
Software Performance Estimation in MPSoC Design

Marcio Oyamada1, 2 Flávio R. Wagner1 Marius Bonaciu2 Wander Cesario3 Ahmed Jerraya2

1 UFRGS
Instituto de Informática
Porto Alegre, RS, Brazil

{marcio, flavio}@inf.ufrgs.br

2 TIMA Laboratory
SLS Group

Grenoble, France
{marius.bonaciu, ahmed.jerraya}@imag.fr

3 MnD (Methodologies & Designs),
Montigny-Le-Bretonneux, France

wcesario@mnd.fr

Abstract - Estimation tools are a key component of system-level
methodologies, enabling a fast design space exploration.
Estimation of software performance is essential in current
software-dominated embedded systems. This work proposes an
integrated methodology for system design and performance
analysis. An analytic approach based on neural networks is used
for high-level software performance estimation. At the functional
level, this analytic tool enables a fast evaluation of the
performance to be obtained with selected processors, which is an
essential task for the definition of a “golden” architecture. From
this architectural definition, a tool that refines hardware and
software interfaces produces a bus-functional model. A virtual
prototype is then generated from the bus-functional model,
providing a global, cycle-accurate simulation model and offering
several features for design validation and detailed performance
analysis. Our work thus combines an analytic approach at
functional level and a simulation-based approach at bus
functional level. This provides an adequate trade-off between
estimation time and precision. A multiprocessor platform
implementing an MPEG4 encoder is used as case study, and the
analytic estimation results in errors only up to 17% when
compared to the virtual platform simulation. On the other hand,
the analytic estimation takes only 17 seconds, against 10 minutes
using the cycle-accurate simulation model.

I. INTRODUCTION

Advances in technology provide the development of
complete multiprocessor systems integrated on a single chip
(MPSoC), including heterogeneous processors,
application-specific HW components, memories, digital
interfaces, and occasionally analog interfaces.

MPSoC complexity demands new system-level tools that
support the design above the RT-level. Performance is usually
one of the main criteria adopted to guide the architectural
design. However, other aspects also need to be evaluated as
soon as possible in the design flow, such as power, energy,
and area. Considering the huge design space, new
system-level methodologies have to support a fast and
flexible design space exploration. This requires high-level
performance estimation tools integrated with exploration
strategies in order to help the ranking of design alternatives.

Flexibility, time-to-market, and cost requirements have
made software a dominant part of current embedded systems.
Therefore, high-level software performance estimation tools
are needed in early steps of an MPSoC design flow. Although
software performance estimation gives basic information
about the system performance, it does not consider some
system-wide effects, such as those imposed by
communication mechanisms in a multiprocessor environment.

This requires an integrated HW/SW estimation approach that
considers these inter-component relationships.

Many academic and commercial tools are provided for
software performance estimation. Analytic software
performance estimation, however, is an open research topic.
Proposed approaches aim at the development of fast and
accurate methods, but they are not usually integrated in a
complete design flow. After the design refinement, some
approaches propose global simulation models that allow the
complete MPSoC performance analysis. However, these
simulation platforms are not linked in a global design flow,
often requiring manual modeling of the virtual prototype for
each design.

In this paper, an appropriate methodology for performance
analysis at different abstraction levels, offering different
trade-offs between estimation speed and accuracy, is tightly
coupled with a synthesis environment that provides a path to
implementation. A software performance estimation technique
based on neural networks is used, targeting at the processor
selection [1]. At a high abstraction level, this estimator
provides fast results and helps the designer select the suitable
processor to run a given application. The processor selection
is then used in an MPSoC design environment for a further
HW/SW refinement [2], offering a path to the final
implementation. This refined architecture is evaluated by
means of a virtual prototype based on cycle-accurate
simulation, providing an integrated design and performance
evaluation environment. In the case study presented in this
paper, estimation errors of only up to 17% when compared to
virtual platform simulation results have been found, while the
estimation process takes only 17 seconds, against 10 minutes
executing the cycle-accurate simulation model.

The remaining of this paper is organized as follows.
Section 2 discusses related work. Section 3 presents an
integrated methodology for performance estimation and
MPSoC design. Section 4 presents the analytic neural
network estimator, and Section 5 describes the performance
analysis based on a virtual prototype. A case study of an
MPEG4 encoder is presented in Section 6, and Section 7
draws the conclusions and perspectives.

II. RELATED WORK

A. Software performance estimation

Software estimation tools can be divided in two groups:
simulation and analytic-based. Simulation-based methods use
cycle-accurate simulators to estimate the software execution

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1B-2

38

time. Analytic methods use abstract models and cost functions
to calculate the software execution time. An intermediate
solution uses code annotations (at instruction or basic block
level) with the execution cost to estimate the software
performance [3]. In this case, the application runs natively,
thus overcoming the large execution time of cycle-accurate
simulators.

Analytic software performance estimation methods are
proposed to provide a fast estimation with a low modeling
and execution effort. This is useful for high-level design
space exploration. Usually, an application profiling is
performed to extract the number of executed instructions of
various types [3,4,5,6]. After this, a method maps these
instructions to a performance model that computes the
execution time.

Giusto et al. [4] compile the application code into a virtual
instruction set (a simplified RISC set with 25 instructions).
The estimation is performed by evaluating the execution cost
of the virtual instructions in the target architecture. The cost is
estimated using a training set and applying a linear regression
method. The authors show that, due to the linear
approximation, the proposed method is accurate only when
the training set and the application are similar.

Bontempi and Kruijtzer [5] use a nonlinear method to
estimate the execution time. For a given benchmark set, a
profiler extracts a functional signature vector for a virtual
processor (with a set of 42 instructions), containing the
instruction types that appear in the code and the number of
times each instruction type is executed. They also use a
training approach to calibrate the estimator. In the utilization
phase, they apply a modeling technique called lazy learning to
choose an estimation function that is based on a criterion of
neighbourhood between the application and the training set.
This function, which may be locally linear, uses only points
of the training set that are closer to the application. They
report a mean error of 8.8% in the estimations, for a set of 6
benchmarks, each one executed with 15 different input data
sets.

In this work we propose a non-linear estimator based on
neural networks that is more precise than linear methods such
as proposed by Giusto [4], mainly for advanced architectures.
Our method is similar to that proposed by Bontempi [5], but
in our case we use the instruction set of the target processor,
resulting in a better instruction classification and
consequently increasing the precision.

B. Performance estimation with virtual prototypes

In a refined architecture, where the processor is already
selected and hardware and software components have been
defined, a global simulation model may be used for
performance analysis. In MPSoC architectures composed of
multiple processors, hardware IPs, memories, and peripherals,
the evaluation of individual components is not sufficient to
analyze the system performance. A virtual prototype provides
a global simulation model, integrating a cycle-accurate model
of the target processor with simulation models of the further
hardware modules, described either at TLM or RT-level.

Currently, virtual prototype environments for modeling and
simulation based on SystemC, such as MaxSim [7], Coware
ConvergenSC [8], and Synopsys System Studio [9], provide a
rich set of components such as processors, memories, and

peripherals that can be extended by user-defined modules.
Using these components, an MPSoC platform is modeled and
simulated. Additional tools support the RTL synthesis for
given components of the library, thus providing an automatic
path to the silicon.

MPARM [10] is an environment for MPSoC design space
exploration using SystemC. It is a complete platform solution
for MPSoC simulation composed of processor models (ARM),
bus models (AMBA), memory models, hardware support for
SMP (hardware semaphores), and a software development
toolset including a C compiler and an operating system
(uCLinux). A cycle-accurate instruction set ARM simulator
developed in C++ is encapsulated in a SystemC wrapper and
integrated into the platform. The wrapper implements the
interface and synchronization between the ISS and the
SystemC simulation framework. This integration allows one
to plug the ISS into a system simulation, activated by a
common system clock, thus providing a consistent and
synchronized hardware and software multiprocessor
simulation. MPARM provides several performance statistics,
such as cache miss/hit rate and bus contention and average
transfer waiting time.

Meyr et al. [11] propose a link between processor models
generated from the LISA architecture description language
and SystemC-based simulation. Processor models are
described in LISA either at instruction or cycle-accurate level.
The rest of the system, including buses, IP components, and
memories, is described in SystemC. The goal is to jointly
explore processor and communication using a system-level
approach. An integrated co-verification environment provides
a way to analyze the software-related performance, such as
CPU load and RTOS overhead. Furthermore, shared resources
(for example memory and buses) directly affect the SW
performance, and an isolated analysis of a single processor
would hide potential problems and bottlenecks.

In virtual prototype environments, the architecture
development starts with the virtual prototype modeling.
Usually, a more abstract level is not supported in these
environments. Virtual prototypes build a global simulation
model and support performance analysis. However, the
integration with the design flow is poor, and many manual
configurations are needed. In this work, the virtual prototype
is integrated with a hardware and software refinement design
tool. This integration allows one to start the design at a high
abstraction level and enables the automatic generation of the
virtual prototype. This work uses the MaxSim [7]
environment as virtual prototype environment, due to the
support for SystemC models and predefined support for
performance analysis.

III. INTEGRATED METHODOLOGY FOR MPSOC DESIGN AND
PERFORMANCE ANALYSIS

In this section, an integrated methodology for design and
performance analysis of an MPSoC is presented. This
methodology is proposed to support software performance
estimation, mainly for the processor selection or evaluation at
functional level, and global performance analysis using a
virtual prototype. Other estimation tools that may be
necessary to guide additional aspects of the MPSoC
architecture exploration, such as HW/SW partitioning, task

1B-2

39

partitioning, or communication interconnection design, can be
easily integrated to the proposed methodology.

Figure 1(a) presents the first step in our software
performance estimation methodology. After the partitioning
between hardware and software components, each software
component needs to be mapped into a given processor. Our
neural network (NN) estimator aims at the evaluation of this
processor selection process. This methodology is adequate to
drive the mapping of a task to a predefined portfolio of
processors, where a trained NN estimator is available for each
processor.

Virtual Architecture
Model at TLM Level
Implicit CPU, abstract HW

BFM Level
Explicit CPU and OS, RTL hardware

ROSES
HW/SW interface

refinement

VM1 VM2

VM3 HW

Appl.
Tasks

OS

HW wrapper

CPU HW

Intercommunication Network

CPU

HW wrapper HW wrapper

Appl.
Tasks

OS

System Specification

Architecture exploration

f1
f2

f3
f4 Processor

selection for SW
components

Integrated HW
and SW
performance
analysis

(a)

(b)

(c)

Fig. 1. Integrated methodology for MPSoC design and performance
analysis

After the high-level architecture exploration, a virtual
architecture composed of hardware and software components
and TLM channels for communication is derived, as shown in
Figure 1(b). Software components are organized in tasks and
use a communication API. Hardware components are
considered as IP blocks, and only their interfaces are known.
The virtual architecture is used to validate the software
functionality and the communication between the
components.

The virtual architecture is used as input for the refinement
of HW and SW interfaces [2]. Software interfaces include all
device drivers required to implement the communication API
and a dedicated operating system for each processor. The
HW/SW interface refinement follows a component-based
approach. The interfaces are assembled using basic elements
that implement the services required by the application. These
elements are configured with adequate parameter values. For
software components, parameters include for instance the
processor type, and for the channels they include the
communication protocol (e.g. FIFO or handshaking).

After the refinement of HW and SW interfaces, a
bus-functional model (BFM) architecture is derived, as shown
in Figure 1(c). In this architecture, the software part is
modeled as tasks running on an operating system. Hardware
components are available at RT-level as IP components. A
virtual prototype, for estimation purposes, is generated from
the BFM architecture as input to the MaxSim [7] environment.
An instruction set simulator is used as processor model, and
SystemC modules are used for hardware components.

The performance analysis at this level enables the designer
to jointly verify the SW and HW. The designer may validate
design decisions such as scheduling policies, drivers, and
buffer sizes. Using a virtual prototype, the designer can also

verify the impact of different cache sizes and memory
hierarchies in the final performance. Profiling results, such as
the execution time of each function, make possible the
optimization of the software code.

IV. SOFTWARE PERFORMANCE ESTIMATION BASED ON NEURAL
NETWORKS

High-level performance estimation is an interesting
alternative, since it may combine a low cost for obtaining the
performance data with an acceptable precision. This allows a
fast evaluation of different processor alternatives in the early
phases of the design cycle. The main problem to develop a
software estimation tool is an accurate performance model
that considers advanced architectural features such as
pipelines, caches, and branch predictors.

The exact number of cycles required by an application may
be obtained using the real processor or a cycle-accurate
simulation. These techniques, however, have an inherent high
cost for the development and setting of the simulation model.

Neural networks have been chosen for performance
estimation since they can generalize their behavior even when
the process to be modeled is highly non-linear, which is the
case of software running on processors having pipeline and
cache effects. In this work, a feedback-forward network [12]
has been used, due to its simplicity and adaptation to the
non-linear behavior of software performance estimation.

Figure 2 presents the two main steps of our estimation
method: training and utilization. In the training phase, a set of
samples is presented to the network. Its inputs are the number
of executed instructions of different instruction types
(branches, integer and floating point arithmetic, memory
accesses, etc), while the expected result is the number of
cycles consumed by the application.

Fig. 2. Development and utilization of the estimation tool

Figure 3 presents the neural network used to estimate the
application cycle count for the ARM processor, where the
inputs are the number of instructions of the different types. It
is composed by an input layer, a hidden layer with 5 neurons
containing a tansig transfer function, and an output layer with
one neuron containing a linear transfer function. These
transfer functions are available in the Matlab Neural Network
Toolbox [13].

1B-2

40

Fig. 3. NN performance estimation

For training, a cycle-accurate simulator is required to
extract the number of executed instructions and the total
number of cycles consumed by a set of training benchmarks.
We have selected a small number of instruction classes that
are sufficiently representative of the timing behavior of all
instruction types (forward branch, backward branch,
load/store, multiple load/store, and ALU). An iterative
learning process, based on the back-propagation algorithm,
modifies the weights of the input and output arcs of neurons
in each layer, so the network presents an output that is as
close as possible to the expected result. The training phase is
realized using the Matlab software. After the training phase,
the estimation tool is ready to be used in many designs.

In the utilization phase, an application is compiled for the
given target processor, and the number of executed
instructions of each type is obtained by a dynamic instruction
count and presented to the neural network, so that it can
estimate the number of cycles consumed by the application.
An alternative approach to obtain the number of executed
instructions is a static method, as proposed in [14,15].

The training time may be long, depending on the inputs
and complexity of the generalization. However, once the
network is trained, its utilization has a low cost, consisting in
the dynamic instruction count of the application and in the
neural network cost, which requires only the multiplication of
the inputs by the weights of the neurons. The dynamic
instruction count dominates the time consumed in the
utilization phase, but it is faster compared to a cycle-accurate
simulation, as presented in Table III (Section VI).

For each target processor, a different estimator is generated.
This performance estimation method is especially adapted for
evaluating if a candidate processor can execute a certain
application or task under given performance requirements. It
is also adequate for design space exploration in the software
domain, for instance considering various algorithmic
alternatives for design tasks and various partitionings of tasks
among processors. Architectural modifications in the
processor, however, would require a new training process and
thus a long turnaround time.

V. PERFORMANCE ANALYSIS USING A VIRTUAL PROTOTYPE

After the refinement of hardware and software interfaces,
the bus-functional model (BFM) is used to generate a virtual
prototype. The software part is composed of tasks that
execute upon an operating system in each target processor.

The operating system is responsible for implementing the API
(application programming interface) used for the
communication between components. Hardware components
are described in SystemC. The evaluation of this virtual
prototype is required before the physical design, giving to the
designer detailed information about the overall system
performance.

In this work, the MaxSim [7] environment is used to
generate a virtual prototype model enabling performance
evaluation. MaxSim is based on SystemC. This simulation
model is automatically generated from the architecture
description that includes the components, their interfaces, and
the connections between them.

Hardware components are considered as IP blocks, for
which it is supposed that cycle-accurate models are supplied.
The hardware interface adapters generated in the HW/SW
refinement step are also available as SystemC cycle-accurate
models. The SystemC components are encapsulated in
MaxSim components and added to its library.

Software is simulated using cycle-accurate processor
models available in the MaxSim component library. They are
integrated to the hardware simulation models, resulting in a
single global simulation model. Hardware and software
simulators run in a synchronized way, making possible the
detection of problems arising from the communication
between components, interrupt handling, and others.

At this level, performance evaluation allows the analysis of
the influence of each component in the global performance.
For the software analysis, the execution timeline gives the
cycles consumed by each application function, easing the
detection of bottlenecks and optimization points. Different
cache sizes can be tested and their performance analyzed.
MaxSim supports the custom profile of user-defined
components and provides a profiling interface that allows the
module instrumentation. The performance events generated
during the simulation are visualized in XY charts.

VI. CASE STUDY: MPEG4 ENCODER

In this section, an MPEG4 encoder platform is used as case
study to show the application of the proposed methodology.

A. Application overview

We evaluate the proposed approach using a parallelized
MPEG4 encoder platform [16], shown in Figure 4. The
execution of the MPEG4 encoder application is divided
among two processors. The first processor is responsible for
the core encoder algorithm, while the second one implements
the Huffman compression code (VLC). The architecture is
flexible and allows the parallelization of the Encoder and
VLC tasks. Input, Combiner, and Direct Memory Access
(DMA) are hardware IP components. The Input component
divides one frame among the parallelized Encoder processors,
and the Combiner is responsible for merging the results from
VLC processes. The DMA hardware component is
responsible for managing the transfers among the
components.

1B-2

41

VLC

Fn

Coded
Image

VLC Task (SW)

DCT Quant

IDCT

Intra
Prediction

Image
Reconstruct

Motion
Estimation

Fn-1

Encoder Task (SW)

Motion
Comp.

Input
Combiner

Rate control

DMA

DeQuant

Fig. 4. Virtual architecture organization of the MPEG4 encoder

The parallelization allows the platform configuration for
different encoder profiles, from low definition to
high-definition video. Moreover, the platform allows the
utilization of parallel processors running at low frequencies
instead of a high-performance and high-power consumption
processor.

We consider that the system specification has been already
partitioned in terms of hardware and software components.
However, the processors for the software execution need to be
defined.

After the architecture exploration and definition of the
virtual architecture, the HW/SW interface refinement is made
based on the processor chosen in the previous step. Then, a
virtual prototype is generated to evaluate the performance of
the refined architecture.

B. Neural network estimation

The target processor to be evaluated was the ARM946 [7],
with 4 Kbytes of data cache and 4 Kbytes of instruction cache.
A set of benchmarks composed of control-dominated and
data-dominated applications was used to train and test the
estimator. The benchmark set is composed of 30 different
benchmarks, with a total of 40 samples, because some
benchmarks are used with different inputs. Table I describes
the benchmarks used in the experiment.

TABLE I. BENCHMARK SET

Sort and Search Quicksort, bubble sort, selection sort, sequential search,

binary search

Numerical Matrix multiplication, matrix inversion, matrix sum,

matrix count, root computation, square root

computation, LU decomposition, statistics (mean,

variance, standard deviation), Fibonacci, complex

number arithmetic operations

Data

Processing

FFT, FIR, data compress, DES cryptography, ADPCM

(Adaptive Differential Pulse Code Modulation), DCT

(Discrete Cosine Transform), CRC (Cyclic Redundancy

Check), LMS (least-mean square) algorithm

Synthetic 6 synthetic algorithms

Statecharts Code generated automatically from Statecharts

descriptions

To verify the precision of this estimator, a set of 18 samples
was used in the training phase and the remaining ones as test
set. The results are presented in Table II. The mean estimation
error considering all benchmarks is 9.05%. In the test set, the
mean error is 10.08% with maximum and minimum errors of
11.58% and –35.59%, respectively. Such errors, even high, are
acceptable in a high-level performance estimation.

To obtain the dynamic instruction count used in the
estimation step, an instruction-accurate simulator was used.
Table III presents the speedup obtained with the NN
estimation when compared against the cycle-accurate
simulation. Even requiring a dynamic instruction count, the
NN estimation is much faster due to the complexity and time
required in the full processor simulation needed in the
cycle-accurate simulation.

TABLE II. ARM946 ESTIMATOR RESULTS

Min error Max error Mean error Std deviation

All benchmarks -35.59% 29.75% 9.05% 8.90%

Training set -18.30% 29.75% 7.62% 7.97%

Test set -35.59% 11.58% 10.08% 9.54%

Using the same neural network to evaluate the Encoder and
VLC tasks, the estimated numbers of executed cycles are
122,910 and 21,613, respectively. This estimation is
performed only for one macroblock of 16x16 pixels, since the
same execution is repeated for the other macroblocks in the
frame. These values were obtained considering only the
respective core algorithms and do not take into account the
impact of communication or operating system.

TABLE III. COMPARING CYCLE-ACCURATE SIMULATION AND

ESTIMATION

Benchmark Cycle-accurate

execution time

Estimation

time

Estimation

error (%)

Matrix sum 9 sec 0.39 sec 3%

LMS filter 12 sec 0.52 sec 1%

MPEG Encoder 600 sec 17 sec 17%

If we consider a frame of 174x144 pixels, the encoder will
divide it in 99 macroblocks. From our estimation tool, the
macroblock execution cost is 122,910 cycles, and
consequently a complete frame encoding will demand

1B-2

42

12,168,090 cycles. Using a rate of 25 frames/second, the
deadline for frame processing is 40 milliseconds. The
real-time requirement could be respected using an Encoder
processor running at 265 MHz. On the other hand, if the
processor frequency is fixed at 100 MHz, this will require 3
processors executing the encoder task in parallel.

C. Virtual prototype simulation

To validate our concept, we use an architecture composed
of one processor to execute the Encoder and another one to
execute the VLC task. After the HW/SW interface refinement,
we use a virtual prototype to obtain performance results using
simulation. This integrated design and performance analysis
approach eases the virtual prototype generation and
evaluation.

To evaluate the performance of the refined design, a virtual
prototype was produced using the MaxSim environment. In
this work, a tool automatically imports our design to MaxSim.
It is responsible for the encapsulation of the SystemC IP
components as MaxSim components. We consider that the
supplier provides hardware IP components as cycle-accurate
models. The design hierarchy is preserved in the virtual
prototype, thus easing the system analysis.

The global simulation model provides a suitable way to
evaluate hardware and software components. Analyzing the
exact software execution time in MaxSim, and comparing it
with results obtained by the neural network estimator, we
obtain an estimation error of 10.28% for the Encoder task and
17% for the VLC task. These errors have two sources. The
first source is the intrinsic error related to the neural network
estimation. The second one is related to the overhead of the
operating system and drivers, which are not considered in the
dynamic instruction count used as input to the neural network.
In fact, at specification level we are exploring the architecture,
and consequently the operating system and the communication
API are not yet defined.

An important remark is that the communication between
the processors is implemented by the DMA component and
thus does not require shared resources such as buses and
memories. The estimator is trained considering a
monoprocessor system without concurrent accesses to the
memories. In the case of an SMP architecture, load/store costs
may have a high variability and the estimation could result in
a larger error.

VII. CONCLUSIONS

Early performance estimation and analysis tools have
recently attracted the attention of the research community due
to the complexity and heterogeneity of the current and future
embedded systems. Fast and accurate performance estimation
tools are needed to help the design architecture exploration.

This work proposes an integrated methodology for design
and performance analysis. Processor selection is supported by
a software performance estimator based on neural networks.
The estimator provides flexibility and precision even for
complex processors, with pipeline and cache memories. The
estimator is fast compared to the cycle-accurate simulation, as
presented in Table III, helping the architecture exploration by
enabling a rapid processor selection.

After the processor selection and architecture exploration, a
“golden” virtual architecture is created. This architecture is
then refined to a BFM model containing processors, IP blocks,
memories, and peripherals. The software part is composed of
software tasks running under an operating system. The
simulation model for system evaluation is automatically
generated from the architecture description in the MaxSim
environment. This integration allows the designer to spend
time in the design analysis, and not in the virtual prototype
modeling.

Future work will investigate the use of a virtual architecture
using TLM channels to estimate the communication
requirements. The estimation at this level will help in design
decisions regarding the implementation of HW and SW
interfaces. The OS overhead is considered only in the virtual
prototype simulation, but not in the neural network estimator.
A possible extension is to take into account the system calls in
the neural network model, with a fixed cost, thus increasing
the estimation precision.

REFERENCES

[1] M.S.OYAMADA, F.ZSCHORNACK, F.R.WAGNER.
“Accurate Software Performance Estimation Using Domain
Classification and Networks”. In: 17th Symposium on
Integrated Circuits and Systems Design, September 2004.

[2] W.O. CESARIO, D. LYONNARD, G. NICOLESCU, Y.
PAVIOT, S. YOO, L. GAUTHIER, M. DIAZ-NAVA, A.A.
JERRAYA, “Multiprocessor SoC Platforms: A
Component-Based Design Approach”, IEEE Design & Test of
Computers, Vol. 19, Nr. 6, Nov-Dec, 2002.

[3] M.LAJOLO, M.LAZARESCU, A. SANGIOVANNI-
VINCENTELLI. “A Compilation Based Software Estimation
Scheme for Hardware/Software Co-simulation”. In: Symposium
on Hardware/Software Codesign, 1999.

[4] P.GIUSTO, G.MARTIN, E.HARCOURT. “Reliable Estimation
of Execution Time of Embedded Software”. In: Design,
Automation and Test in Europe, March 2001.

[5] G.BONTEMPI, W.KRUIJTZER. “A Data Analysis Method for
Software Performance Prediction”. In: Design, Automation and
Test in Europe, March 2002.

[6] J.BAMMI et al. “Software Performance Estimation Strategies in
a System-level Design Tool”. In: Symposium on
Hardware/Software Codesign, May 2000.

[7] ARM MaxSim. http://www.arm.com
[8] ConvergenSC. http://www.coware.com
[9] Synopsys System Studio. http://www.synopsys.com
[10] L.BENINI, D.BERTOZI, A.BROGIOLO, F.MENICHELLI,

M.OLIVIERI. “MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC”. In: Journal of VLSI Signal
Processing, Vol. 41, 2005.

[11] A.WIEFERINK et al. “A System Level
Processor/Communication co-exploration Methodology for
Multi-processor System-on-chip Platforms”. In: Design,
Automation and Test in Europe, February 2004.

[12] J.FREEMAN, D.SKAPURA. “Neural Networks: Algorithms,
Applications and Programming Techniques”. Addison-Wesley
Publisher, 1992.

[13] MATLAB – Neural networks toolbox.
http://www.mathworks.com

[14] J.ENGBLOM, A.ERMEDAHL, F.STAPPERT. “A Worst-Case
Execution-Time Analysis Tool Prototype for Embedded
Real-Time Systems”. In: Workshop on Real-Time Tools, 2001

[15] Y.-T.S.LI, S.MALIK. “Performance Analysis of Embedded
Software Using Implicit Path Enumeration”. In: Design
Automation Conference, June 1995.

[16] M.BONACIU et al. "High-Level Architecture Exploration for
MPEG4 Encoder with Custom Parameters". In: 11th Asia and
South Pacific Design Automation Conference, January 2006.

1B-2

43

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

