Change-Based Random Testing with Static Program Slices

Marcelo d’Amorim

Juliano lyoda

Informatics Center
Federal University of Pernambuco, Brazil
{damorim,jmi}@cin.ufpe.br

ABSTRACT

State-space exploration is a popular approach for the au-
tomation of test generation. One key issue of state-space
exploration is dealing with the size of the state-space. We
present Change-Based Random Testing (CB), a technique
that uses the changes programmers make between two pro-
gram versions to reduce the search space for random se-
quence generation. The context of use of CB is that of test-
ing the program incrementally to find regression errors in-
troduced with changes. CB takes as input a program under
test and a set of change descriptions and produces a set of
test sequences as output. CB builds on a program slicer to
automatically produce a list of methods and constructors. A
test sequence generator uses this list to build calling contexts
for changed methods and constructors. We conducted two
kinds of experiments on four open-source subjects of varying
sizes: nanoxml 1.5KLOC, health-watcher 3.0KLOC, jme-
ter 19.9KLOC, and poi 46.1KLOC. We compare CB with
all-at-once generation (AO), a scenario where the genera-
tor takes a list with all public methods and constructors
as input. We evaluate the difference in coverage and muta-
tion scores between CB and AO. The results indicate that,
for larger programs, the suite generated with the slicer cov-
ered more basic blocks consistently: the average coverage
difference (i.e., coverage of changed members obtained with
the CB suite minus that obtained with AO’s.) was -5.94
for nanoxml, -0.23 for health-watcher, 20.28 for jmeter, and
29.21 for poi. A positive (resp., negative) value indicates
that the suite generated with the slicer covered more (resp.,
less). The results on mutation scores show that either suite
kill mutants that the other could not kill, however the suite
from the slicer could kill more mutants consistently.
Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification; D.2.5
[Software Engineering]: Testing and Debugging
General Terms

Experimentation, Verification

Keywords

random testing, dynamic analysis, static analysis, slicing

1. INTRODUCTION

Testing consists of two activities: (i) generating inputs, and
(ii) generating classifiers (i.e., oracles) to determine whether
the execution of one test input passes or fails. Testing is the
dominant approach in industry to assure software quality.
Software testing is also very ezpensive. Beizer [11] estimates
that total labor resources spent on testing range from 30 to
90%. In a more recent study, Santhanam and Hailpern [33]
report that from 50 to 75% of the total cost of a project in-
volves testing and debugging. In 2002 the National Institute
of Standards and Technology (NIST) estimated that the cost
of the inadequate infrastructure to the American economy
was 59.2 billion dollars [28]. Automation can help reduce
this cost. This paper proposes a technique to improve test
automation.

A test input consists of a sequence of operations. More
specifically, we consider in the context of this paper se-
quential object-oriented programs whose inputs consist of
sequences of method calls. A typical white-box test sequence
generator takes as input a program under test and a list of
its classes and methods and generates as output a set of
test sequences. The tests these generators produce are com-
plementary to manually-written functional tests. They are
particularly useful to explore corner-case scenarios (which
requirements-driven generation typically fail to capture) and
to keep tests in sync with constantly evolving programs (as
interface changes often lead to test changes). Recently, sev-
eral automated test sequence generation techniques have
been proposed. They have been effective for crashing pro-
grams [12, 14, 20], violating language-specific invariants [31],
and exposing application-specific logical errors [22, 30].

We propose Change-Based Random Testing (CB), a tech-
nique that uses the changes programmers make between two
program versions to reduce the search space for random se-
quence generation. CB takes as input a program under test
and a set of change identifiers and produces as output a set
of test sequences (i.e., test inputs) to exercise the changes. A
change identifier is an identifier of a method or constructor
that programmers changed between a pair of program ver-
sions. The operational goal of the generator is to construct
sequences that exercise the changed parts of the program.
The expected scenario of use for change-based testing is that
of a tester who wants to construct test sequences that exer-
cise methods and constructors she has changed during some
period of work. We are particularly interested in testing
changes on parts of the program that interact with others,

i.e., on the automation of integration testing.

Important to note is that current test sequence generation
techniques explore the application all-at-once (AO). In this
setting, the user provides the same list of classes and meth-
ods across different runs of a test sequence generator. One
generation does not use information from previous runs.
Two sources of inefficiency are possible in this context: (i)
the generator explores large portions of the program that
have not changed (and must not have changed behavior
since last generation), and (ii) the generator may neglect
parts that have changed and are more likely to contain er-
rors [27]. Conceptually all-at-once exploration works well
for small search spaces or when the user constantly updates
the input list of methods and classes to only explore changes.
For large search spaces all-at-once exploration may not scale
as the sequence generator considers of equal importance the
members from the input list to explore. Typically, such a
list includes all public methods and constructors of the pro-
gram.

CB uses program slicing to improve test sequence genera-
tion. Program slicing [38, 29, 9, 37] is a technique — with
many applications in software engineering — for simplifying a
program with respect to some (slicing) criteria. The reduced
program is typically called a slice. The slicer we propose
uses a criteria based on program changes. It takes a list of
changed members as input and produces a list of members —
the slice — as output. We use the term (class) member
to denote a method or constructor. One expects the slice
to include the changed members plus members that build
calling contexts to the changed ones. For example, if an in-
stance method m is part of the slice so should be the public
constructors of its declaring class, the ancestors of m in the
call graph (i.e., methods that can transitively call m), and
methods that assign to a field that m reads. Section 2 dis-
cusses the slicer that CB uses in detail. This paper uses the
term test goal to denote a member whose body has changed
across a pair of versions.

Intuitively, one factor that determines the effectiveness of
CB is the size of the slice computed from program changes.
The greater the difference between the size of the slice and
the total number of public members the greater the poten-
tial impact of CB: the potential space reduction increases
with the increase of this difference. We discuss next the re-
sults of a feasibility study to evaluate the magnitude of this
difference.

Note on distribution representation. We use boxplot
notation to represent a distribution of slice sizes for one
group of randomly selected changes. In this notation, the
lower hinge of one box indicates the upper bound of the
first distribution quartile (i.e., 25% of the population) while
the upper hinge is the upper bound of the third quartile.
The line across the box defines the second quartile (i.e., the
median value). The line below (resp., above) the box indi-
cates the first (resp., fourth) quartile. The circles outside
the limits of these vertical lines indicate outliers, when they
occur.

Figure 1 illustrates how the size of the slice increases with
the number of test goals for a selection of subjects of varying

sizes (1.5, 3.0, 19.9, and 46.1 KLOC). For a number n of
test goals, varying from 2 to 60 with a 2-units step, we run
the slicer 10 times with a different selection of n goals and
measure the size of the resulting slice as the fraction of public
concrete members in the slice out of the total number of
these public members.

This figure shows that CB could produce more gains (i.e., re-
duce more space) for bigger programs (e.g., jmeter and poi):
the average median values of slice size across the distribu-
tions are 43.75% for nanoxml, 38.27% for health-watcher,
34.9% for jmeter, and 26.08% for poi. The plot also shows a
more gradual increase in the median values for bigger pro-
grams: the slopes of the linear regression lines (which do not
appear in the plots) built from the median values of each dis-
tribution are 0.75 for nanoxml, 0.63 for health-watcher, 0.21
for jmeter, and 0.40 for poi.

Note that the slice size grows slower for jmeter than for
poi even though poi is a bigger program. Note also that
even for small programs with similar sizes (e.g., nanoxml
and health-watcher) the rate of increase varies significantly.
These observations highlight that the size of the program
is an important factor to determine the size of the slice but
there are certainly others. For example, note that jmeter has
a sharp increase in the size of the slice with the selection of
more than 4 goals and that the variance in the size of the
slice is minor, compared to other subjects, from 4 up to 60
input goals.

In summary, this feasibility study shows that the size of
the slice computed from changes does not grow too fast for
large programs. However, this metric is not sufficient to
demonstrate the potential impact of CB for space reduc-
tion in general. We noted from our experiments that other
factors also affect the slice size in particular and CB. For
example, the number of modifications (goals), the timeout
(which determines when generation stops), and the program
organization (e.g., the number of incoming paths in the call
graph to a goal). Section 3 discusses the evaluation of CB
in more detail.

The contributions of this paper are as follows:

e The proposal and implementation of a test sequence
generation technique based on changes.

e The evaluation of this technique with respect to basic
block coverage and mutation scores.

Summary of evaluation

We use basic block coverage and mutation scores to evalu-
ate the impact of CB for search space reduction. To that
end we use four open-source subjects of different sizes. We
run CB with several random selections of test goals using
a fixed timeout value. The results indicate that for big-
ger programs CB covered more basic blocks from the test
goals than AO on average: the average difference of cov-
erage value for nanoxml was -5.94, for health-watcher was
-0.23, for jmeter was 20.28, and for poi was 29.21. A pos-
itive (resp., negative) value indicates that CB (resp., AO)
covered more. We also compare coverage of CB and AO on

nanoxml (1.5KLOC)

0.6 0.7
I
oo
o =t}
B ==
[e e
N et
e —

0.4

0.1
I

0.2
|

jmeter (19.9KLOC)

0.7

0.6
I

05

0.4

fe Lo AP R
co%iagpabiatbelefesdnalel e

Lo

03

0.2

0.1
I

° °
= 8

health (3.0KLOC)

0.7

0.6
I

0.4 05
| |
o
o
°
o
oo
| — —]
o
—_
— —
© [= =)
o [
[= = N
[e—
—
—T—
—
=
—
—
—

0.2
|
o
R ——— = BT
--o3

0.1
I

poi (46.1KLOC)

05 0.6 0.7
I

0.4

oo

oo
©
o

0.1
I

Figure 1: Slice size varies with the number of goals. Horizontal and vertical axis indicate respectively the

number of goals and the size of the slice.

4 different random selection of test goals for increasing time-
out values that we provide to the sequence generators. The
results show that AO can achieve higher coverage than CB
for some time bounds. This indicates that the slicer does not
conservatively add to the slice all members that can build
context to calling test goals. We also compare CB and AO
with respect to their coverage on 13 faulty members from
the jmeter subject obtained from the SIR repository. The
results show that for 7 members CB covers more than AO,
and for 6 it covers the same. Finally, we measure the scores
CB and AO obtain for killing several mutants manually cre-
ated. The results show that either CB or AO kill mutants
that the other could not kill, however CB could consistently
kill more mutants. This indicates that AO and CB are com-
plementary with respect to the capability of finding these
injected errors.

2. TECHNIQUE

This section describes Change-based Random Testing (CB),
a technique for generating random test sequences based on
the information of which parts of the program have changed.

member set (slice)

e

changes set — dicer I— test suite

classes set U

Figure 2: CB inputs and output. CB automates the
generation of the member set, input to the random
generator.

random generator

Slicing + Random generation. A random sequence gen-
erator takes as input a set of classes and a set of public
members (methods and constructors) and generates random
sequences of method calls as output. AO and CB differ in
the elements of the member set they provide to the random
generator: AQO includes in this set all public methods and
constructors, while CB attempts to include only members
that can build context to calling a method or constructor
that has changed. Figure 2 shows the inputs and output of
CB. The slicer, appearing to the left of the figure, automates
the generation of the member set. One can obtain AO by

replacing the slicer with a component that provides to the
generator all public members from the program under test.

We next describe the two components of the technique —
the slicer and the random generator, and discuss the main
limitations associated to CB.

2.1 Slicing on changes

This section describes the program slicer that CB uses to
automate the generation of its input member set. Figure 2
shows the inputs and outputs of the slicer.

Ideally, one wants the slicer to generate a minimal member
set including all members of the program that can contribute
to building input to the test goals. This would maximize re-
duction without hurting the quality of the random sequence
exploration. Unfortunately, finding such ideal set is neither
practical (as the slice can grow too fast) nor possible (as we
cannot prove in general that one member is useful). We dis-
cuss next the main design decisions for the slicer to produce
an approximation of this idealized set.

The slicer takes as input the set Mod of modified members
and computes the set Sl denoting the program slice. Any
member satisfying the following criteria should participate
on the slice Si. The following conditions determine the selec-
tion of a member in the slice (consider s € Sl and m € Mod):

e any public method that can transitively call m

e any public factory for a type that is assignable to one
of the formal parameters of s (receiver is also a param-
eter)

e any public method that can write to a field that s reads

The first condition results in the addition of ancestors of m
to the slice. A method is ancestor of another if there is a path
connecting one to the other in the call graph. A node in this
graph corresponds to a method (resp., constructor) identifier
and an edge corresponds to an invocation (resp., allocation).
The rationale for this condition is that ancestors can build
calling context “for free” to m. It is important to note that
the execution of a test including an ancestor of m does not
assure a dynamic call to m. More precisely, because of the
infeasibility of some program paths [32] the slicer can add
methods to the slice that will not necessarily contribute to
calling m. For example, consider the void methods a(int x){
b(x*x);}, and b(int x){if (x > 0) c(); else d();}. Note
that despite the fact that a is an ancestor of d, there cannot
be a call to d from a since b does not call d on positive
values. Note that 22 is the argument passed to the call to b.
This condition results in an over-approximation of the set of
ancestors that can actually call m.

We use the term factory to denote any non-void method
or constructor of the program under test. In this context,
a factory is a member that can build a fresh object. This
condition results in the addition to the slice of factories for
objects that can be passed as arguments to methods and
constructors in the slice: the slicer adds to the slice all fac-
tories of t’, a subtype of ¢, when ¢ appears as a formal pa-
rameter of some slice member. The slicer does not consider

public class Stack<T> {

int num; ...

public void push(T t) { num++; ... }
public T pop() { num--; ... }
public T peek() { ... }

Figure 3: Stack example

1: Set<Member> slice(Set<Member> goals) :

2: Set<Member> result = 0

3: Set<Member> wset = {m | m € goals}

4: while wset # () do

5: Member entry = wset.remove(0)

6: if entry € result then continue fi

T: if entry is-public then

8: // add entry to slice

9: result.add(entry)

10: // generate input directly. add all factories
11: foreach Type t in entry.paramTypes() do

12: foreach Member m €

13: {f | f € factories(v) A (v,t) € SUB} do
14: wset.add(m) done

15: done

16: // m writes to a field that entry reads

17: foreach Member m €

18: {w | w € assigns(f) N f € reads(entry)} do
19: wset.add(m) done

20: fi

21: // generate input indirectly from callers.
22: foreach Method m €

23: {z | (z,entry) € CG} do

24: wset.add(m) done

25: done

26: return result

Figure 4: Chaotic iteration algorithm for building
program slice.

primitive types in this case. The rationale for this condition
is that we cannot build a sequence without input data to
the elements in this sequence. Again, note that the slicer
may include members which are not indeed factories. For
example, members that only mutate fields and even pure
functions. This condition results in an over-approximation
of the set of factories.

The third condition results in the addition to the slice of
methods that can write to object fields that methods in the
slice reads. The rationale for this condition is that the be-
havior of members in the slice depends on the state they can
read. Conceptually, this condition enables the sequence gen-
erator to create tests that mutate the state that members in
the slice, including the test goals, can read.

It is important to note that the slicer is not able to detect
general mutation of state. For example, the slicer identifies
that the methods push and pop from the stack class in Fig-
ure 3 should appear together in the slice because they read
and write to the same integer field denoting the number of
elements in the stack. However, the slicer currently does
not detect general data-dependencies on the heap [41]. The
slicer applied this constraint to control the size of the slice.
The use of this condition results in an under-approximation
of the set of state mutators.

211 Implementation

The slicer of CB uses the ByteCode Engineering Library
(BCEL) [15] to build a (i) call-graph (CG), (ii) subtype-
relation (SUB), and (iii) field read-write relation. The
slicer uses the call graph C'G to identify ancestors, the
subtype relation SUB to identify useful object factories,
and the field read-write relation to identify state muta-
tors (i.e., methods that can mutate state that a member
in the slice can read during execution). We use the nota-
tion (a,b) € G to indicate that the graph G contains the
vertices a and b and that there is a directed edge connecting
them. The pair of functions reads : Member — Field and
assigns : Field — Member model together the field read-
write relation. The function reads indicates which (possibly
non-local) fields a method or constructor can read and func-
tion assigns indicates which methods and constructors can
write to a given field.

Figure 4 shows the pseudo-code of the slicer. It takes a set of
goal members as input and produces a set of members (i.e.,
the slice) as output. Variables result and wset (lines 2 and
3) denote respectively the state of the slice and a working set
of members to process. The slicer incrementally adds new
test goals to process and the working set avoids a recursive
definition of the function slice. Initially, the set result is
empty and the working set contains only the elements in
the input set of members (initial goals). The while loop
processes the elements in the working set as a queue and
ignores the member when it has already been visited (line
6). Note that as the number of members is finite and each
member is processed only once (assuming the containment
check is correct), the procedure slice must terminate.

The slicer makes the following decisions when the member
entry=m(t1, ..., tn) is public: (i) adds entry to the slice (line
9), (ii) adds to wset all factories of every subtype of t;, for
each ¢; in t1,..., ¢, (lines 11-15), and (iii) adds to wset all
members that can assign to a field that entry can read (lines
17-19). Regardless the access modifier of entry, the slicer
also adds all ancestors that can transitively call it (lines
22-24). Conceptually, we want to transfer the obligation
from building input to entry to building input to one of its
ancestors.

2.2 Random generation

CB builds on the feedback-directed random sequence gener-
ation algorithm (FD) [31] for generating test sequences. Fig-
ure 5 summarizes the FD algorithm. The algorithm takes as
input the set memset of methods and constructors and re-
ports as output the suite pass of passing tests (for regression)
and the suite fail of failing tests (for debugging).

The pseudo-code gen attempts to generate a new sequence
in each loop iteration by randomly selecting one constructor
or method from memset. The call to the external method
choose randomly selects a member from the set memset. Pre-
viously generated sequences provide input data to new se-
quences in the following manner. The method genSeq takes
as input a constructor or method m and a suite of passing
test sequences pass and builds a new sequence rooted in m
if it can find in pass inputs to all parameters of m. The ex-
ternal method findInput searches in pass for sequences whose
executions build value assignable to a variable of type type.

Set<TestSeq> pass = (; Set<TestSeq> fail = 0
gen(Set<Member> memset) :
while !stop() do
TestSeq seq = genSeq(choose(memset), pass)
if seq == FEMPTY then continue fi
if seq.run() == PASS then pass.add(seq)
else fail.add(seq) fi
done
genSeq(Member m, Set<TestSeq> pass) :
List<TestSeqs> seqArgs
foreach type in m.types() do
TestSeq tseq = findInput(pass, type)
if tseq == EMPTY then return tseq fi
seqArgs.add(tseq)
done
return createSequence(m, seqArgs)

Figure 5: Feedback-directed random sequence gen-
eration.

The external method createSequence creates a new sequence
with the construction of a method call to m passing the
expressions available at seqArgs as parameters.

Note that gen effectively implements a test driver with the
systematic construction and execution of test sequences.
The Randoop [31] implementation of this algorithm com-
bines this driver with programming contractsof the Java lan-
guage to find general kinds of errors. For example, Randoop
uses the contract that the execution of a method should not
raise a null pointer exception if the arguments of the method
call are non-null. We disable these contract checks in our ex-
periments.

One obtains all-at-once generation by calling method gen,
from Figure 5, passing as argument to the memset parameter
a set with all public constructors and methods of one subject
application.

2.3 Limitations

We list below the main limitations associated to CB.

e Scope. In principle, CB will not perform well for test-
ing units of a program or the entire system. The search
space associated with a program unit is typically small;
CB would not reduce sufficient space to improve explo-
ration. For system testing, the slicer is certainly not
as useful too. For example, there are no callers to the
main functions of the system within the code (except
for existing system tests) that the slicer could use to
build calling contexts. For those reasons, CB’s scope
of application is integration testing.

e Input Data. The implementation of CB we described
inherits the limitations associated with random test-
ing. CB will likely have difficulties to construct tests
that expose bugs which only manifest on very specific
input data. For example, a bug in a xml parser that
only manifests with a specific contrived xml input, or
a bug that only manifests under specific relationships
of primitive values passed as arguments to the method
calls in a test sequence [20, 16].

public class Foo {
Stack<?> s;
public Stack<?> getStack() { return s; }
public void foo() {...getStack().peek();...}
public void bar(int k) {...getStack().push(k);...}

Figure 6: Method foo accesses a Stack object.

e Missing members. It is possible that the slicer
leaves out of the slice members that could help build-
ing a calling context to a changed member. Consider,
for example, the method foo declared in class Foo from
Figure 6 is in the slice. The slicer does not identify
that the call to peek, a method that reads the top el-
ement from the stack, reads state reachable from the
reference to this. As such, the slicer is unable to add
to the slice the method bar that could mutate the state
of the stack object they access. This condition results
in an under-approximation of the set of state mutators.
Section 5 elaborates our plans to evaluate the impact
of using contextual def-use associations [35, 17] on the
quality of the slices.

3. EVALUATION

This section describes an empirical evaluation of the im-
pact of CB’s reduced search space on coverage and mutation
scores. We conducted two sets of experiments; one using
basic block (statement) coverage and the other using mu-
tation scores. For all experiments, we used an Intel Core2
Duo L7700 machine with 3GB of memory running Ubuntu
8.04. Section 3.1 describes the subjects we used, Section 3.2
the results for coverage, Section 3.3 the results for mutation
scores, and Section 3.4 discusses main conclusions.

3.1 Subjects

We used four open-source subjects in our experiments. The
list below describes each one. We used JavaNCSS [2] to
count non-comment non-blank lines of Java source.

e nanoxml [5] is a 1.54 KLOC XML parser for Java. It
is part of the Software-artifact Infrastructure Reposi-
tory (SIR) [7], a repository of software-related artifacts
built to support rigorous controlled experimentation
with program analysis and software testing techniques.

e health-watcher [1] is 2.99 KLOC application for reg-
istering public service complaints (e.g., food poisoning)
in a local community.

e jmeter [3] is a 19.88 KLOC Java application designed
for load and performance testing. It is maintained
by the Jakarta subproject of the open source Apache
project. This subject is also part of SIR.

e poi [6] is a 46.10 KLOC pure Java API, from the
Apache project, for manipulating various file formats
based on Microsoft’s format and Office OpenXML for-
mat.

3.2 Coverage

We compare CB and AO with respect to the basic-block
coverage they obtain, i.e., the fraction of basic blocks from
the control-flow graph of a goal method (or constructor)
that a test suite visits [32]. We conducted three different
experiments. The first one measures the difference of cov-
erage between CB and AO for an increasing number of test
goals, using a fixed timeout value. The second measures the
difference of coverage for an increasing timeout value, us-
ing a fixed number of goals; and finally the third measures
the coverage each technique obtains for goals informed from

SIR [7].

Impact of number of goalson CB

This section discusses the impact that the increase in the
number of goals have in coverage. Intuitively, one expects
that minimum (resp., maximum) number of changes (goals)
results in maximum (resp., minimum) gain.

The horizontal axis from Figure 7 determine the number of
test goals and the vertical axis determine the distribution of
coverage difference between CB and AO. A positive (resp.,
negative) value indicates that CB covers more (resp., less)
than AO. For each test goal, ranging from 4 to 60 with a 4-
units step, we run each technique for 10 times with different
random seeds and compute the difference in the coverage
they obtain. It is important to note that we use the same
set of seeds to run the experiments reported on figures 1
and 7. Note from Figure 1 that the size of the slice can vary
significantly for a different selection of goals (but with same
number of them).

The coverage of one execution (with CB or AO) consists
of the ratio of the sums). ¢(i)/ ", b(i), where the index
1 ranges over the set of goals, c(i) denotes the number of
basic blocks of i covered and b(i) the total number of basic
blocks of i. Note that we only consider coverage for the test
goals. Figure 7 reports a distribution of coverage differences
for each pair of number of goals used and experimental sub-
ject. For example, the plot to the bottom right of Figure 7
indicates that the range of coverage difference for poi with
32 different selections of goals is [—3.9,59.4] with a median
value above 20 (i.e., CB covered at least 20% more basic
blocks in 5 out 10 cases).

The list below describes key observations:

e The coverage difference was negative in some cases,
i.e., AO achieves more coverage than CB in some cases.
The average of the median coverage for nanoxml was
-5.94, for health-watcher was -0.23, for jmeter was
20.28, and for poi 29.21. This happens because the
slicer does not add important members to the slice
(i.e., members that can build calling context to exer-
cise the test goals). This result indicates that missing
members have a bigger impact in smaller subjects and
for a small number of goals. For larger programs (or
more goals) we noted that additional members com-
pensate for those missing.

e The distributions show that the median coverage dif-
ference reduces with the increase in the number of
goals. For smaller programs, CB improves coverage

nanoxml (1.5KLOC)

80 100
I I

60
I

DH”WWHEEEEBM

) 8 2 b H A B 2 b b A s 2 kb b 64

jmeter (19.9KLOC)

80
I

health (3.0KLOC)

100
I

80
I

0

s
—
o r-{T
|

[
o HHo

4 o

ol
[+
il
ol
ofl
I
i
+{I
g}

poi (46.1KLOC)

100
I

80
o

Figure 7: Impact of CB on coverage. A datapoint corresponds to the difference in coverage when running
Randoop with a 10s timeout with and without CB. A point below (above) 0 indicates loss (gain) in coverage.

relative to AO for an increased number of test goals.
The opposite happens for bigger programs. This re-
sult confirm our expectations that AO and CB should
produce similar results for a sufficiently large number
of goals.

Impact of time on CB

This section discusses the impact that the increased values
of timeout yields on coverage. Intuitively, one expects that
the gain of CB reduces with the increase of timeout.

Figure 8 shows how the coverage difference (between CB and
AQ) evolves with the increased time alloted for the gener-
ation of random sequences. In this experiment we run CB
and AO on the jmeter and poi subjects using 4 different
random selections of 32 goals. For each triple consisting of
seed (used to control both the selection of goals and the
random generator), timeout, and subject, we run CB and
AO and compute the difference in coverage they obtain. We
use timeouts from 10 to 40 seconds, with a 5 second step.
Figure 8 plots for each subject the coverage difference as

a function of time. It is important to note that Randoop
raised a stack overflow error for AO on poi after 25 seconds
for seeds 43 and 65465 and after 30s for seed 91. For these
cases we could not plot the data-points.

The list below describes key observations:

e The pattern of the plots are more similar for jmeter
than for poi. This suggests that the variance in the
size of the slice correlates positively with the similarity
of plots. Note from Figure 1 that the variance in slice
sizes for jmeter is small. In contrast, the similarity
of plots and the variance in slice sizes are higher for
poi. This result suggests that the variance in slice sizes,
which one can compute statically, can help to estimate
the performance of CB from previous runs.

e The difference of coverage did not decrease sharply
with time for the parameters we used in this exper-
iment. Note also that for seeds 91 and 6 of poi the
difference increased and decreased rapidly before re-
turning to the measurement at 20s. The plots show

Impact of time in coverage (jmeter)
60 T T T T T

50 |- seed 6 &

40 - g

difference in goal coverage (32 random goals)

10 15 20 25 30 35 40
timeout (in seconds)

Impact of time in coverage (poi)
60 T T T

T
seed 91 —+—
seed 43 --x---

seed 65465 ---x---

seed 6 &

40 fT B

30 q

difference in goal coverage (32 random goals)

10 15 20 25 30 35 40
timeout (in seconds)

Figure 8: Impact of time in AO and CB. Each point
corresponds to the difference in coverage (CB - AO).

that coverage varies for both techniques at different
rates but CB still showed gain in most samples. For
the jmeter subject, for example, the measurement of 3
out 4 seeds keeps above the 10-points difference, i.e.,
CB cover 10% more basic blocks than AO.

Seeded changes

Figure 9 shows the difference in coverage between CB and
AO when providing CB with a selection of changes from
SIR. We use a line to indicate AO coverage and a box to
indicate CB’s. The SIR infrastructure provides sequential
correct versions of each subject and scripts to inject faults
to each correct version. We provide as input to CB a set of
13 changes corresponding to all changes from faulty versions
1 and 2 of jmeter that modify method bodies that exist
in correct version 0. The results show that for 7 changed
methods CB covers more than AO, for 6 it covers the same,
and in no case CB covers less. Note that in 3 of the 6
cases both CB and AO cover 0% of the test goal. This
suggests that the random generation — not the techniques
themselves — could not create valid inputs.

3.3 Mutation scores

We evaluate CB and AO on the jmeter and poi subjects
with respect to their capability for killing mutants we con-
structed manually. For each of these subjects, we se-
lected 101 members of the program and added the state-

All-at-Once (AO) ——

100 |
80 T d

60 - .

Coverage

4,

20 ||

5 6 7 8 9 10 11 12 13
Goal

Figure 9: Basic-block coverage for a selection of jme-
ter methods that SIR seeds with faults.

ment System.err.println("MUTATION-REGRESSION"); within
the member at an arbitrary location. We calculate muta-
tion scores by comparing the output logs produced with the
execution of the suites that CB and AO generates. We con-
sider a technique to kill a mutant if the execution of a suite
prints MUTATION_REGRESSION on the output. We count the
number of mutants that both techniques kill, the number of
mutants that only one of them kills, and the number that
neither kill.

Table 1 shows mutation scores for 5 runs of CB and AO us-
ing different seeds. Column “exp” shows the subject under
test, column “#mut.” shows the number of mutants con-
structed, column “seed” shows the seed identifier, column
“cb+4ao0” shows the number of mutants both techniques kill,
column “cb-a0” shows the number of mutants that only CB
kills, column “ao-cb” shows the number of mutants that only
AOQ Kkills, and “none” shows the number of mutants that nei-
ther kills. Line “avg.” shows averages for each column as the
ratio of mutants killed out of the total. Line “avg. relative
to randoop” shows the ratio of mutants killed out of the to-
tal that Randoop can find, i.e., it ignores all mutants from
column “none”. For example, for column “cb+ao” from jme-
ter, the relative average corresponds to the ratio obtained
from the sum of values from this column (namely 129) out of
the sum of cells from columns “cb+ao”, “cb-ao” and “ao-cb”
(namely 249). The relative average helps to better identify
the cases when Randoop could not generate sequences for
killing a mutant.

The results show that CB killed consistently more mutants
than AO for jmeter. For poi, CB and AO killed roughly
the same number of mutants on average. We noted that
the slicer misses members relevant to exercise the changes.
This suggests that one should run the techniques in parallel
when possible. It is important to note that Randoop could
create more tests that exercise the changes on jmeter than
on poi: column “none” shows that Randoop (i.e., neither CB
nor AO) could not kill the mutant on 51% of the cases in
jmeter and 74% in poi.

killed

exp | #mut. [seed [cb4ao | cb-ao | ao-cb [none
1 26 18 7 50

2 33 12 5 51

jmeter 101 3 25 16 10 50
4 26 14 7 54

5 19 17 14 51
avg. 0.26 0.15 0.09 | 0.51

avg. relative to randoop 0.52 0.31 0.17 -
1 16 4 7 74

2 10 10 8 73

poi 101 3 14 5 5 Y
4 18 3 5 75

5 15 10 3 73
avg. 0.14 0.06 0.06 | 0.74

avg. relative to randoop 0.55 0.24 0.21 -

Table 1: Mutation scores for jmeter and poi.

3.4 Discussion

The results confirmed that the slice that CB uses is unsafe
with respect to changes. It can leave important members
out of the slice and that can affect the quality of the suite
Randoop generates. Intuitively, the slicer employs the typ-
ical static analyzes trade between precision and scalability:
the size of the slicer grows faster when it uses less restrictive
slicing criteria which, in principle, would permit inclusion of
members relevant to exercise changes. Note, however, that
in many cases the results show that CB improved over AO
on coverage and mutation scores. This suggests that CB and
AQ are complementary. Section 5 elaborates on our plan to
evaluate the impact of alternation between AO and CB to
improve change-based generation.

The effectiveness of CB depends on a number of factors in-
cluding the number of changes, the time alloted for sequence
generation, and also the structure of the program. For mem-
bers that are reachable from many different paths in the call
graph, for example utility functions, one expects that AO
will have better chances (compared to other members) to
generate sequences that cover those members.

4. RELATED WORK

Incremental model checking. Traditional model check-
ing explores the state space of a transition system to find
violations of an input property. A particular problem in
software model checking is time-inefficiency: the increase in
the amount of information associated to each state demands
more time for the model checker to execute each atomic
transition. Lauterburg et al. [24] propose Incremental State
Space Exploration (ISSE), a time reduction technique that
reuses parts of the results from previous runs of a software
model checker. The first time the model checker runs (say,
over program version n), it stores the state space of that
exploration. Once the program evolves to version n+1, the
ISSE model checker takes advantage of the previous run in
order to avoid re-running unnecessary transitions. Explo-
ration ignores the execution of a transition if it happens over
an unmodified event which has been already explored. Its
goal is to improve time efficiency. Our goal is to build test
sequences that exercise changes. For example, ISSE and CB
differ in the drivers they use to construct the state space.
ISSE uses a driver the user informs and tries to improve its
exploration time; but may fail to exercise some change not

reachable with the driver. CB builds a driver dynamically:
it attempts to build calling contexts from the changes. CB
can also fail to exercise a change for the reasons we explain
on Section 2.3. There have been other previous works on
incremental model checking [13, 26, 34]. To a great extent
they share similar differences (and orthogonal nature) exis-
tent between ISSE and our change-based testing.

El-Kafik et al. [18] propose an incremental testing for sys-
tems modeled as a finite state machines (FSMs) — typi-
cally, reactive systems or communication protocols. In this
domain, both specification and implementation are mod-
eled as FSMs. The classical model-driven approach derive
test suites for a given FSM specification, provided that an
implementation can be modeled with the same number of
states as the specification. Such implementation will only
pass the tests if and only if it conforms to the specification
(i.e. the implementation contains no output or transition
errors). The incremental test derivation proposed by El-
Kafik et al. [18] generates new tests whenever the specifica-
tion changes. The generated test suite tests only what has
changed. Their approach is orthogonal to ours as it applies
to more abstract system models.

Data flow testing. Data flow information is useful to cap-
ture data dependencies between different parts of the pro-
gram. The use of contertual def-use association, in partic-
ular, can assist integration testing. A contextual def-use
association for a variable v is the tuple (d,u,cd,cu), where d
is the location of an assignment to v, u is the location of an
usage of v, and cd and cu are contexts of d and u, respec-
tively (a context is a sequence of nested method calls which
leads to d or to u). For instance, consider the tuple (14,
34, Account::setBalance(), Customer::printBalance() —
Account: :getBalance()) as a contextual def-use association
of the variable Account::balance. This tuple reports that
balance is defined at line 14 and is used at line 34. The
context of d is constructed with a call to setBalance() only
and the context of u with the call to printBalance() which,
in turn, calls getBalance(). Souter and Pollock [35] present
contextual def-use association with partial aliasing analysis.
They keep track of pointers by using points-to escape graphs,
a structure proposed by Whaley and Rinard [39] and orig-
inally applied to compiler optimizations. As this structure
may grow exponentially depending on the call chain length,
a partial analysis is performed. We plan to investigate the
impact of using a similar approach to improve the slicer
quality. Similar works are also additional sources of inspira-
tion [23, 36]. The research on static computation of def-use
associations complements ours w.r.t. the slicer: in princi-
ple, we can leverage on this data for adding data-dependent
members to the slicer.

Denaro et al. [17] propose a more efficient but less precise
implementation of the contextual def-use associations algo-
rithm proposed by Souter and Pollock [35]. The goal is the
same as well: evaluate the quality of test suites for integra-
tion. The input of their tool is a set of classes and the output
are the contextual associations of all variables of any input
class (note that each variable can have more than one asso-
ciation). They evaluate their technique with DaTeC (Data
flow Testing of Classes), a tool that measures the number
of associations a user-provided test suite covers. Currently,

DaTeC provides limited supported to arrays, pointers, ex-
ception and dynamic binding. The main differences between
their work and ours are: (goal) their work evaluate quality
of integration tests while ours propose a sequence generation
technique for integration testing, and (technique) their work
propose contextual def-use chains to capture data dependen-
cies while we use read-write inter-class field dependencies.
Nevertheless, it is clear that we should evaluate the impact
of more precise data-flow analysis with CB.

Impact analysis. Impact analysis tries to determine which
parts of the software are affected by a change [10, 25]. The
analysis can be done either statically or dynamically. Orso
et al. [29] report that a conservative static analysis can pro-
duce slices as large as the entire software. However, in prac-
tice, only a subset of the slice are actually impacted by the
changes. Dynamic impact analysis [9] produces slices based
on the actual program execution, i.e. it always produces
relevant (and smaller) slices. The disadvantage of dynamic
analysis concerns safety: an important impacted code might
not be selected. Both alternatives can improve our slicer
with respect to the granularity of the changes and precision.
We plan to evaluate the impact of a simultaneous construc-
tion of the slice and generation can yield on CB.

Random testing. Andrews et al. [8] conducted an empiri-
cal study with random testing to evaluate the typical length
of fault-revealing test sequences. They investigate whether
there is a correlation between the length of a test sequence
and its capability of failure detection. One possible applica-
tion of this study is test generation: the knowledge of op-
timal sequence lengths can improve automation as one can
make a conscious decision for setting the random exploration
depth. The generator can use this information to prune the
search space. Their subjects were affected in different ways:
some showed linear and non-linear correlation. Although
Andrews et al. did not provide a method for selecting an
optimal length, any other random sequence generation could
benefit from these results by allowing an optimal length to
be given as input.

5. CONCLUSIONS

We propose Change-Based Random Testing (CB), a tech-
nique that uses the changes programmers make to reduce
the search space for random sequence generation. The ex-
pected scenario of use for change-based testing is that of a
tester who wants to construct test sequences that exercise
the integration of the program members she has changed
during some period of work. One can automate the identifi-
cation of these changed parts with a tool similar to Mylin [4]
that keeps track of programmer’s activity. (We did not im-
plement such a tool nor evaluate CB on the field.)

We conducted experiments with 4 open-source subjects of
varying sizes to compare the impact of CB and AO with re-
spect to coverage and mutation scores. (AO refers to the use
of random sequence generation with an input list of all pub-
lic methods and constructors.) We also evaluate the impact
that the number of changes and that time yields on coverage,
and show the coverage difference for a set of changes on the
jmeter [3] subject collected from the SIR [7] repository. The
results show that CB could improve coverage consistently.
The results, especially on mutation scores, confirm that CB

can sometimes miss the generation of a sequence that could
potentially lead to a bug. Overall, the results show that the
techniques are complementary suggesting that one should
use CB and AO in parallel when possible.

We plan to extend this work in several ways. First and
foremost we plan to quantify the quality of the slices we
generate. In particular, we want to identify the fraction
of the slice that actually contribute to exercising changes
in a test suite. Second, we plan to investigate the impact
of alternation as means to alleviate the lack of important
members in the slice. Note that we have observed that the
execution of AO creates important sequences that CB could
build on. Third, we plan to investigate whether a tighter in-
tegration with a random sequence generation could improve
CB. More specifically, we plan to compute dynamic slices
simultaneously with the random sequence generation to im-
prove quality of the slices and of the test suite. For example,
we could avoid adding to the suite pass from Figure 5 tests
rooted on goal ancestors whose executions do not cover test
goals. We plan to generate sequences in a bottom-up ap-
proach: starting with the test goals and adding sequences
to the pass only when it helps to build calling context. We
also plan to integrate sequence generation with oracle gener-
ation techniques in a tool. In particular, we plan to compare
the spectra of executions [40, 21, 19] to assert correctness of
the tests that CB generates.

It is important to mention that we present a technique that
leverages on changes to improve testing. We evaluate this
technique with random testing. The results we showed are
subject to the limitations of random sequence generation in
general and the Randoop’s implementation in particular.

6. ACKNOWLEDGMENTS

We sincerely thank our colleagues Carlos Pacheco for the
support on Randoop and with comments on the manuscript,
Filipe Cesar for discussing early versions of CB and im-
plementing one early prototype, and Glaucia Peres, Diego
Cavalcanti and Rohit Gheyi for revising the manuscript.
This work was partially supported by FACEPE grants APQ-
0093-1.03/07 and APQ-0074-1.03/07.

7. REFERENCES

[1] HealthWatcher webpage.
http://www.comp.lancs.ac.uk/~greenwop/tao.

[2] JavaNCSS webpage.

http://www.kclee.de/clemens/java/javancss.

| JMeter webpage. http://jakarta.apache.org/jmeter/.

] Mylin web page. http://www.eclipse.org/mylyn/.

| NanoXML webpage. http://nanoxnl.sourceforge.net.

| POI webpage. http://poi.apache.org/.

] SIR webpage. http://sir.unl.edu.

] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu.
Random test run length and effectiveness. In Proc. of
Automated Software Engineering (ASE), pages 19-28,
2008.

[9] T. Apiwattanapong, A. Orso, and M. J. Harrold.
Efficient and precise dynamic impact analysis using
execute-after sequences. In Proc. of International
Conference on Software Engineering (ICSE), pages
432-441, 2005.

(10]

(11]

(12]

(21]

(22]

23]

(24]

25]

R. S. Arnold and S. A. Bohner. Impact analysis -
towards a framework for comparison. In Proc. of
International Conference on Software Maintenance
(ICSM), pages 292-301, 1993.

B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

C. Cadar and D. R. Engler. Execution generated test
cases: How to make systems code crash itself. In Proc.
of the International SPIN Workshop on Model
Checking of Software (SPIN), pages 2-23, 2005.

C. L. Conway, K. S. Namjoshi, D. Dams, and S. A.
Edwards. Incremental algorithms for inter-procedural
analysis of safety properties. In Proc. of Computer
Aided Verification (CAV), pages 449-461, 2005.

C. Csallner and Y. Smaragdakis. Check’n Crash:
Combining static checking and testing. In Proc. of
International Conference on Software Engineering
(ICSE), pages 422-431, 2005.

M. Dahm and J. van Zyl. Byte Code Engineering
Library, April 2003. http://jakarta.apache.org/bcel/.
M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and
M. D. Ernst. An empirical comparison of automated
generation and classification techniques for
object-oriented unit testing. In Proc. of Conference on
Automated Software Engineering (ASE), pages 5968,
2006.

G. Denaro, A. Gorla, and M. Pezze. Contextual
integration testing of classes. In Proc. of Fundamental
Approaches to Software Engineering (FASE), pages
246-260, 2008.

K. El-Fakih, N. Yevtushenko, and G. von Bochmann.
FSM-based incremental conformance testing methods.
IEEE Transactions on Software Engineering (TSE),
30(7):425-436, 2004.

R. B. Evans and A. Savoia. Differential testing: a new
approach to change detection. In Proc. of the
European Software Engineering Conference and the
Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 549-552, 2007.

P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In Proc. of the
Programming Language Design and Implementation
(PLDI), pages 213-223, 2005.

A. Groce, G. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In Proc. of International Conference on Software
Engineering (ICSE), pages 621-631, 2007.

S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proc. of
International Conference on Software Engineering
(ICSE), pages 291-301, 2002.

M. J. Harrold and M. L. Soffa. Efficient computation
of interprocedural definition-use chains. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(2):175-204, 1994.

S. Lauterburg, A. Sobeih, D. Marinov, and

M. Viswanathan. Incremental state-space exploration
for programs with dynamically allocated data. In
Proc. of International Conference on Software
Engineering (ICSE), pages 291-300, 2008.

J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In Proc. of International

(30]

(31]

(32]

33]

(34]

(40]

(41]

Conference on Software Engineering (ICSE), pages
308-318, 2003.

Makowsky and Ravve. Incremental model checking for
decomposable structures. In Symposium on
Mathematical Foundations of Computer Science
(MFCS), pages 540-551, 1995.

G. J. Myers. Art of Software Testing. John Wiley &
Sons, Inc., 1979.

National Institute of Standards and Technology. The
economic impacts of inadequate infrastructure for
software testing. Planning Report 02-3, May 2002.

A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging field data for impact analysis and
regression testing. In Proc. of the Foundations of
Software Engineering (FSE), pages 128-137, 2003.

C. Pacheco and M. D. Ernst. Eclat: Automatic
generation and classification of test inputs. In Proc. of
the European Conference Object-Oriented
Programming (ECOOP), pages 504-527, 2005.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In Proc. of
International Conference on Software Engineering
(ICSE), pages 75-84, 2007.

M. Pezze and M. Young. Software Testing and
Analysis: Process, Principles, and Techniques. John
Wiley & Sons, 2008.

P. Santhanam and B. Hailpern. Software debugging,
testing, and verification. IBM Systems Journal,
41:4-12; 2002.

Sokolsky and O. S. A. Smolka. Incremental model
checking in the modal mu-calculus. In Proc. of the
Computer Aided Verification (CAV), pages 351-363,
1994.

A. Souter and L. Pollock. The construction of
contextual def-use associations for object-oriented
systems. IEEE Transactions on Software Engineering
(TSE), 29(11):1005-1018, 2003.

A. L. Souter, L. L. Pollock, and D. Hisley. Inter-class
def-use analysis with partial class representations. In
Proc. of the Workshop on Program Analysis for
Software Tools and Engineering (PASTE), pages
47-56, 1999.

T. Wang and A. Roychoudhury. Dynamic slicing on
Java bytecode traces. ACM Transactions on
Programming Languages and Systems (TOPLAS),
30(2):1-49, 2008.

M. Weiser. Program slicing. In ASE, pages 439-449,
1981.

J. Whaley and M. C. Rinard. Compositional pointer
and escape analysis for java programs. In Proc. of the
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 187-206, 1999.
T. Xie and D. Notkin. Checking inside the black box:
Regression testing by comparing value spectra. IEEE
Transactions on Software Engineering (TSE),
31(10):869-883, October 2005.

X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In Proc. of the
International Conference on Software Engineering
(ICSE), pages 396-405, 2007.

