
Constructing OLAP Cubes Based on Queries
Tapio Niemi Jyrki Nummenmaa Peter Than&h

Department of Computer and Department of Computer and Department of Computer Science,
information Sciences Information Sciences University of Edinburgh

FIN-33014 University of Tampere FIN-33014 University of Tampere Edinburgh, EH9 3JZ
Finland Finland Scotland

+358 32156595 +358405277999 +44 7 9 6 8 4 0 1 5 2 5

tapio@cs.uta.fi jyrki@cs.uta.fi pt@dcs.ed.ac.uk

ABSTRACT
An On-Line Analytical Processing (OLAP) user often follows a
train of thought, posing a sequence of related queries against the
data warehouse. Although their details are not known in advance,
the general form of those queries is apparent beforehand. Thus,
the user can outline the relevant portion of the data posing
generalised queries against a cube representing the data
warehouse.

Since existing OLAP design methods are not suitable for non-
professionals, we present a technique that automates cube design
given the data warehouse, functional dependency information,
and sample OLAP queries expressed in the general form. The
method constructs complete but minimal cubes with low risks
related to sparsity and incorrect aggregations. After the user has
given queries, the system will suggest a cube design. The user
can accept it or improve it by giving more queries. The method is
also suitable for improving existing cubes using respective real
MDX queries .

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design - data models,
normal forms, schema and subschema

General Terms
Management, Design

Keywords
Logical OLAP design, MDX queries, data warehousing.

1. INTRODUCTION
On-Line Analytical Processing (OLAP) is a method to support
decision making in situations where raw data on measures such
as sales or profit needs to be analysed at different levels of
statistical aggregation. In OLAP, queries are made against
multidimensional cubes, called OLAP cubes.

Permission to make digital or hard copies of al l or part of this work for

personal or classroom use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the ful l citat ion on the first page. To copy
otherwise. or republish, to post on servers or to redistribute to l ists,
requires prior specific permission and/or a fee.
/IO/.,4P ‘01. November 9,200 I, Atlanta, Georgia, USA.

Copyright 2001 ACM l-581 l3-437-1/01/0011...$5.00.

The design of a cube is based on knowledge of the application
area and the types of queries the users are expected to pose.
Since constructing an OLAP cube can be a difficult task for the
end user, it is often seen as the duty of the data warehouse
administrator. This has led to researchers and vendors regarding
the OLAP cube as a static storage structure for data warehouse
data. This is problematic since the user often wants to make new
kinds of queries, which may also need new OLAP cubes. The
same cube is not always practical for different analysis tasks,
since the structure of the cube has a notable effect on efficiency
and ease of posing queries. Moreover, even professionals may
have difficulties in cube design since generally accepted logical
design methods do not exist so far. In general, the structure of the
resulting OLAP schema should be constructed by taking into
account the information about the dependencies among the
concepts and other meta knowledge on the concepts and the
application area, and the query requirements.

We believe that the user should be able to design customised
cubes which are the best suitable for his/her current analysing
tasks. This is important since the analysis tasks or the data in the
data warehouse can change almost daily and the cube design, of
course, should follow these changes. Moreover, some users may

also utilise planning methods in which a cube is designed for a
hypothetical situation, for example to analyse a new organisation
structure beforehand. It is also worth mentioning that business

intelligence people work in multi-user client/server environments
where there can be major advantages to having the cube on the
desktop machine rather than on an occasionally slow server.

In our approach, we assume that a new OLAP cube is constructed
for new analysis purposes. For example, one user might have

detected some interesting facts in a subcube of an existing cube.
The user might then pass on this information to a specialist who
needs to examine the data located in the subcube in greater
detail. We also assume that actual data warehouse data is stored
independently and that it is available for populating OLAP
cubes. Our aim is to reduce the level of technical knowledge that
a user needs in order to construct an OLAP cube. We combine
the cube design and query construction. There is a natural
connection between OLAP cubes and queries, since it is
meaningful to think that an OLAP query returns an OLAP cube.
An ideal cube contains all information and only the information
that is relevant to the user’s queries. In addition, the structure of
the cube should be such that, for example, aggregations are not

misleading and the level of sparsity is low. The method has the
following steps:

1. The data warehouse is presented as a general base cube to
the user.

2 . The user constructs queries using the general data cube.
3. The system constructs an OLAP cube that corresponds to

user’s queries. The cube construction method is based on the
use of functional dependency information.

4. An OLAP cube will be shown to the user and it can be
accepted, modified, or rejected. The modifications can be
done by giving more queries or changing the cube directly,
e.g. some attributes can be added or removed.

5 . The system analyses the changes and informs the user about
the goodness of the cube.

The resulting cube will be used in actual data analysis. Figure 1
illustrates the method.

Data
warehouse
(r e l a t i o n a l
da t abase)

General OLAP Informat ion
demands

t

Figure 1. The basis of the method

The paper is organised as follows: In Section 2 we study related
work. The aims of logical OLAP design and a method how the
user can present the information requirements are studied in
Section 3. In Section 4, we show how an OLAP cube can be
constructed based on the users’ information requirements.
Finally, Section 7 contains conclusions and future work.

2. RELATED WORK
Most of the work in OLAP has been concentrated on efficient
implementation. In some works also the OLAP design has been
studied but the methods presented may be too complicated and
time consuming for non-professionals.

Cheung et al. have studied requirement-based cube design [3].
Their aim is to find such data cubes to be materialised that
maximises query performance. Thus, the method can be seen as
an optimisation method rather than a logical cube design method.
The optimisation is based on queries that users are assumed to
pose to the system. In the method, each user query is represented
as a data cube and the aim of the optimisation process is to
modify the cube set (e.g. by merging cubes) in order to find a
better set compared to query performance.

Selfridge et al. divide business data analysis into data
exploration and data analysis [131. In data exploration the aim is
to find a relevant subset of data to analyse, while in analysis the
aim is to find an answer to a business question. Our method is
based on a similar kind of idea: choosing data for the OLAP cube
is analogous to data exploration and studying the cube to data
analysis.

Zurek and Sinnwell list some non-standard requirements for data
warehouses [14]. Realignment of a data warehouse schema is
needed quite often. Especially, dimension hierarchies can
change, even regularly. Their second point is that also detailed
level data is sometimes needed, while, in general, data loaded
into a data warehouse is summarised. It is often assumed that a
data warehouse is quite static and updated, for example, once a
day or week. However, in many situations this is not enough and
the warehouse should be much more up to date. Further, in some
business planning situations hypothetical planning data is loaded
into a data warehouse. This data can be changed during the
iterative planning process thus efficient updating is necessary.
Furthermore, in some OLAP applications, such as enterprise
resource planning, the design of the cube itself may need to be
changed on a daily basis.

Sapia studies modelling and predicting query behaviour in OLAP
systems [I I]. He presents a formal model and a graphical
notation for studying interaction patterns in OLAP systems. The
knowledge about the user behaviour can be applied in logical and
physical OLAP design and also to make query processing more
effective by predicting queries. The importance of the logical
schema in OLAP is much greater than in traditional database
systems, since the logical OLAP schema is usually used as a user
interface. Therefore, the logical schema determines the queries
that can be posed.

The entity/relationship model (ER) [2] has been applied to cube
design. For example Sapia et al. [12] extend the ER model by
adding three primitives into it in order to allow expressing the
multidimensional structure of data: a fact relationship set, a
dimension level set, and a classification set. However, the
method does not offer much help for the design process but the
designer has to know what kind of structure is suitable for the
current application. Further, the model does not have features to
help to achieve the desirable properties of the OLAP cube
(summarizability, efficiency).

Golfarelli et al. [5] present a semi-automatic modelling method
(called Dimensional Fact model) based on an existing ER
schema. It can automatically find possible dimension hierarchies
and allows the user to modify them. Summarizability is taken
into account; measure attributes are classified additive,
semi-additive, and non-additive. Measures are supposed to be
atomic. To ensure completeness in aggregations, a many to one
mapping has to be hold between levels in a dimension. The
algorithm for building dimensions may help to get orthogonal
dimensions, but this is not studied in the paper. However, some
relationships may be lost while constructing dimensions, and
they may cause problems with orthogonality.

A method by Cabibbo and Torlone [I] is based on a
multidimensional data model, called MD, whose main parts are a
dimension and a fact table. The method has some similarities to
the method of Golfarelli et al. They both start from the existing
ER schema of an operational database.

Lehner et al. [6] present normal forms for multidimensional
databases. The normal forms are designed to help in ensuring
summarizability and controlling sparsity. The dimensional
normal form requires that there exists a functional dependency
between the hierarchical levels in a dimension, and in the
multidimensional normal form additionally no functional

IO

dependency is allowed between different dimensions. The
multidimensional normal form helps to avoid problems with
incorrect aggregation and sparsity but the normal form itself may
sometimes be impossible to achieve in practise, because in many
applications it is not always possible to find totally independent
dimensions. The orthogonality of dimensions is studied only with
respect to unary functional dependencies, and summarizability is
not understood in as large a sense as in the paper by Lenz and
Shoshani [7].

Niemi et al. have studied normal forms for OLAP cubes [9]. The
aim is to reduce structural sparsity caused by functional
dependencies between dimensions. The authors have studied
how different kinds of dependency sets affect sparsity. Moreover,
synthesis and decomposition methods have been presented to
produce normalised cubes.

3. EXPRESSING INFORMATION NEEDS
In many OLAP applications, the user does not exactly know in
advance what data is going to prove to be relevant to answering
their questions. For example, they may intend to explore the data
trying to find causalities. A data warehouse usually contains too
much information for one cube and all this information is seldom
relevant for the user. A method is needed to limit the size of the
resulting OLAP cube for both user oriented and technical
reasons.

3.1 Formal OLAP Model
We use the relational model [4] to represent the queries and the
data stored in a data warehouse. We have to formalise our notion
of the OLAP cube. The cube consists of measures and
dimensions. The measure is the value under analysis. The
dimensions are coordinates for the measure in the hypercube, i.e.
the dimension values determinate the measure value. It is not
necessary to differentiate measure and other dimensions in the
logical model; we can handle the measure just as a dimension.
The dimension can have a hierarchical structure consisting of
different levels. This enables the user to study data at different
levels of details by drilling down or rolling up in the hierarchy.

Our presentation is based on relational database theory and we
assume that the reader is familiar with the basics of it.

Definition 1 A dimension schema D is a set of attributes. We
assume that there exists a single attribute key KED, which is
called a dimension key for D.

If D is a dimension schema then a relation over d is a dimension,
that is, a dimension is an instance of a dimension schema. It is
generally assumed that each dimension schema Di is chosen in
such a way that there exists a single-attribute key Kt, although
theoretically this would not need to be so (it is always possible to
construct an artificial key). The functional dependencies among
attributes in a dimension form a hierarchy (we assume
antisymmetry) such that the dimension key attribute is on the
first level of the hierarchy, attributes directly determined by the
key are on the second level, etc. By the dimension level we mean
an abstraction level in a dimension hierarchy. For example, if the
items on the lowest level are shops, they can first rollup to the
town level and then to the country level. The attributes
representing the levels of dimensions are called dimension level

attributes. In the example above, the dimension level attributes
are town and country.

Definition 2 Let Dr, D, be dimension schemata, KI, K,
their keys, and M a set of attributes called measures. The OLAP
cube schema is a relation schema H = DI u DZ u ... u D. u M,
and (Kt, K,) is a superkey for H. An OLAP cube is a relation
over the schema H. Further, an OLAP schema is a set of OLAP
cube schemata.

3.2 Logical Design Goals
We adopt three criteria with which we assess the quality of an
OLAP cube design: completeness, correct aggregations, and
minimal sparsity. In this section they will be studied in more
detail.

Completeness and Minimalism. Cabibbo and Torlone [l] mean
by completeness that all information stored in operational
databases is incorporated in the OLAP cube. We restrict the
concept of completeness to whether all information needed to
answer the user’s queries is incorporated in the OLAP cube. On
the other hand, the cube should contain only relevant information
for the user. The avoidance of overlylarge cubes is also important
for the effectiveness of the system.

Correct Aggregations. Lenz and Shoshani have studied
summarizability, i.e. correctness of aggregations, in OLAP [7].
They give three necessary conditions for summarizability, and
they also assume that these conditions are sufficient. The
conditions are:

1. disjointness of categories in hierarchies,
2. completeness in hierarchies, and
3. correct use of measure (summary) attributes with statistical

functions.

Disjointness requires that attributes in dimensions form disjoint
subsets (categories) over the elements on a level. Completeness
in hierarchies means that all elements occur in one of the
dimensions and every element is assigned to some category on
the level above it in the hierarchy. Correct use of measure
attributes with statistical functions is the most complex of these
requirements, since it depends on the type of the attribute and
the type of the statistical function. Measure attributes can be
classified into three different types, which are flow, stock, and
value-per-unit. Knowing the type of an attribute we can conclude
which statistical functions can be applied to the attribute.

Minimal Sparsity. Sparsity, in general, can refer to two different
characteristics of the cube design.

I. The proportion of cube cells containing zeros or nulls
because there is no measure value for the combination of
attribute values that collectively constitute the coordinates of
the cell, and

2 . The ratio of the raw data values to the number of aggregation
values, a function of the hyper-surface area of the cube.

The first kind of sparsity is affected by, for example, decisions
about whether to make an attribute an aggregation level within a
dimension, or a dimension in its own right. The second kind of
sparsity is affected by design decisions such as whether to split
one dimension into two dimensions. This type of sparsity
increases if the number of dimensions increases, because adding
dimensions increases the hyper-surface area of the cube. We are

primarily interested in the first kind of sparsity, as the following
definition shows.

Definition 3 The sparsity of an OLAP cube is the ratio: (the
number of empty cells) / (the total number of cells).

This way, sparsity is one if all cells are empty and zero if all cells
are occupied. Sparsity clearly depends on actual data. However,
functional dependencies may imply potential sparsity.

Definition 4 The structural sparsity of an OLAP cube is the
amount of sparsity implied from the functional dependencies.

3.3 Graphical Formalism
In our examples, we use a schema drawing technique simplified
from the one presented by Niemi et al. [IO]. Text boxes represent
concepts or attributes, and arrows functional dependencies
between the attributes. Transitive dependencies are not drawn.
The method is chosen, because it enables us to show the
dependency information explicitly. An example of the graphical
formalism is shown in Figure 2. The measure-id attribute, i.e. the
attribute that represents and identities the event whose properties
are under analysis, is drawn with a bold rectangle. When
analysing dependencies for cube design the dependencies related
to the measure-id attribute are not relevant. Therefore those
dependencies are drawn with a dashed line.

3.4 Queries
The user’s information needs are expressed as a set of general
queries against a base cube representing the data warehouse.
This does not mean that we know the actual queries beforehand.
We only assume that a general form of queries and the attributes
of the data warehouse to which the queries refer are known. We
suppose that an OLAP cube or a set of cubes can be seen as an
answer to this query set. Therefore it is meaningful to design the
OLAP cube using query information.

3.4. I Multidimensional Expressions MDX
Multidimensional Expressions (MDX) is a declarative query
language for multidimensional databases designed by Microsoft
[8]. Because of lack of space, we give only a brief introduction to
the syntax of MDX. A simple MDX select statement has the
following form:

SELECT <axis specification> [, <axis specification>, . ..I
FROM <cube specif icat ion>
WHERE <slicer spec i f ica t ion>

Each axis specification describes how to produce one of the
dimensions in the result. This includes specifying the point in the
dimension hierarchy at which aggregation should be performed.
The slicer specification allows the user to eliminate unwanted
dimensions from the answer. The cube specification is not
relevant in this work, because we implicitly assume that all
queries are posed to one base cube. Thus, we ignore the FROM
clause in the rest of this paper. In Example 2 we can see a simple
MDX query.

In the select statement, the axes are associated with rows,
columns, pages, etc. This facilitates presenting the result of a
query in a tabular form. Since we use MDX in specifying
information for the OLAP cube, we are not interested in tabular
presentations and this feature of MDX can be omitted. The axis
or dimensions are specified by giving the set of members. MDX

has several ways to do it. The basic possibilities are to list the
members or use MEMBERS, CHILDREN, or DESCENDANTS
functions. An example about other features is the FILTER
command that can be used to filter out member values of a
dimension. The MDX language also contains a WITH clause but
we ignore it in this work. The WITH clause can be used to
construct member properties, which give additional information
on dimension members. For example, the product can have its
colour as a member property. Member properties can be
expressed as own dimensions or dimension levels but it is not
efficient.

If a dimension is not mentioned in the axis definition, it is
assumed to be a slicer dimension and the cube will be sliced
according to the default member of the dimension. The slicer
dimensions with the members to slice can also be given
explicitly using the WHERE statement. For example, the user
may be interested only in the sales of a particular year. The
measure values to be viewed are also selected using the WHERE
statement .

3.4.2 Constructing Dimensions and Their
Hierarchies for Base Cube
To be able to present OLAP queries we must have a general
OLAP cube. We construct the cube such that the closure of each
attribute in a data warehouse forms a dimension. The attribute
itself is a key for the dimension and other attributes in its closure
(i.e. the attributes that the attribute functionally determines) form
the dimension hierarchy. We do not distinguish between
measures and other dimensions since MDX handles them in a
similar way. Moreover, for simplicity, we ignore property
attributes, too.

Definition 5 Let assume that each attribute Ai of a data
warehouse forms a dimension schema Dr such that Dr = Ai’.
Clearly, Ai is a key for Dr. A base OIAP cube schema used in
queries is a relation schema H= Dr u D2 u ... u D,,, where Dr,
Da, D, are the dimensions.

Example 1 We have a schema about a company selling products
in Figure 2.

Figure 2. A company example

According to Definition 5, we will get the following dimensions:
customer id, customer name; customer name;
product id, product name, product group;
product name; product group; employee id,
employee name; employee name; 9, month,
year; month, year; year; p r o f i t .quantity;

The keys of the dimension schemata are underlined. We assume
that each dimension has a unary key. Dimension level attributes
and property attributes are not separated but in the final

I2

implementation property attributes can be taken into account, if
the used implementation system supports them.

Example 2 An MDX query related to the schema in Figure 2.
SELECT day, product group, customer id
WHERE profi t , year.[2000]

The query in Example 2 corresponds to a three-dimensional cube
where profit is the measure and day, product group, and customer
id are the dimensions.

4. CONSTRUCTING CUBES
To construct an OLAP cube we need to detect the measure(s) and
the dimensions from the set of example MDX queries. A cube
(or a set of cubes) is called complete if all given queries can be
answered and minimal if the cube, or cubes, contain no data
other than that needed to answer the queries and their
subqueries. By a subquery we mean such a query whose answer
is included in the answer of another query in the given query set.
Our aim, of course, is to construct both complete and minimal
cubes.

4.1 Similarity of Queries
The user’s information requirements are presented as a set of
MDX queries posed against the virtual cube representing the
contents of the whole data warehouse. For constructing a logical
OLAP schema, we need only the set of dimension attributes used
in the SELECT clause and the measure in the WHERE clause of
the MDX query. However, we do not use the measure attributes
while forming the logical structure for the cube, the measure
attributes are only included as dimensions in the final cube
schema. The information in the FILTER and slicing attributes in
the WHERE clauses are needed when populating the cube, but it
is out of our scope in this work. Our aim is to find a schema for
an OLAP cube or a set of cubes that represent answers to the
given query set. We have three possibilities of how many cubes
to construct:

I. All queries represent one OLAP cube.
-Too large a cube is undesirable for technical reasons and it

can also be confusing for the user.
2 . Each query represents a cube of its own.

- This restricts analysing power and may lead to redundancy
in the use of the storage space.

3 . ‘Similar’ queries represent a common cube.
- This is the best possibility but “similarity” of queries can

be difficult to judge and a small set of example queries can
lead to too many cubes.

The similarity of queries can be defined in many different ways.
We assume that queries are similar if they share a dimension
directly or transitively and if they operate on the same hierarchy
level. However, in this phase we distinct the measure attributes
and dimension attributes, i.e. the queries are not treated similar
if they only have the same measure. Since the size of a cube
increases if we needed to add more dimensions, it is often more
economical to construct different cubes in cases there the
measure is the only connecting thing between queries. Moreover,
some often-used dimensions having a special role, like time or
geography, may be ignored when constructing equivalence
classes. For example, the time dimension is used in the most of
the queries but it does not imply that the queries have anything

else in common. The following algorithm groups queries to
equivalence classes, for which OLAP cubes will be constructed.
The normalisation process can still construct more cubes than
equivalence classes.

Algorithm 1 Dividing MDX queries into equivalence classes

Input: A base OLAP cube schema H, a set Q of MDX queries
against H, and a set of functional dependencies over
the attributes in H.

Output: A set of equivalence classes of queries in Q.

1.

2 .

3 .

4 .

5 .

For each query Qi in Q, place attributes of the SELECT
clause to a set Xi. Ignore too general dimensions, e.g. time or
geography.
For each set Xi, based on the functional dependency
information, construct the set Yi of dimension keys of
dimensions of H, such that Yi contains a dimension key K if
there exists such an attribute AE Xi that AE K+.
Construct equivalence classes for the queries as follows:

Two queries Q and Q’ belong to the same equivalence
class E if we can form a sequence of existing queries
< Qo = Q, QI, Qll, Q’= Qo+r > such that Yi I-I Yi+t f 0,
0 5 i I n, where Yt denotes the dimension key set of the
query Qi.

(An additional phase to improve efficiency for analysing less
detailed cubes):
For each equivalence class Ei:

For each query Q in Ei:
If there is a query Q’EEi with the same dimensions as
Q but some dimensions of Q’ are in more detailed
levels than in Q, then construct a new equivalence
class E’ as follows: E’=Ei-(Q’).

Output the set of equivalence classes obtained.

The algorithm places queries in the same equivalence class if
they directly or transitively have common dimensions. These
equivalence classes can be further divided to improve
performance of less detailed queries by constructing a different
cube for a less detailed query set. This cube will be smaller and
more efficient to use.

Example 3 A user wants to analyse how different variables
affect profit and quantity. This can be represented, for example,
by the following three MDX queries against the base cube
presented in Example 1:
- QI: SELECT day, product group

WHERE profi t , year.[2OOO]
- Qz: SELECT employee id, customer id

WHERE profi t
- 43: SELECT year, product id

WHERE quantity
In the first phase of Algorithm 1 the attributes in the select
clause are found. We get sets XI = (day, product group), X2 =
{employee id, customer id), and X3 = (year, product id). The
corresponding dimension key sets are: YI = (day, product id), YZ
= [employee id, customer id), and Ys = (day, product id). From
these dimension key sets two equivalence classes can be formed:
Et = (QI, Qs] and E2 = (Qz). Moreover, Et can be further
divided into two classes Et’ = (Qt) and Et” = (Q3) according to

1 3

Step 4 in the algorithm, because Qt and Qz operates in different
levels of details in the both their common dimensions.

4.2 Normal Forms
The result of logical design can be evaluated by comparing it
against some normal forms [6, 91. The normal forms will be
something like relational normal forms: a particular normal form
has some desirable properties related to the correctness of
aggregation, sparsity, etc.

OLAP normal forms can be classified into two categories,
according to the nature of the properties that they ensure.
Multidimensional normal forms are related to dependencies
between dimensions and dimensional normal forms concern
intra-dimensional dependencies [6]. A dimension is in
dimensional normal form if there is one terminal attribute and
functional dependencies between attributes on different hierarchy
levels, i.e. there is a single attribute key for the dimension. A
data cube is in dimensional normal form if all its dimensions are
in dimensional normal form. Further, a data cube is in
multidimensional normal form if it is in dimensional normal
form and there are no FDs between dimensions. The aim of the
dimensional normal form is to guarantee completeness in
aggregations while the multidimensional normal form is mostly
used in controlling sparsity of the OLAP cubes.

A new normal form (which we call here the non-sparse normal
form) for controlling structural sparsity of OLAP cubes has been
defined by Niemi et al. [9]. The non-sparse normal form takes
into account non-unary functional dependencies and
dependencies having intersecting right-hand sides. The schema
in Figure 3 is in multidimensional normal form but not in non-
sparse normal form because of right-hand side intersecting
dependencies customer + office and employee + office.

profi t

3

e
product-sold ---- - employee

customer office

Figure 3. Both customer and employee determines office

4.3 Constructing Normalised Cube
The final OLAP schema is constructed using the method of
Niemi et al. [9]. The method applies the functional dependency
information in construction of OLAP cubes. The resulting cube
or the set of cubes will be in non-sparse normal form that reduces
sparsity and incorrect aggregations. The normalisation algorithm
works as follows:

I. Dimension decomposition. The dimensions are first
constructed based on the idea that there has to be a single
attribute key for a dimension. This is ensured by placing
attributes A and B in different dimensions if there does not
exist an attribute that functionally determines both A and B.

2. Cube decomposition. The dimensions constructed in Phase 1
are given as an input. Multiple cubes are constructed by
placing conflicting dimensions in different cubes. There is a

conflict between two dimensions if there is a functional
dependency having attributes (on the left or right hand side)
from both dimensions. The process is repeated until all cubes
are free from conflicts.

The extreme case is that the cubes will become one-dimensional.
This, of course, is not desirable but it is better to allow a sparse
result and to stop the process earlier. The algorithm can also
handle measure attributes. If the measure attributes are given as
an input, dimensions will be constructed for them.

The following algorithm constructs an OLAP schema using a set
of MDX queries as input.

Algori thm 2 Constructing an OLAP schema from a set of MDX
queries.

Input: A base OLAP cube schema H, a set Q of MDX queries
against H, and a set of functional dependencies over
the attributes in H.

Output: A set of OLAP cube schemata.

1. Divide the queries into equivalence classes using Algorithm
1.

2. For each equivalence class:
2.1 Set the closures (according to the functional

dependencies) of the attributes (both dimension and
measure) of all queries in the equivalence class to the
initial dimensions of the algorithm.

2.2 Apply the normalisation algorithm by Niemi et al.
described above.

3. Output the resulting cube schema(s). It is also possible to
compute the structural sparsity information and output also it
to the user.

If the user is not satisfied with the result of the algorithm, he or
she can manually change the cubes or dimensions.
Example 4 We continue with Example 3. If we do not use the
last additional phase of Algorithm 1, we have two equivalence
classes of queries: Er=(Qt, Qs] and Ez=(Qz] with attributes
(day, month, year, product id, product name, product group,
profit, quantity] and (employee id, employee name, customer id,
customer name, profit]. The both equivalence classes are given
to the normalisation algorithm separately. For the first class the
algorithm returns an OLAP cube with dimensions (day, month,
year), (product id, product name, product group], (profit), and
(quantity], and for the second class (employee id, employee
name], (customer id, customer name), and [profit]. The both
resulting cubes are in non-sparse normal form having zero as
their structural sparsity.

Choosing which hierarchy levels are taken into the cube
dimensions is not always so obvious. In the current method the
more detailed levels are not included but the more general levels
are. The reason is to keep the cube as small as possible, since
additional more genera1 levels require storage space only if the
precalculated aggregation values are stored. However, quite often
the user would also like to do drill down operations from the
level that is chosen in the example queries. Thus, in practice, it
would be useful to ask the user for every dimension whether the
more detailed levels should be included in the final cube.

I4

4.4 Discussion about Properties of Resulting
OLAP Schema
We presented three design goals: 1) completeness and
minimalism, 2) correctness of aggregations, and 3) minimal
sparsity. In this section we discuss how our methods help to
achieve those goals.

1. The completeness is guaranteed by taking into account all
dimensions given in MDX queries. Of course, the resulting
cubes are complete only related to the example query set,
which may not totally corresponds the user’s information
requirements. The resulting OLAP schema is minimal related
to the number of dimensions, since only dimensions
mentioned in the queries are taken into the OLAP schema.

2. The dimensional normal form helps achieving correct
aggregations by guaranteeing complete and disjoint
hierarchies because of the functional dependencies between
hierarchy levels in a dimension. In addition to this, the user
should pay attention to the correct use of statistical
aggregation functions.

3. Minimal amount of structural sparsity is achieved by the
non-sparse normal form, if the cubes can be fully normalised.
Sometimes this could lead to one dimensional cubes, which
is not sensible, but the normalisation has to be stopped
earlier.

5. CONCLUSIONS AND FUTURE WORK
We have presented a method to construct OLAP cubes based on
example queries. The user can start cube construction by posing
queries against a general OLAP cube, which represents the
information stored into the data warehouse. Another possibility
to use the method is to improve the structure of existing cubes
based on information about posed queries. The method does not
only optimise cubes for efficiency but also ease of use.
It is also possible to make this kind of system capable to learn.
For example, the time is often wanted to be a dimension and it
may be that the cities are classified according to the country, etc.
Further, if the user has always kept some concept as a dimension,
she/he probably wants it to be a dimension in this time, too. In an
organisation, “collaborative learning” can be applied: for
example, the cubes constructed by another user can be suggested
first, etc.

6. REFERENCES
[l] [Cabibbo, L. and Torlone, R.: A logical approach to

multidimensional databases, 6th International Conference
on Extending Database Technology (EDBT98, Valencia,
Spain), G. Alonso (eds.), LNCS, Vol. 1377, Springer, 1998.

[2] Chen, P. P.: The Entity-Relationship model: Toward a
Unified View of Data, ACM Transactions on Database
Systems, l(l), 1976.

[3] Cheung, D., Zhou, B., Kao, B., Lu, H., Lam, T., and Ting,
H.: Requirement-based data cube schema design,
Proceedings of the Eighth International Conference on
Information and Knowledge Management, ACM, 1999.

[4] Codd, E. F.: A relational model for large shared data banks,
Communications of the ACM, 13(6), 1970.

[.5] M. Golfarelli, D. Maio, and S. Rizzi: Conceptual design of
data warehouses from FJR schemes, Proceedings of the 31st
Hawaii International Conference on System Sciences, 1998.

[6] Lehner, W., Albrecht, J., and Wedekind, H.: Normal Forms
for Multidimensional Databases, Proceedings of the I&h
International Conference on Scientific and Statistical Data
Manngement (SSDBM98), Capri, Italy, 1998.

[7] Lenz, H.-J. and Shoshani, A.: Summarizability in OLAP and
Statistical Data Bases, Ninth International Conference On
Scientific And Statistical Database Management (SSDBM),
1997.

[8] Microsoft OLE DB for OLAP Programmer’s Reference,

[! >] Niemi, T., Nummenmaa, J., and Thanisch, P.: Functional
dependencies in controlling sparsity of OLAP cubes, Data
Warehousing a n d Knowledge Discovery, Second
International Conference, Da WaK 2000, Y. Kambayashi et
al. (eds.), LNCS, Vol. 1874, Springer, 2000.

Microsoft Corporation, 1998.

IO] Niemi, T., Nummenmaa, J., and Thanisch, P.: Applying
dependency theory to conceptual modelling, Topics in
Conceptual Analysis and Modeling, Czech Academy of
Sciences’ Publishing House Filosofia, Prague, 2000.

[I l] Sapia, C.: On modelling and predicting query behavior in
OLAP systems, Proceedings of the International Workshop
on Design and Management of Data Warehouses, S. Gatziu
et al. (eds.), Heidelberg, Germany, 1999.

[12] Sapia, C., Blaschka, M., Hofling, G., and Dinter, B.:
Extending the EJR model for the multidimensional
paradigm, Advances in Database Technologies, Y.
Kambayashi et al. (eds.), LNCS 1552, Springer, 1998.

[I31 Selfridge, P., Srivastava, D., and Wilson, L.: IDEA:
Interactive data exploration and Analysis, ACM-SIGMOD
International Conference on Management of Data, 1996.

[14] Zurek, T. and Sinnwell, M.: Data warehousing has more
colours than just black & white, VLDB99, Proceedings of
25th International Conference on Very Large Data Bases,
M. Atkinson et al. (eds.), Morgan Kaufmann, 1999.

I5

