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Abstract. An Information Extraction activity is a complex process that
can be decomposed into several tasks. This decomposition brings the
following advantages: (i) for each task it becomes possible to choose the
best technique independently from the other tasks; (ii) an Information
Extraction program can be developed as a set of independent modules
(one for each task), making it easy to perform local debugging; (iii) it
becomes easy to customize the Information Extraction activity through
reordering, selection or even composition the tasks.
This paper presents a commonly used decomposition of the Informa-
tion Extraction activities and gives detail about the most used machine
learning and rule-based techniques for each task.

Keywords: Information Extraction, Natural Language Processing, Ma-
chine Learning, Declarative Languages

1 Introduction

With the increasing volume of publicly available information, companies need
to develop processes for mining information that may be vital for their business.
Unfortunately, much of this information is presented in the form of unstructured
or semi-structured texts. Software tools are not able to analyze such texts and
humans would take so much time to perform this task that the information
would become obsolete by the time it was available.

Information Extraction emerged as a solution to deal with this problem.
According to (Cowie & Lehnert, 1996), “Information Extraction starts with a
collection of texts, then transforms them into information that is more readily
digested and analyzed. It isolates relevant text fragments, extracts relevant in-
formation from the fragments, and then pieces together the targeted information
in a coherent framework”.

An Information Extraction activity can be very complex. Thus, it is com-
mon to decompose it into several tasks. This decomposition offers some advan-
tages. First, it is possible to choose, for each task, the techniques and algorithms
that better fit the objective of a particular application. Second, it is easy to
locally debug an Information Extraction program since the module responsible
for each task is completely independent from the others. Finally, an Information
Extraction can be customized activity according to an application’s needs, by
reordering, selecting and composing some of the tasks.

This paper presents a possible decomposition of the Information Extraction
activity in tasks. This decomposition is based on the work of (McCallum, 2005).
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The considered tasks are: Segmentation, Classification, Association, Normaliza-
tion and Correference Resolution. For each of these tasks we explain what is its
purpose and which techniques can be used.

2 Segmentation

The Segmentation task divides the text into atomic elements, called segments or
tokens. Next, we will present some problems that can be found in Segmentation
for Western languages (Santos, 2002):

– Whitespaces: space-separated words may not match the different segments.
For example, the string “New York” should be considered a segment.

– Hyphens: compound words in which there is a separation with an hyphen
(e.g., “daughter-in-law”) should be part of the same segment. However, there
are situations in which we could separate a segment with an hyphen in two
words (e.g. non-lawyer).

– Apostrophes: in languages like English or French, it is very common to find
situations in which apostrophes are used in contractions. These situations
can be difficult to handle. For instance, the expression “s” in “John’s” can
be the verb “to be” or the possessive form.

– Full stop: the full stop usually marks the end of a sentence. However, it can
also be used to separate letters in an abbreviation (e.g. “United Nations”
can occur as “U.N.”).

Usually, these problems are solved using rules that show how these cases
should be handled.

The major problems related to this task can be found in oriental languages.
For example, the Chinese does not have whitespaces between words (Li Haizhou
& Zhiwei, 1998). For this reason, solving the problems described above is not
enough in this language. In these cases, it is typically necessary to use external
resources. Lexicons and grammars can also be used in order to accomplish the
task of segmentation using syntactic or lexical analysis. Another approach for
segmentation in Chinese uses techniques based on statistics. An example is the
system described in (Li Haizhou & Zhiwei, 1998), which uses N-grams and the
Viterbi algorithm (Forney, 1973) applied to segmentation.

The techniques based on N-grams resort to word counts to define a condi-
tional probabilistic model. In the model, the probability of a given word depends
on the last N-1 words. As an example, let us consider a vocabulary with only
two words, “A” and “B”, and a training corpus “A B A A B B A”. We want to
train a bigram model so we need two types of counts: unigrams and bigrams.

Table 1.1 presents the frequency of each word in the training corpus. Table
1.2 presents, for each word in the lines, the frequency with which it appears in
the text after the word in the columns. Note that, in these tables, we consider two
symbols that do not appear in the text: < s > which represents the beginning
of the corpus and < /s > which represents the ending of the corpus.
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Table 1. Unigram (1) and Bigram (2) counts for the training corpus A B A A B B A

Table 1.1 Table 1.2

< s > A B < /s >

1 4 3 1

< s > A B

A 1 1 2
B 0 2 1
< /s > 0 1 0

As an example of using this model we calculate the probability that the
sentence “ABA” occurs. With a bigram model we can compute the occurrence
probability of this sentence by Equation (1)

P (“ABA”) = P (A| < s >)P (B|A)P (A|B)P (< /s > |A) (1)

where P(i|j) is computed by the Equation (2)

P (i|j) =
Table1.2(i, j)
Table1.1(j)

(2)

Thus, we have P(A| < s >) = 1
1 , P(B|A) = 2

4 , P(A|B) = 2
3 , P(< /s >

|A) = 1
1 , which means that P (“ABA”) = 1

1x2
4x 2

3x 1
1 = 1

3

The Viterbi Algorithm is a dynamic programming algorithm used to estimate
the most likely sequence of states in a state machine, given a set of observable
events. These events constitutes the input sequence of the state machine. The
algorithm assumes some facts that may not necessarily be true. First, it assumes
that the observed events are in sequence with the states of the states machine.
Then it assumes that the probability of the sequence depends only on the event
observed in a finite number of previous iterations.

The most likely sequence of states for the observable events, in each iteration,
is through the computation of the Viterbi score, which may be computed in
different ways depending on the technique used. A detailed example of the Viterbi
Algorithm will be introduced in Section 3 as a technique for classification.

3 Classification

The Classification task determines the type of each segment obtained in the
segmentation task. In other words, it determines the field of the output data
structure where the input segment fits. The result of this task is the classification
of a set of segments as entities, which are elements of a given class potentially
relevant for the extraction domain.

The rule-based techniques used in the classification task are usually based on
linguistic resources, such as lexicons and grammars (Farmakiotou et al., 2000).
The input segments are compared with the elements of the lexicon until there
is a match. Additionally, some techniques of morphological analysis can be used
as support. The grammar supports the recognition of terms that are not in the
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lexicon and solves possible ambiguities when an entity has different categories
in the lexicon (e.g., when there are homonymy relationships).

One of the most popular approaches to undertake classification is machine
learning. Machine learning techniques used in this task are usually supervised,
which means that an annotated corpus is needed. Five of the most common
supervised learning techniques are the Hidden Markov Models (HMM), Maxi-
mum Entropy Markov Models (MEMM) (McCallum, Freitag, & Pereira, 2000),
Conditional Random Fields (CRF) (Lafferty, McCallum, & Pereira, 2001), Sup-
port Vector Machines (Isozaki & Kazawa, 2002) and Decision Trees (Sekine,
Grishman, & Shinnou, 1998).

HMM have been widely used in text classification tasks such as Part-of-
Speech tagging that consists of classifying words according to the morphological
class. These models are based on: (i) a set of hidden states that usually have
a physical meaning (e.g., in the classification of tokens we can have each state
associated with a type of entity); (ii) a set of observable symbols that corre-
spond to observable events (e.g. tokens that occur at each time), (iii) a function
that returns the probability distribution of the state transition, (iv) a function
that returns the distribution of probabilities of observing a given symbol in a
given state and (v) a vector corresponding to the distribution of probabilities in
the initial state. A probabilistic model is built during the training phase. The
classification is then obtained through the use of the generated model for finding
the most likely classification for the test dada. The most likely classification can
be computed using the Viterbi Algorithm.

Let us consider an example (Allen, 1994) of a prediction of Part-of-speech
tagging. We assume the existence a trained HMM model for this task. This
model considers for each word the probability of being a name, a verb, an article
or a preposition:

P(the|ARTICLE) = 0.540 P(like|PREPOSITION) = 0.068 P(a|NAME) = 0.001
P(flies|NAME) = 0.025 P(like|NAME) = 0.012 P(flower |NAME) = 0.063
P(flies|VERB) = 0.076 P(a|ARTICLE) = 0.360 P(flower |VERB) = 0.050
P(like|VERB) = 0.100

As we can see we do not present the probabilities for all the classifications for
each words. If one probability is not presented we will consider to be zero. The
model also considers the bigram probability of a given classification that depends
on the word classification of the word before. This probability is presented as a
Markov chain in Figure 1.

We will use this model and the Viterbi algorithm to predict the most probable
Part-of-Speech classification for the sentence “Flies like a flower”. We will assume
that any bigram probability that is not shown in Figure 1 has a value of 0.0001.

The Viterbi algorithm is divided into three steps. The first one is the Initial-
ization Step in which we compute a score for the first word (w1) in the sentence.
This score is given by Equation (3):
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ARTICLE

NAME

VERB

PREPOSITION

0.71

0.29

1.00

0.13

0.74

0.65

0.43

0.35

0.26

0.44

START

Figure 1. A Markov Model capturing the bigram probabilities of this model

v1(j) = P (w1|Lj) ∗ P (Lj |START ) (3)

where Lj is each of the possible classifications: NAME, VERB, ARTICLE or
PREPOSITION. For the example, the first word is “Flies”. The scores for this
word are:

v1(V ERB) = 0.076 ∗ 0.0001 = 7.6 ∗ 10−6

v1(NAME) = 0.025 ∗ 0.29 = 7.25 ∗ 10−3

v1(PREPOSITION) = 0 ∗ 0.0001 = 0
v1(ARTICLE) = 0 ∗ 0.71 = 0

In the second step of the algorithm (Iteration Step), we will scan all the other
words and compute the best score for each classification using the Equation (4):

vt(j) = maxN
i=1vt−1(i)P (Tagj |Tagi)P (Wordt|Tagj) (4)

Figure 2 shows the Iteration Step computation for the word “like”. The solid
arrows show the path which corresponds to the maximum of vt−1(i)P (Tagj |Tagi)
in Equation (4).

flies/VERB

flies/NAME

like/VERB

like/NAME

like/PREPOSITION

like/ARTICLE

1.3 ∗ 10−5

0.00031

0.00022

0

Figure 2. Score for the word “like” in the beginning of the Iteration Step

This step is repeated for all the words in the sentence. The result after the
step is performed for the last word is shown in Figure 3.
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flies/NAME like/VERB

a/NAME

a/ARTICLE

flower/NAME

flower/PREPOSITION

flower/ARTICLE

flower/VERB

0

4.3 ∗ 10−6

0

2.6 ∗ 10−9

Figure 3. Score for the word “flower” in the Iteration Step

In the final step of the Viterbi algorithm (Backward step) the path with
the highest score is scanned from the last one to the first one. In this scan, the
algorithm gives a final classification to each word. In the example, we can see
that the path with highest score is the one in which “flies” is a name, “like” is
a verb, “a” is an article and “flower” is a name.

The HMM models for the classification task are based only on two kinds of
probabilities: P (Tag|Tag) and P (Word|Tag). This means that the introduction
of other knowledge in the classification process (e.g., information about capital-
ization ou letter size) is not easy. In HMM, if we want to model this knowledge
we need to code it only with the two kinds of probabilities presented before. In
order to solve these problems, some approaches began to emerge that seek to
modify the HMM. Examples of these approaches are MEMM and CRF.

While the HMM use a generative model, which produces a probability den-
sity model over all variables in a system, the MEMM use a discriminative model,
which makes no direct attempt to model the underlying distribution of the vari-
ables. Instead of having separate models for P (Tag|Tag) and P (Word|Tag), the
MEMM train a single probabilistic model to estimate P (Tagi|Wordi, Tagi−1).
This probabilistic model uses a Maximum Entropy classifier that estimates the
probability for each local tag given an observed word, a tag for the prior word
and a set of features corresponding to the modeling of additional information we
want to introduce in the process.

Like in the HMM, the MEMM use the Viterbi algorithm to infere the tags
associated to each word. The only difference between the two algorithms is in
the way the probabilities are computed. The MEMM uses a modified version of
the Viterbi score used for HMM (Equation 4) that is presented in Equation 5:

vt(j) = maxN
i=1vt−1(i)P (Tagj |Tagi,Wordt) (5)

MEMM are a good solution if we want to introduce additional information in
the statistical model but they suffer from a limitation that makes them weaker
than HMM when no additional information is used. Consider the following ex-
ample of a statistical model shown in Figure 4.

If we observe the local probabilities for each observation we can see that for
state 1, the transition to state 2 is usually the one with the highest probability.
We can see that the same happens with state 2. But if we use the Viterbi
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Figure 4. Example of a MEMM model with the Label Bias Problem

algorithm to compute the most probable path we find out that it is the path
1→1→1→1.

This happens because there are five transitions out of state 2 and only two
transitions out of state 1. Since the probabilities of the transition from a given
state in a MEMM are normalized, the model usually prefers states with lower
number of transitions. This gives an unfair advantage to these states. This is
called the label bias problem.

CRF were developed as a solution that offers all the advantages of MEMM
but overcomes the label bias problem. The difference between CRF and MEMM
is that the MEMM model uses an conditional probabilities exponencial model
for each state while CRF uses a single exponencial model for the joint probability
of the entire sequence of labels given the observation sequence. With this model
it is possible to normalize the probabilities at a global level.

The Viterbi value used in the Viterbi algorithm for CRF is different from the
ones used in HMM and MEMM. It is given by:

vt(j) = maxN
i=1vt−1(i)e

∑
k(λkfk(Tagi,Tagj ,Sentence,t)) (6)

In Equation 6 fk is a feature function. For each additional information about
words of the text we want to use in the process there will be a different feature
function. λk is a parameter estimated in the training phase that represents the
importance of each feature function in the process.

The great disadvantage of the CRF models is that the training is very ex-
pensive, making them difficult to use if we want to keep training the model as
long as new data appears.

Support Vector Machines assume that it is possible to map the segments of
the text in a vector space according to linguistic (e.g., lexical information) or
graphical (e.g., position or style in the text) properties of the segments and the
words in its neighboring. Text segments are mapped into a vector space. Then,
the ideia is to separate positive elements (elements that belong to the class) from
negative elements (elements that do not belong to the class) by an hyperplane.
In the training phase, the objective is to find the hyperplanes that achieve the
better separation between positive and negative examples. In the testing phase,
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the classification is performed by looking at which side of the hyperplane the
input is.

Let us consider the example of a classification of lines in a text as titles. We
will use two graphical properties to classify the lines: the size of the letters and
the line numbers. For the training phase some positive and negative examples
are given. The examples are shown in a bidimensional space in Figure 5. The
positive examples are the dots and the negative examples are the stars. Figure
5 also shows the best choice for the hyperplane.

In the testing phase, each line is mapped in the bidimensional space as done
with the training examples and the classifier uses the hyperplane to classify it.
Figure 5 shows two new lines (a square and a cross) that will be classified with
this model. The square is positioned below the hyperplane, so it is considered
that it is not a title. The cross is positioned above the hyperplane, so it will be
classified as a title.

Figure 5. Testing phase in a SVM classifier

Decision Trees are also used for text classification. An example is described
in (Sekine et al., 1998) for classifying Japanese texts. During training, a proba-
bilistic decision tree is built based on the words’ morphologic classification, type
of characters and information of the dictionary in the neighborhood of the word
(word right before, the word itself and the word right after). In the testing phase,
the properties of the neighborhood of each word are analyzed and compared with
the decision tree in order to associate a probability of belonging to a given class.
Given that the probabilities of all the segments are computed, the task consists
in discovering the most consistent sequence of probabilities. For that the Viterbi
Algorithm can be used.

Let us consider a task in which we want to classify words as locations. We
will use the decision tree of Figure 6 for this task.

From this decision tree we can get the probabilities of a given word to be or
not to be a Location. Consider the sentence “I am going to Washington”. To
compute the probabilities associated to “Washington” we start from the root of
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Starts with Capital Letter?

Is there a preposition before?
P(word|Location) = 1

P(word|!Location) = 0

P(word|Location) = 0.4

P(word|!Location) = 0.6

P(word|Location) = 0.8

P(word|!Location) = 0.2

yes

yes no

no

Figure 6. Simple Decision Tree to compute the probability of a word being a Location

the tree. Since “Washington” starts with capital letter, the algorithm follows the
left path and gets to another node. In this node we need to observe the word
before “Washington” and see if it is a preposition. Since “to” is a preposition
we follow the left path again. We conclude that “Washington” has 80% chance
of being a Location.

4 Association

The association task seeks to find how the different entities found in the clas-
sification task are related. The systems that perform extraction of relationships
are less common than the ones that perform the classification task (McCallum,
2005). This happens due to the difficulty in achieving good results in this task.

Many techniques in the association task are based on rules. The simplest
approach uses a set of patterns to extract a limited set of relationships. For
instance, we can extract an affiliation relationship between a person and a com-
pany with the rule (7), in which, upon detection of the standard <Person> works
for <Company>, the values of <Person> and <Company> are inserted in the
relation worksFor(Person,Company).

< Person > worksfor < Company >→ worksFor(< Person >,< Company >)
(7)

Such an approach solves only very simple cases, where a big variety of rela-
tionships is not expected, since we need to develop a different rule to extract a
different relationship.

A more generic rule-based approach for association is based on syntactic
analysis. Often, the relationships that we want to extract are grammatical re-
lationships (Grishman, 1997). For example, a verb may indicate a relationship
between two entities. A complete syntactic analysis, where all the text is ana-
lyzed with a single syntactic tree, has the inconvenient of being very expensive
and causing many errors (Grishman, 1997). Partial syntactic analysis, in which
the text is divided into parts where each part has its syntactic tree, returns bet-
ter results. With this kind of analysis some linguistic patterns, as conjunctions
or modifiers, are ignored.
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The association task can also use machine learning techniques. One of the
first machine learning approaches was based on probabilistic context-free gram-
mars (Miller et al., 1998). These grammars differ from regular context-free gram-
mars, because they have a probability value associated to each rule. When the
syntactic analysis is undertaken, it is possible to find many syntactic trees. By
using probabilistic rules, the probability of each tree is computed and the most
probable tree is chosen.

Since HMM (refered in Section 3) are usually more suitable for modeling local
problems, its use for the association task is not the most appropriate (Zelenko,
Aone, & Richardella, 2003). However, other approaches like MEMM and CRF
(Section 3) may be adapted for the association task. To do so, all we need to do
is to add information about the neighborhood of a word in the form of features.
Instead of tagging each word with a given class, these models would tag with
relationships with other words in the text.

5 Normalization and Correference Resolution

Normalization and Correference resolution are the less generic tasks of the In-
formation Extraction process (Applet & Israel, 1999), since they use heuristics
and rules that are specific to the data domain.

The normalization task is required because some information types do not
conform to a standard format. For instance, there can be several representa-
tions of hours like “3pm”, “3h”, “15:00”. This format heterogeneity may pose
difficulties in the comparison between entities.

The normalization task transforms information to a standard format defined
by the user. In the example of the hours mentioned above, the user can define
that all the hours shall be converted to a standard format, for example, “15h00”.
This task is typically achieved through the use of conversion rules that produce
a standard format previously chosen.

Correference arises whenever the same real world entity is referred in different
ways in a text fragment. This problem may arise due to the use of: (i) different
names describing the same entity (e.g., the entity “Bill Gates” can be found
in the text as “William Gates”), (ii) classification expressions (e.g., a few years
ago, “Bill Gates” was referred as “the world’s richest man”), (iii) pronouns (e.g.,
in the sequence of sentences “Bill Gates is the world’s richest man. He was a
founder of Microsoft”, the pronoun “He” refers to “Bill Gates”).

Rule-based approaches for correference usually take into account semantic
information about entities. With this information the detection of correferent
entities is done through filtering. This means that only entities whose semantics
information coincides can be correferent. The filtering can be done manually or
using independent resources (e.g. Wordnet1) in order to find semantic informa-
tion associated to each word. At the end of the filtering phase, it is necessary to
determine which entities have the highest probability of being correferent.

1 http://wordnet.princeton.edu/
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A machine leaning approach for correference resolution is described in (Cardie
& Wagstaff, 1999). This approach is based on clustering algorithms for grouping
similar entities. Initially, the entities of the document are analyzed from the
ending to the beginning of the document and the distance between each one of
them is computed. The distance is computed using an incompatibility function
and a set of weighting constants through the Equation (8).

dist(Ei, Ej) =
∑

fεF

wf incompatibilityf (Ei, Ej) (8)

The incompatibility function uses attributes like name, position, number,
semantic class and gender to determine the difference between two entities. If
the distance between two entities, Ei and Ej , is less than the cluster radius which
is pre-defined, then the entities belong to the same cluster. Consider the following
example: “Bill Gates was one of Microsoft’s founders. He is not Microsoft’s CEO
anymore”. With this approach, the distance between “Bill Gates” and “He” is
expected to be small. Thus, the result must have at least one cluster: C1 =
{BillGates,He}. If two entities are contained in the same cluster of the final
result, they are considered correferent.

Another machine learning approach for correference resolution is based on
decision trees. Analogously to the clustering approach, the construction of the
tree (training phase) makes use of a set of attributes such as name, position,
number. After the training, the text is processed from left to right and each
entity is compared with all the previous entities. For each pair, the tree is used
to check if its elements are correferent.

Consider as an example, the decision tree of Figure 7.

Agreement with gender

and number?

Belongs to the same

semantic class?

yes

yes no

no

Correferent Not Correferent

Not Correferent

Figure 7. Simplified example of a decision tree for correference resolution

Consider the sentence used in the last example. Let us use the decision tree to
check if the pair of elements (Bill Gates, He) are correferent. As the two elements
are singular and male, in the first level of the tree, we choose the option “yes”.
Since “Bill Gates” and “He” belong to the class “Person” (could have been
concluded in the classification task), we choose again the option “yes” and we
get to a leaf node, concluding that the elements of the pair are correferent.
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6 Conclusions

In this paper, we presented the decomposition of an Information Extraction
activity into tasks and referred the techniques that are commonly used for each
task. The goal of this paper is to supply material that can be used for the
conceptualization of an Information Extraction program.

In future work, we will present a set of declarative operators with the seman-
tics of the tasks described in this paper. These operators will offer the possibility
to choose between different techniques for each task. It will also be possible to
reorder and compose them in order to adapt the Information Extraction activity
to the application requirements and input data.
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