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A simple and efficient approach to the protein secondary structure

prediction problem is presented and evaluated with four established

measures: Q3, Matthews coefficients, Qobserved and Qpredicted. They are

applied to the raw data and also to features extracted with the PCA and

the ICA methods. The results obtained are better than any predictor

trained in similar conditions.

Introduction: In this Letter, an important step towards determining

the 3D conformation of a protein is studied: the prediction of its

secondary structure, i.e. recurrent arrangements in the tertiary struc-

ture that can be distributed in three classes: a-helix, b-strand and

coils.

Different approaches have been proposed to this classical problem.

Those that use machine learning methods, neural networks, in parti-

cular, have achieved the best results [1]. Nonetheless, the computational

resources required are becoming higher and higher. On the other hand, it

is common to have a new database developed for each new predictor, and

the comparison of the performance of these predictors under different

conditions can be misleading [1].

In an effort to switch that trend, we developed a protein secondary

structure predictor, GMC [2], which ensembles three classifiers in a

simple architecture. Expressive results were achieved using the estab-

lished databases RS126 and CB396 [3] for training and testing the

networks. Afterwards, a differential point was introduced in the GMC

predictor: a preprocess phase for compressing the input data through

one of the two methods: principal components analysis (PCA) [4] and

independent component analysis (ICA) [5]. The significant Q3 accuracy

achieved in the three experiments motivates a more detailed analysis of

their results, which is presented in this Letter.

Data set and evaluation method: The experiment was realised with

the database developed by Cuff and Barton [3] labelled CB396. The

database is composed by 396 dissimilar protein sequences.

In the evaluation method used, the set of proteins was split into M

subsets, training the network with the (M� 1)N=M remaining proteins,

and performing the test with the N=M removed proteins. The value used

for M was seven, in order to make the experiments as close as possible

to the ones applied by Cuff and Barton [3]. The results reported here are

the average prediction accuracies from the seven different testing sets.

In this Letter, besides Q3, that gives the percentage of correctly

classified residues, three alternatives measures are reported: the

Matthews correlation coefficient [6], Qobserved and Qpredicted. The

Matthews coefficient helps to minimise the effects of over- and

under-predictions due to the inherited unbalanced distributions of the

classes in the databank.

Cx ¼
ð pxnxÞ � ðuxoxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnx þ uxÞðnx þ oxÞð px þ uxÞð px þ oxÞ
p ð1Þ

The Matthews coefficient is defined by (1), where px¼Mx,x, nx¼

Sj 6¼ x
3 Sk 6¼ x

3 Mj, k, ox¼Sj 6¼ x
3 Mj, x, ux¼Sj 6¼ x

3 Mx, j, x is one of the tree

classes involved: Helix, Strand or Coil, and M is the confusion matrix.

The coefficient Cx is in the range þ1 (indicating classes totally

correlated) to �1 (to indicate classes totally anti-correlated). The

accuracy for each class x was evaluated through two per-state percen-

tages Qobserved , represented by Qx
%obs (2) and Qpredicted , represented by

Qx
%pdr (3).

Q%obs
x ¼

px

px þ ux

� �
� 100 ð2Þ

Considering all residues observed in a particular class x, Qx
%obs gives the

percentage of residues correctly predicted. For Qx
%pdr, this percentage is

calculated considering all the residues predicted in a particular class.

Q%pdr
x ¼

px

px þ ox

� �
� 100 ð3Þ

Architecture and experiments: Three fully connected neural networks

with one hidden layer were used. They were trained with the RPROP

algorithm, using as input data PSI Blast profiles [4, 5, 7] of the

sequences in the same data set, CB396. The differential between the

networks was the fact that each one had a distinct number of nodes

(30, 35 or 40) in the intermediate layer, which were established after

many experiments. The output layer had three nodes in all networks,

one for each class (Helix, Strand and Coil). The rules used to combine

the nets were: Voting, Product, Average, Maximum and Minimum.

For the last four rules the function Softmax [8] was used to normalise

the outputs of the neural networks (Fig. 1).
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Fig. 1 System architecture

Three experiments were performed: one over the raw data [2], and two

after feature extraction procedures, PCA [4] and ICA [5], respectively.

Results: The best results were reached with the ensemble of the three

neural networks using the Product and the Average combination rules.

Using the Q3 measure, the predictor achieved the best result reported in

the literature using the raw data, 75.9%. For the experiments with a feature

extraction phase, the results with ICA were, on average, 0.5% better than

the results with PCA. The best result using PCA for feature extraction,

74.5%, was achieved when 180 principal components were informed to the

networks. Using the same number of independent components, the Q3

percentual for the ICA experiments was 74.9%. In all experiments the

standard deviation was low, remaining in the range of 1.73 for the

experiments with raw data, 1.57 when 180 principal components were

used, and 1.83 for 180 independent components. In the three experiments,

the GMC performance was superior to the best known result in the same

conditions, 72.9%, obtained by CONSENSUS (a combination of four

predictors, PHD, NNSSP, PREDATOR and DSC) [3].

Table 1: Comparative analysis between different implementations
of GMC predictor and CONSENSUS using Mathews
coefficients, Qobserved and Qpredicted

Method

GMC (without
PCA—Product

rule)
GMC (PCA180—

Product rule)
GMC (ICA180—

Product rule) CONSENSUS

Ca 0.70 0.67 0.67 0.63

Cb 0.61 0.58 0.59 0.55

Ccoil 0.57 0.55 0.56 0.50

Qa
%obs 81.4 79.9 80.2 70

Qb
%obs 73.8 71.6 74 55

Qcoil
%obs 72.6 71.2 71.1 81

Qa
%prd 79 78.4 77.8 81

Qb
%prd 64.4 62.3 61.9 73

Qcoil
%prd 79.5 77.5 79.5 65

A comparison among the predictors that had presented the four best

Q3 accuracies over CB396 database is shown in Table 1. The measures

used were Matthews coefficients, Qobserved and Qpredicted. The values

used for CONSENSUS, nowadays called JPred, were the most recent

reported by EVA [9]. Comparing GMC with and without the feature

extraction, the implementation with raw data obtained the best results

for all the coefficients used, except for the measure Qobserved applied to

the data coming from the experiment with the ICA method. The

Matthews coefficients of GMC were higher than the coefficients of

CONSENSUS for all the classes. The percentages Qobserved were better

for GMC except for the class Coil, where CONSENSUS had a

percentage 8% better. For the Qpredicted measure the percentage for

Coil class was better than for the GMC predictor. Regarding the Strand

and Helix classes, the CONSENSUS obtained higher value, but the

results for Helix class remain comparable. Table 2 reveals the Matthews

correlation coefficients for the best predictors available nowadays. The

GMC predictor trained with raw data presented Ca and Ccoil superior to
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the others. Only the Cb coefficient was worse. Using PCA as a

preprocessing phase, the coefficient Ca is inferior only that one of

GMC. The Ccoil is in the average of other predictors and Cb presented

the less relevant result.

Table 2: Comparative analysis between protein structure prediction
methods using Mathews coefficients

Method Ca Cb Ccoil

GMC (without PCA—Product Rule) 0.70 0.61 0.57

GMC (ICA180—Product Rule) 0.67 0.59 0.56

GMC (PCA180—Product Rule) 0.67 0.58 0.55

PROF 0.67 0.65 0.56

SSpro 0.67 0.64 0.56

PSIPRED 0.66 0.64 0.56

PHDpsi 0.64 0.62 0.53

CONSENSUS 0.63 0.55 0.50

PHD 0.59 0.59 0.49

Conclusion: A simple and efficient secondary structure predictor was

presented and evaluated. Three experiments were performed, one with

the raw data and two others using PCA and ICA for feature extraction.

Considering the raw data, the best Q3 performance for predictors

trained with the CB396 was achieved, 75.9%. Reducing the dimension

with PCA and ICA, the accuracy maintained good levels, only 2%

inferior when 30% of the original data was informed to the networks.

The analysis with Matthews correlation coefficients revealed that the

GMC with raw data achieved the best Ca and Ccoil indices in the

literature, being the value of the Cb index comparable to the others.

The index for the experiment with PCA kept good levels for Ccoil and

Ca, overcome only by GMC without feature extraction. For ICA

experiments, the Ccoil and Cb values were slightly better than those

obtained with PCA. For all measures used, the GMC predictor presented

an excellent performance for helices. But this fact was not observed for

the class Strand, owing to the long-range interactions, motivating new

research directions in order to avoid this problem. The combination

that presented the best results for the GMC predictor was implemented

as a web server, and can be accessed at http://biolab.cin.ufpe.br/tools.
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