

Projetão da Disciplina

Germano C. Vasconcelos Centro de Informática - UFPE

Objetivo

Realizar um projeto com base de dados reais em larga escala com modelos de redes neurais e outros classificadores

Motivações

- Possibilitar uma visão prática do uso de redes neurais na solução de problemas
- Consolidar os conhecimentos teóricos apresentados em sala de aula
- Permitir o contato com ferramentas do Github, Keras, Scikit-learn na Linguagem Python

Projeto – Análise de Risco de Crédito

- Classificação binária (2 classes)
 - Base real do mercado
 - Em larga escala: ~ 390 mil registros para treinamento e ~190 mil registros para teste
 - 137 variáveis
 - Problema: com base no perfil do cliente, decidir a quem conceder crédito (risco de inadimplência)

Descrição do Projeto

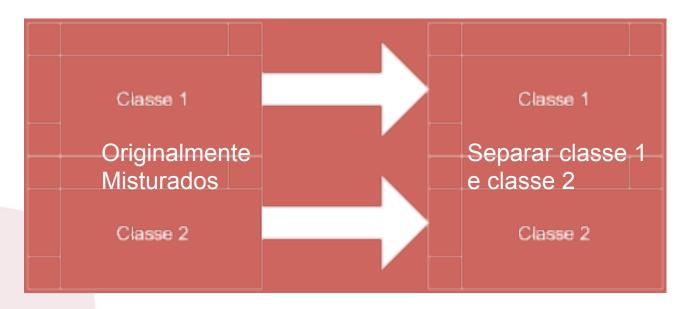
- Conjunto de classificadores disponíveis
 - Perceptron multicamadas (MLP) (obrigatório)
 - Máquina de Vetores de Suporte (obrigatório rodar 1 configuração)
 - Ensemble de MLPs (obrigatório)
 - Random Forest (usado para comparação)
 - Gradient Boosting (usado para comparação)
 - Ensemble de Classificadores (usado para comparação)
- Investigar diferentes topologias da rede e diferentes valores dos parâmetros (básico)
 - Número de camadas
 - Número de unidades intermediárias
 - Variação da taxa de aprendizagem
 - Função de ativação
 - Usar método de amostragem básica (random oversampling)

Descrição do Projeto

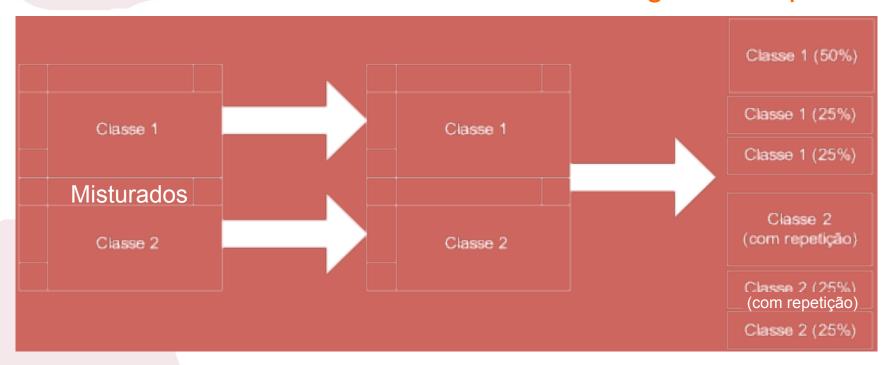
- Parâmetros adicionais que podem ser explorados
 - Algoritmo de aprendizagem
 - Taxa de aprendizagem adaptativa
 - Outros

Preparação de Dados: (divisão e balanceamento)

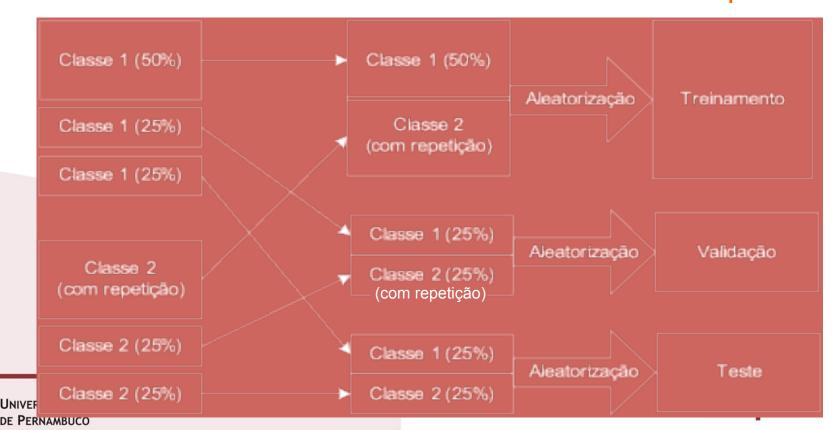
- Conjuntos de dados independentes
 - Treinamento (já está separado)
 - Validação (já está separado)
 - Teste (já está separado)
- Estatisticamente representativos e independentes
 - Não pode haver sobreposição



Preparação de Dados: (divisão e balanceamento)

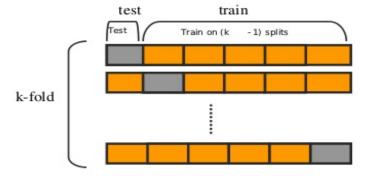

Particionamento dos Dados - Primeira etapa

Preparação de Dados: (divisão e balanceamento)



Particionamento dos Dados – Segunda etapa

Preparação de Dados: (divisão e balanceamento) Centro (divisão e balanceamento)


Particionamento dos Dados – Terceira etapa

Preparação de Dados: (divisão e balanceamento) (divisão e balanceamento)

Particionamento dos Dados com Kfolds

K-fold Cross Validation

- Randomly divide your data into K pieces/folds
- Treat 1st fold as the test dataset. Fit the model to the other folds (training data).
- Apply the model to the test data and repeat k times.
- Calculate statistics of model accuracy and fit from the test data only.

OBS: use 1 fold para validação também em cada rodada

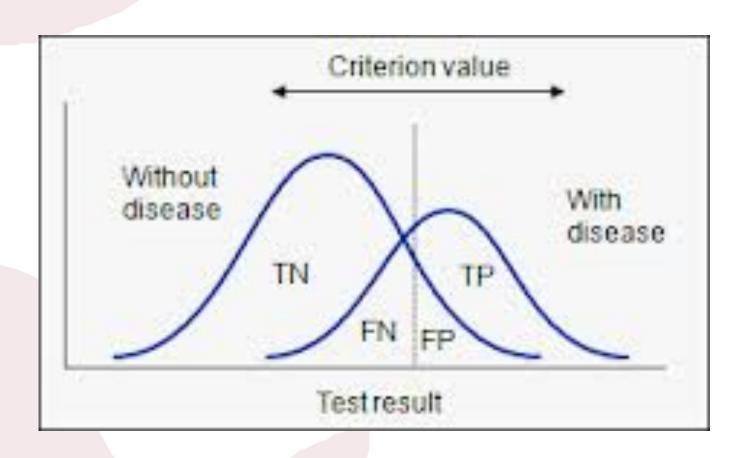
Análise de Desempenho

Classificação

- Teste estatístico Kolmogorov-Smirnov -KS (principal)
 - usado para rankeamento na competição
- MSE (erro médio quadrado)
- Matriz de confusão
- Auroc (Área sob a Curva Roc)
- Recall, Precision e F-Measure

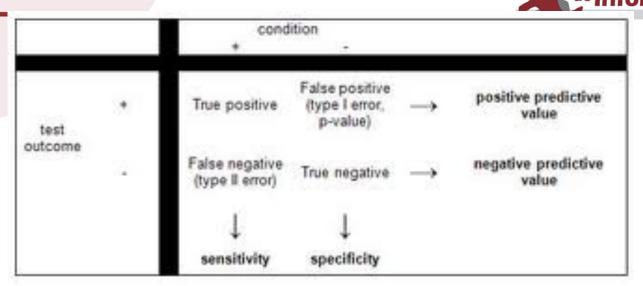
Experimentos

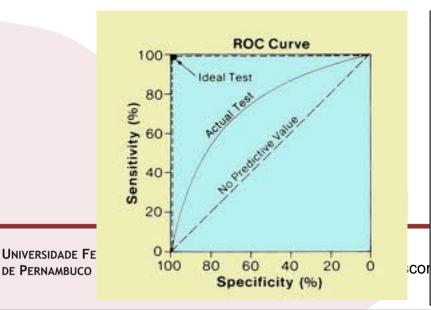
- Pré-processamento das bases originais
 - Tratamento de dados ausentes (missing data)
 - Remoção de ruídos (outliers)
 - Remoção de inconsistências (desnecessário)
 - Codificação
 - Criação de variáveis agregadas
- Base já processada (iniciar projeto com esta)
 - Usar para desempenho comparativo
 - Criação de variáveis agregadas
- Importante
 - Registrar o desempenho de forma evolutiva, a cada tratamento dos dados avaliar o desempenho

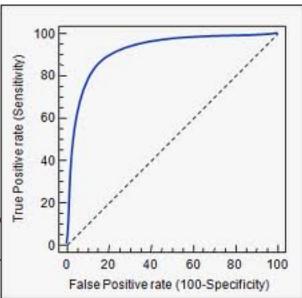

Experimentos

Sugestão:

- Iniciar com um modelo MLP e um modelo Random Forest (neste, investigar se com a base original o desempenho é melhorado)
- Após bom desempenho com esses modelos, classificadores alternativos podem ser investigados
- (emsembles de MLPs, gradient boosting, emsembles mistos, votação, meta-classificadores)




Matriz de Confusão


		Actual classification	
		positive	negative
nesis	positive	true positive (tp)	false positive (fp)
Hypothesis	negative	false negative (fn)	true negative (tn)

Curvas ROC

Curvas ROC: Exemplo

Ferramentas para o Projeto

- Código em Python
 - https://github.com/RomeroBarata/IF702-redesneurais
- Conjuntos de dados do problema
 - http://www.cin.ufpe.br/~gcv/web lci/intro.html

Resultados do Projeto

- Apresentação com todos do grupo com descrição do problema, divisão dos dados, estrutura experimental e interpretação dos resultados
- Entrega no final do semestre