

Modelo de Hopfield

Germano C. Vasconcelos Centro de Informática - UFPE

Histórico

Em 1982 - Hopfield, Professor of Biology and Chemistry at Caltech desenvolveu um novo paradigma para Redes Neurais que impulsionou o desenvolvimento da área ...

Motivação

 Em sistemas físicos com um grande número de elementos, interações entre eles geram fenômenos coletivos estáveis ...

Isso levou Hopfield a seguinte conjectura:

Redes de unidades de processamento que interagem entre si podem levar a fenômenos coletivos equivalentes ?

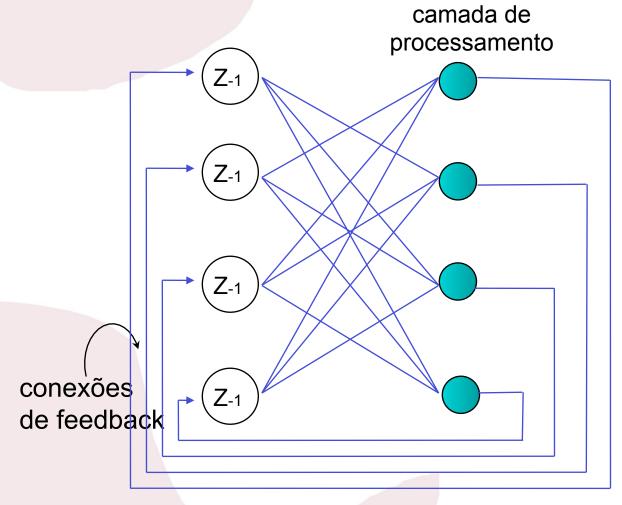
Conclusão

 Sistemas de neurônios conectados possuem estados estáveis que são atingidos quando a rede é estimulada por estados similares...

Mas qual é a grande sacada?

Os estados podem ser obtidos através de mudança nos pesos das conexões ...

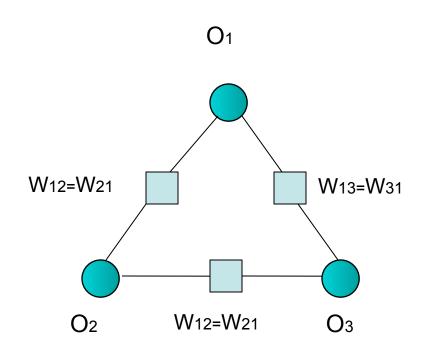
Arquitetura do Modelo



Características

- Uma única camada de unidades de processamento totalmente conectada
- Neurônios do tipo MCP
- Estrutura recorrente (com feedback)
- Unidades são ao mesmo tempo de entrada e de saída
- Funcionamento assíncrono
- Conjunto de saídas define "estado" da rede

Considere a Rede...



Operação da Rede

Cada neurônio funciona exatamente como o MCP:

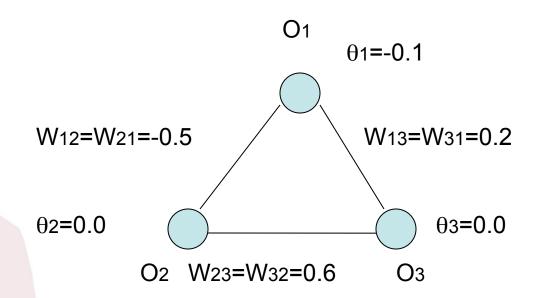
$$y = f_h \left[\sum_{i=1}^n w_i x_i - \theta \right]$$

com uma característica peculiar : assincronismo

Operação da Rede

- Cada neurônio pode disparar a qualquer momento com uma "taxa média" de tentativas de disparo
- Um certo no. n de tentativas/por segundo
 - em s segundos temos então em média n.s disparos por neurônio
- A qualquer momento, cada neurônio tem a mesma probabilidade de disparar

Um Exemplo:



Dado um estado O1,O2,O3 = 000 pode-se calcular o estado seguinte considerando o que aconteceria se cada um disparasse

Se neurônio 1 tentar disparar ...

$$0x(-0.5) + 0x(0.2) = 0 > \theta_1 (-0.1)$$
, resultado O1=1 O1,O2,O3 = 100

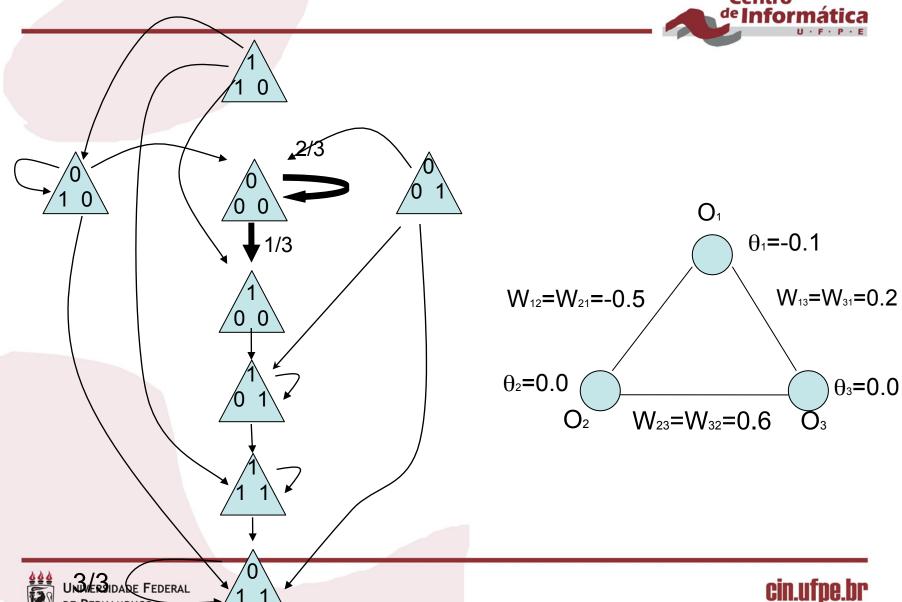
Se neurônio 2 tentar disparar ...

$$0x(-0.5) + 0x(0.6) = 0 = \theta_2 (0.0)$$
, resultado O2=0 O1,O2,O3 = 000

Se neurônio 3 tentar disparar ...

$$0x(0.2) + 0x(0.6) = 0 = 0$$
 (0.0), resultado O3=0 O1,O2,O3 = 000

Diagrama de Estados



© Germano Vasconcelos, CIn-UFPE

cin.ufpe.br

- Uma das características mais interessantes do modelo está na associação do conceito de energia com os estados da rede ...
- E, mais importante, na sua minimização como uma propriedade emergente!
- Dada uma quantidade E associada com o estado da rede ...
 - E deve cair (ou permanecer como está) toda vez que um neurônio muda de estado (Oi →Oj)

Isso só ocorre quando :

Oi = 0 e $\Sigma WijOj - \theta i$ é positivo então ΔOi é positivo

OU

Oi = 1 e $\Sigma WijOj - \theta i$ é negativo então ΔOi é negativo

O que resulta no produto :

 $\Delta Oi (\Sigma WijOj - \theta i)$ ser sempre positivo

Portanto, a variação na energia da rede é definida como:

 $\Delta E = -\Delta Oi (\Sigma WijOj - \thetai)$

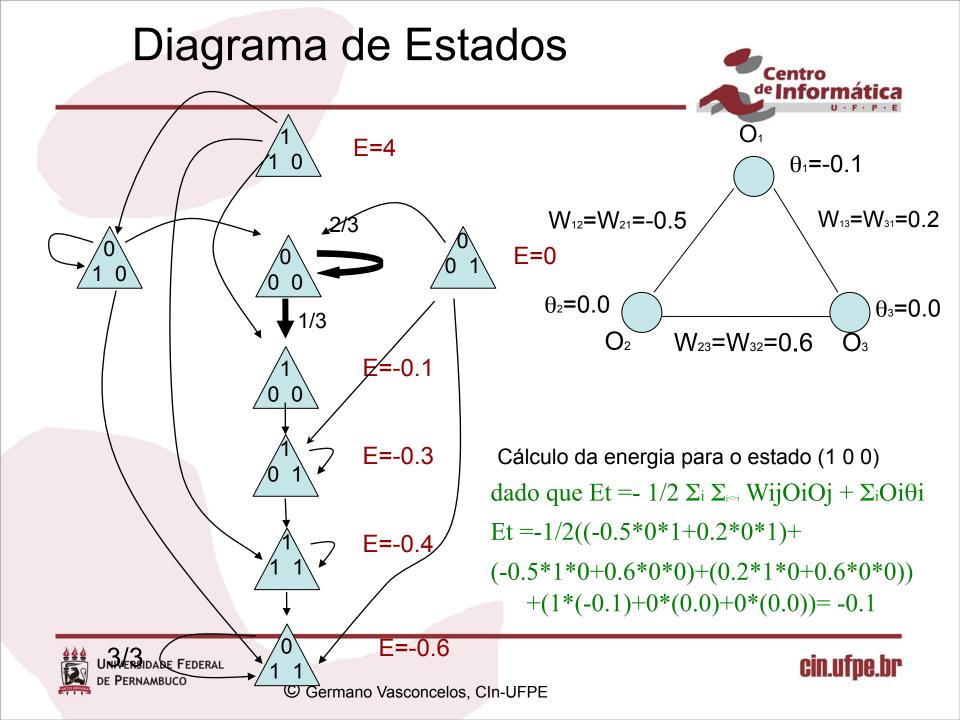
Garantindo que ΔE é sempre negativa ou nula quando um neurônio muda de estado

Concluindo, a energia de um nó i pode ser definida :

$$E = -Oi (\Sigma WijOj - \theta i) = -\Sigma WijOiOj + Oi\theta i$$

E a energia total do sistema em um dado instante se torna:

Et =
$$-1/2 \Sigma_i \Sigma_j \otimes_i WijOiOj + \Sigma_iOi\thetai$$



Como Definir Estados Estáveis?

"A rede só terá utilidade se houver como criar ou selecionar os estados estáveis"

Existem duas maneiras:

- 1. Cálculo direto das conexões
- 2. Treinamento da rede

Imposição de Restrições

É alcançado através da imposição de restrições

Para que i seja estável nenhum dos nós deve provocar mudança de estado...

$$E = - Oi (\Sigma WijOj - \theta i)$$

Imposição de Restrições

Então

se Oi é positivo $\Rightarrow \Sigma$ WijOj - θ i tem que ser positivo se Oi é negativo $\Rightarrow \Sigma$ WijOj - θ i tem que ser negativo

Ex: $O_1O_2O_3 = 010$ como estável

$$O_1=0 \Rightarrow W_{12}O_2+W_{13}O_3 - \theta_1 < 0 \Rightarrow W_{12}-\theta_1 < 0$$

$$O_2=1 \Rightarrow \theta_2 < 0$$

$$O_3=0 \Rightarrow W_{12}-\theta_3 < 0$$
 (Sist. de Inequações Simultâneas)

Treinamento da Rede

Métodos para a solução de equações simultâneas ⇒ "time consuming"

Alternativa ⇒ treinamento da rede

Widrow-Hoff \Rightarrow W_{ij}(t+1)=W_{ij}(t)+ η [d(t)-y(t)].Oi (Regra Delta) ou

Produto externo \Rightarrow W_{ij} = $\sum x_{pi}x_{pj}$, para $i \neq j$ [+1,-1] 0, para i = j

Produto Externo $W_{ij} = \sum x_{pi}x_{pj}$, $i \neq j$ Centro de Informática

- Como perceptrons e MLPs, algoritmo baseia-se na minimização de uma função
- Nesse caso, a função de energia para um padrão particular $p = (x_0, x_1, ..., x_{n-1})$ (estado a ser armazenado)

$$E = \frac{1}{2} \sum_{i} \sum_{i \neq j} w_{i,j} x_i x_j + \sum_{i} x_i T_i$$

- Para que E seja negativo, 1o XiTi tem que ser negativo ou igual a 0
- Xi = -1 ou 1, Ti teria que ter sinal oposto a Xi.
- Outros padrões p teriam valores diferentes de Xi, então termo com Ti pode aumentar energia. Se Ti=0, resolve.

Produto Externo: Treinamento

 Considerando agora o primeiro termo, separando a influência do padrão p na energia:

$$E = -\frac{1}{2} \sum_{i} \sum_{i \neq j} W_{i,j} \chi_{i} \chi_{j}$$

Temos:

$$E = -\frac{1}{2} \sum_{i} \sum_{i \neq j} w'_{i,j} x_i x_j - \frac{1}{2} \sum_{i} \sum_{i \neq j} w_{i,j}^p x_i^p x_j^p$$

Produto Externo: Treinamento

- Primeiro termo está relacionado com contribuição de todos os demais padrões (exceto p) na energia e não tem como ser mexido
- Como segundo termo depende diretamente de p pode ser minimizado. Como é negativo, o problema se resume a maximizar:

$$\sum_{i} \sum_{i \neq j} w_{i,j}^{p} x_{i}^{p} x_{j}^{p}$$

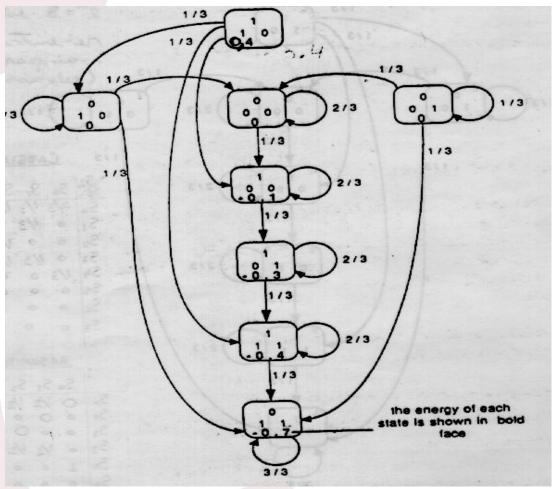
Uma forma simples de resolver é fazer w^p_{i,j} = x_ix_j, o que torna a expressão tão grande quanto possível já que x_i, x_j são +1 ou -1 e seu quadrado é positivo:

Produto Externo: Treinamento

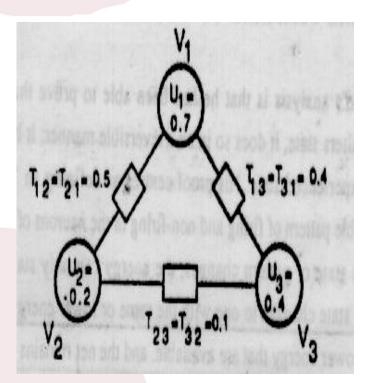
 Ou seja: fazer ∑XpiXpj, i≠ j para todos os padrões p a serem armazenados

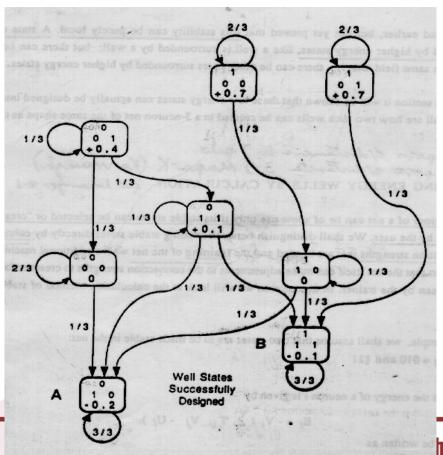
Torna possível o treinamento da Rede de Hopfied.

Rede de Hopfield - Energia

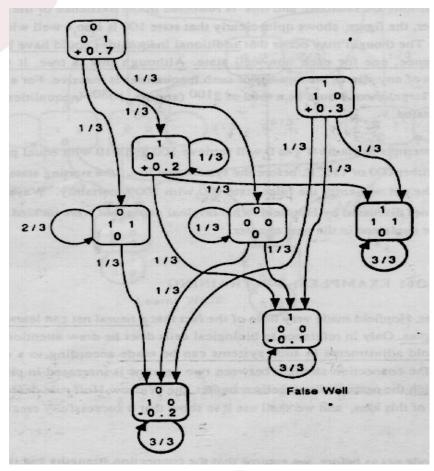


Rede de Hopfield - Aprendizagem



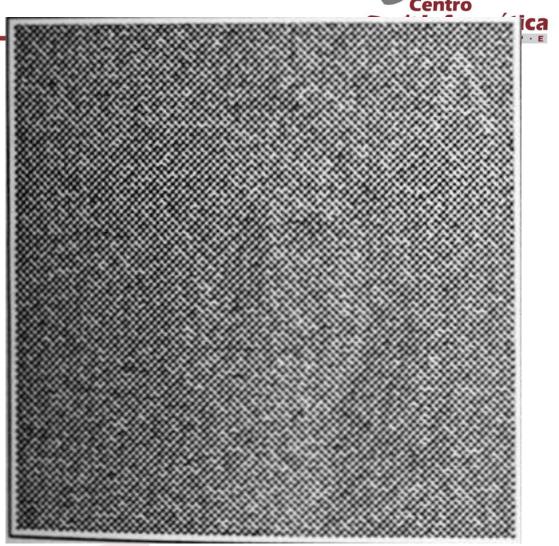


Problema: Falsos Estados Estáveis

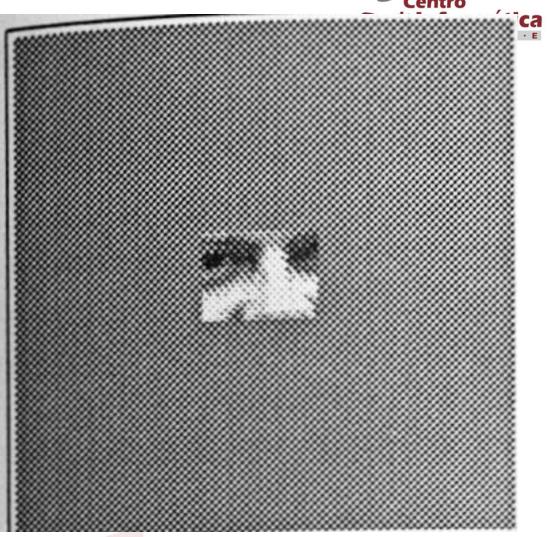


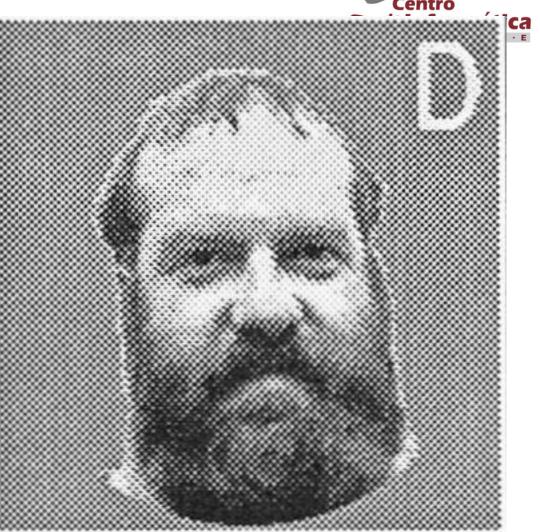
Pattern Restoration

Pattern Completion

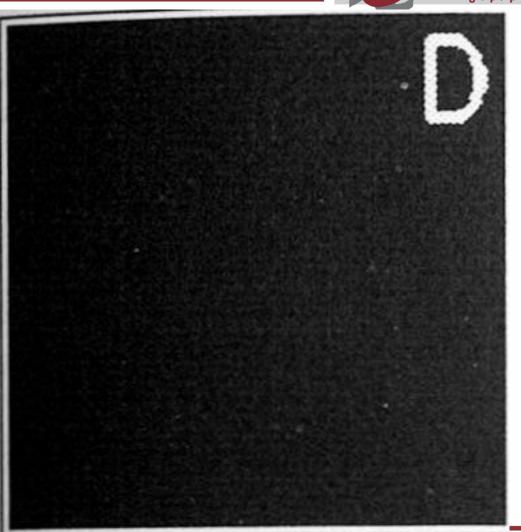


Exemplo de Pattern Completion

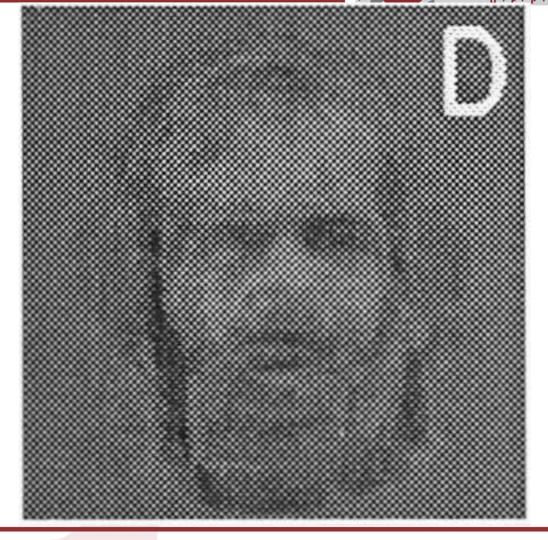




Exemplo de Associação



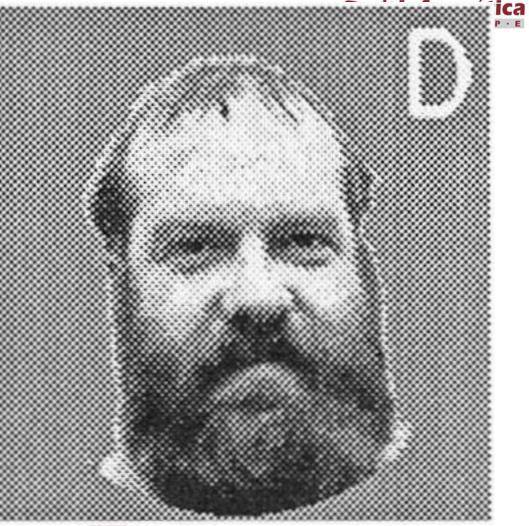
Exemplo de Associação



Exemplo de Associação

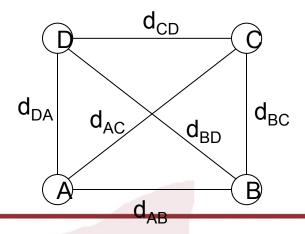
Exemplo de Associação

Exemplo de Associação



Caixeiro Viajante

 No exemplo, nós representam cidades e arestas os caminhos com as distâncias entre elas (dij)



Caixeiro Viajante

- Objetivo
 - Estabeler um rota entre as cidades, de menor distância, visitando cada cidade uma única vez
- Arquitetura da rede de Hopfield:
 - Quantos neurônios?
 - Treinamento dos pesos?

Restrições (constraints) definem os parâmetros

- Para n cidades e n posições, estabelecer uma correspondência cidade-posição
 - Número de neurônios = n cidades * n posições
- 2. Cada cidade exatamente em 1 posição
- 3. Cada posição exatamente para cada 1 cidade
- 4. Distância total deve ser minimizada

Arquitetura

- Matriz n * n matrix onde linhas representam cidade e colunas posições
- célula(i, j) = 1 se city(i)
 somente se cidade i esima está na posição j esima
- Cada célula 1 neurônio
- n^r neurônios, O(n⁴) conexões

 $pos(\alpha)$

1. Cada cidade em apenas 1 posição. Cada linha tem apenas um 1.

$$E_1 = \frac{A}{2} \sum_{i=1,\alpha \neq \beta}^n \sum_{\alpha=1}^n \sum_{\beta=1}^n x_{i\alpha} \cdot x_{i\beta}$$

$$E_1 = \frac{A}{2} \sum_{i=1,\alpha \neq \beta}^n \sum_{\alpha=1}^n \sum_{\beta=1}^n x_{i\alpha} \cdot x_{i\beta}$$

city(i)

Se houver situação como essa, o erro aumenta!

pos(α)

1	1	

Tem apenas 1 cidade em cada posição. Cada coluna tem apenas um 1.

$$E_2 = \frac{B}{2} \sum_{\alpha=1}^n \sum_{i=1}^n \sum_{j=1, i \neq j}^n x_{i\alpha} \cdot x_{j\alpha}$$

$$E_2 = \frac{B}{2} \sum_{\alpha=1}^n \sum_{i=1}^n \sum_{j=1, i \neq j}^n x_{i\alpha} \cdot x_{j\alpha}$$

city(i)

Se houver situação como essa, o erro aumenta!

pos(α)

1		
1		

3. Não deve haver mais do que n 1's na matriz

$$E_3 = \frac{C}{2} \left(\sum_{i=1}^{n} \sum_{\alpha=1}^{n} x_{i\alpha} - n \right)^2$$

- Se somarmos E₁ + E₂ + E₃ garantimos as restrições de ocorrências....
- Mas ainda falta?

4. Distância mínima percorrida

$$E_4 = \frac{D}{2} \left[\sum_{i=1}^n \sum_{j=1, j \neq i}^n d_{ij} \cdot x_{i\alpha} \cdot (x_{j,(\alpha+1)} + x_{j,(\alpha-1)}) \right]$$

 d_{ij} = distância entre cidade i e cidade j

Energia Final Minimizada

$$E = E_{1} + E_{2} + E_{3} + E_{4}$$

$$E_{1} = \frac{A}{2} \sum_{i=1,\alpha \neq \beta}^{n} \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} x_{i\alpha} \cdot x_{i\beta}$$

$$E_{2} = \frac{B}{2} \sum_{\alpha=1}^{n} \sum_{i=1}^{n} \sum_{j=1,i\neq j}^{n} x_{i\alpha} \cdot x_{j\alpha}$$

$$E_{3} = \frac{C}{2} \left(\sum_{i=1}^{n} \sum_{\alpha=1}^{n} x_{i\alpha} - n \right)^{2}$$

$$E_{4} = \frac{D}{2} \left[\sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} d_{ij} \cdot x_{i\alpha} \cdot (x_{j,(\alpha+1)} + x_{j,(\alpha-1)}) \right]$$

Regra Delta para Minimizar esta Função de Energia

Conclusões sobre o Modelo

- Forte embasamento teórico com conceitos da mecânica estatística
- Falsos estados estáveis, ou mínimos locais de energia
- Só consegue computar problema linearmente separáveis
- Capacidade de memória (armazenamento dos estados desejados)
 - N padrões de N bits
 - na prática 0.15N
- Máquina de Boltzmann

Applets Rede de Hopfield

http://www.cbu.edu/~pong/ai/hopfield/ hopfieldapplet.html

http://www.eee.metu.edu.tr/~alatan/Courses/ Demo/Hopfield.htm

8. Construa o diagrama de estados para a rede de Hopfield abaixo:

