be minimized is represented by the general
classification error, which is calculated from the sum of the
FAR (False Acceptance Rate) and FRR (False Rejection
Rate) obtained by the SVM for the subset of features.
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Figure 4- Hybrid model for feature selection through SVM and PSO.

VI. DATABASE AcQUISITION AND DIVISION

The database used in the present work was the same used
in [9]. The data were obtained through a software program
developed in the Visual Basic language, which retrieves the
necessary information that defines the keystroke dynamic of
each user. The database used in this proj ect is made up of
information from 24 different users. Each user entered
his/her complete name approximately 60 times. To obtain the
data that represent frauds against the system, some users
entered the complete names of other users approximately 5
times. The database generated here has approximately 60
authentic patterns and 40 false patterns for each of the
classes.

In the present work, each user entered his/her complete
name, which resulted in large vectors. For some classes, the

input vectors had sizes greater than 70. The database used
here was divided into 40 training patterns, 10 validation
patterns and the remaining patterns were used for testing. As
the database had a few classes containing less than 60
patterns (some with as little as 56 patterns, resulting in just 6
test patterns, which would have been of little significance),
we opted to discard classes with less than 59 patterns in the
data set. Thus, four classes were discarded, resulting in a
total of 20 classes used.

VII. EXPERIMENTS

The experiments conducted in the present work attempted
to illustrate that PSO can be used as an alternative to GA in
feature selection problems. As in [1], we used a basic GA
and tested two possible PSO configurations. The verifier was
the SVM as proposed in [6], [7]. After specifying the
parameters of the verification and optimization algorithms,
we performed 30 executions of the experiment, which
included the presentation of the training data, feature
extraction, pre-processing of the data (normalization and
feature selection) and the verification step (through the test
set). The system evaluation proposed was performed using
three measures: classification error, processing time in
seconds and the reduction percentage of the set of features.

The classification error is presented by two measures:
FAR, when the system accepts an imposter (or fraud) as
authentic, and FRR, when the system rejects an authentic
user.

Another evaluation measure used in the present work
regards the feature reduction capacity of the entry set. For
example, if we have a pattern that initially has 60 features
and after concluding the selection step, this pattern has 36
features, we have achieved a reduction of 4000.
As mentioned above, the verifier used in the present work

was based on support vector machines. The kernel function
used is Gaussian function, the most commonly employed for
pattern recognition work. The value of the parameter a used
in this equation was obtained empirically and is 0.015. The
value of v was also obtained empirically and is also 0.015.

The only parameter from the genetic algorithm that varied
was the population size, which reached values of 20, 30 and
40 individuals. Each individual of the population was
represented by binary vector. The crossover rate was 0.8 and
the function used was the two-point crossover. The mutation
rate was 0.1 and its function was uniform.

For the PSO algorithm, we used two configurations: one
that considers the personal global acceleration coefficients,
C1 e C2, to be 1.5 and another that considers them to be 2.0.
These values were obtained empirically. For the inertia
weight w (momentum term), the values drop linearly from
0.9 to 0.4 [3]. As with GAs, the PSO algorithm can be
executed a maximum of 1000 iterations. The threshold
values, which indicate the minimum likelihood that a feature
must possess in order to make up part of the feature subset,
were 0.7, 0.8 and 0.9.



VIII. RESULTS

In this section, we present the results obtained from our
experiments. The Table 1 displays the results from the SVM
verifier using a GA as the evolutionary algorithm for the
feature selection task. The Tables 1 and 2 display the results
achieved from PSO combined with SVM. From Table 1, we
can see that the best results presented (regarding
classification error, execution time and reduction rate) from
the genetic algorithms were for the population composed of
40 individuals. In this case, the total error was 5.19%, having
presented a FAR of 0.43%. The average execution time was
3.6s and the reduction rate was 52.49%. We can see that
GAs present better results as population size increases. This
is particularly true with regard to execution time, where the
average exhibited a reduction of over 50%, dropping from
7.67s to 3.6s with the increase in population from 20 to 40
individuals. However, we can also see that the reduction rate
of the feature set remains virtually unaltered throughout the
experiments at approximately 52%.

Table I - Results obtained from the GA pattern.

Pop FRR(0/0) FAR( /o) class.error (0%o) Time (s) Reduction(0/o)
mean s.dev mean s.dev mean s.dev mean s.dev mean s.dev

20 7.11 6.41 0.53 0.95 7.64 6.63 7.67 12.95 52.29 2.72
30 5.65 5.87 0.40 0.70 6.05 6.02 4.75 8.49 52.16 1.88
40 4.75 4.89 0.43 0.82 5.18 5.111 3.60 7.27 52.49 2.36

0.9 and a population containing 30 particles. The results
achieved here were better than those obtained from the GA
and the PSO with accelerations of 1.5 regarding
classification error, but were inferior to the previous PSO
regarding the execution time and inferior to the GA
regarding feature reduction rate. The best configuration
achieved a 1.58% classification error, with a 0.41% false
positive error, which is higher than that of the previous PSO.
Average execution time was 0.69s, the second worst time for
these experiments and worst than that achieved by the
previous PSO, but still better than that achieved by the GA.
The reduction rate was 47.510%, which was inferior to the
rates achieved by the GA, but better than those obtained by
the previous PSO. An in the previous experiment, we see an
improvement in the feature reduction rate with an increase in
population.

Table 3 - Results from PSO 2.0.
Thr-Pop FRR(%) FARF(%) class.error (%) Time (s) Reduction(%)

mean s.dev mean s.dev mean s.dev mean s.dev mean s.dev
0.7-20 5.09 5.62 0.08 0.28 5.17 5.67 0.32 0.26 31.22 2.94
0.7-30 4.80 6.15 0.02 0.07 4.82 6.14 0.42 0.26 30.06 2.47
0.7-40 6.14 7.15 0.06 0.26 6.20 7.10 0.51 0.16 30.12 1.82
0.8-20 4.42 5.28 0.03 0.08 4.45 5.28 0.27 0.27 38.89 3.65
0.8-30 3.41 5.01 0.03 0.10 3.44 5.04 0.36 0.40 37.46 1.89
0.8-40 3.51 4.85 0.29 0.83 3.80 5.24 0.45 0.39 37.76 1.86
0.9-20 2.06 3.20 0.41 0.88 2.47 3.56 0.60 1.70 47.34 2.69
0.9-30 1.18 1.43 0.41 1.14 1.59 2.18 0.69 1 .75 47.51 2.60
0.9-40 2.92 4.66 0.07 0.20 2.99 4.67 0.74 1.82 46.68 2.49

Table 2 displays the results obtained for PSO with
personal and global acceleration at 1.5. The best result for
this algorithm was obtained from a PSO with a threshold of
0.9 and a population containing 30 particles. The result here
was better than the one achieved with the GA regarding
classification error and execution time, but inferior with
regard to feature reduction rate. The best configuration
achieved a 2.21% classification error, with a false positive
error of 0.14%. Average execution time was 0.66s, which
was the worst time result of these experiments, through still
far below that achieved by the GA. The reduction rate was
46.67%, the second best rate obtained here. It should be
pointed out that there was a considerable improvement with
regard to feature reduction rate as the threshold rose, going
from approximately 27.5% to approximately 46.5%.

Table 2 - Results obtained with PSO 1.5.
Thr-Pop FRR(%) FAR((%) class.error (%) Time (s) Reduction(%)

mean s.dev mean s.dev mean s.dev mean s.dev mean s.dev
0.7-20 7.33 8.07 0.05 0.21 7.38 8.09 0.34 0.31 27.58 3.00
0.7-30 7.21 9.67 0.10 0.32 7.31 9.65 0.42 0.22 27.69 2.10
0.7-40 5.74 6.98 0.03 0.13 5.77 6.96 0.51 0.14 27.281 1.33
0.8-20 3.21 4.04 0.35 0.91 3.56 4.31 0.26 0.20 36.60 2.70
0.8-30 3.42 5.43 0.12 0.50 3.54 5.50 0.391 0.41 36.30 2.55
0.8-40 3.80 4.67 0.22 0.46 4.02 4.77 0.49 0.50 36.141 2.10
0.9-20 2.24 3.11 0.18 0.48 2.42 3.37 0.52 1.21 47.30 2.93
0.9-30 2.07 3.21 0.14 0.50 2.21 3.35 0.661 1.72 46.67 2.56
0.9-40 2.45 3.80 0.33 0.53 2.78 3.93 0.601 1.21 46.50 2.00

The following three figures present graphs that relate the
results obtained from the best configurations of the GA and
PSOs for the three performance measures. Figure 5 shows a
comparative graph of the classification errors in which we
can clearly see that the results obtained by the PSO with
accelerations of 2.0 were better than the other procedures in
practically all classes. We can also see that the GA was
either inferior or at least equal (in few situations) for all
classes.
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Figure 5- Graph of classification errors obtained by GA, PSO 1.5 and PSO
2.0.

Figure 6 displays the execution times obtained for each of
the classes. We can see that the time obtained with the GA
remains higher than that obtained by the two PSO
configurations used here. We can also see that the times
obtained by the two PSO configurations tested here are
practically equal.

Table 3 displays the results obtained for PS0 with
personal and global acceleration at 2.0. The best result by
this algorithm was obtained from a PSO with a threshold of
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Figure 6 - Graph of processing times obtained by the GA, PSO 1.5 and
PSO 2.0.

The Figure 7 displays the feature reduction rates obtained
by the GA and PSO algorithms. Differently from the other
two measures, the GA exhibited the best performance in this
case, with a higher reduction rate that obtained by PSO in
practically all classes.
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Figure 7 - Graph of feature reduction rates obtained by the GA, PSO 1.5
and PSO 2.0.

IX. CONCLUSION

As we can see in the previous section, the PSO
evolutionary algorithm showed a suitable solution to the
feature selection task. In the experiments carried out in the
present work, PSO was superior to the GA pattern in two of
the three performance measures evaluated. It was superior to
the GA regarding classification error and processing time,
while it was inferior regarding feature reduction rate.
Between the two PSO configurations tested, that which was

defined with personal and global acceleration at 2.0 obtained
better results than that which was defined with personal and
global acceleration at 1.5 regarding classification error and
feature reduction rate, while it was inferior with regard to
processing time. We can also see that, despite the former
having obtained a better result regarding classification error,

the latter obtained a lower FAR. It should be pointed out that
in most identification systems, it is more important to have a

lower FAR than a lower FRR.
In future work, we intend to explore further the use of

PSO as an algorithm for feature selection, with the aim of
further studying the variation of its parameters and their

influence on the results. We also intend to test some
techniques based on statistics, as in [9], to be executed
before PSO. Another possible alternative is to dispense using
thresholds in PSO and use the final likelihood directly on a
particular feature. Thus, if a given feature possesses a
likelihood of 0.8, its final value would be 80% of the original
value. Yet another alternative would be to use auto-
associative neural networks as verifiers, as, despite [2]
having determined that these networks in conjunction with
SVM are quite slow for the feature selection task, we see that
PSO exhibited a processing time far below that of the GA.
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