
Intent-Preserving Test Repair
Xiangyu Li

Georgia Institute of Technology
Atlanta, USA

xiangyu.li@cc.gatech.edu

Marcelo d’Amorim
Federal Univesity of Pernambuco

Recife, Brazil
damorim@cin.ufpe.br

Alessandro Orso
Georgia Institute of Technology

Atlanta, USA
orso@cc.gatech.edu

Abstract—Repairing broken tests in evolving software systems
is an expensive and challenging task. One of the main challenges
for test repair, in particular, is preserving the intent of the original
tests in the repaired ones. To address this challenge, we propose a
technique for test repair that models and considers the intent of
a test when repairing it. Our technique first uses a search-based
approach to generate repair candidates for the broken test. It
then computes, for each candidate, its likelihood of preserving
the original test intent. To do so, the technique characterizes such
intent using the path conditions generated during a dynamic
symbolic execution of the tests. Finally, the technique reports
the best candidates to the developer as repair recommendations.
We implemented and evaluated our technique on a benchmark
of 91 broken tests in 4 open-source programs. Our results are
promising, in that the technique was able to generate intent-
preserving repair candidates for over 79% of those broken tests
and rank the intent-preserving candidates as the first choice of
repair recommendations for almost 70% of the broken tests.

Index Terms—Software testing, test case repair, test intent
characterization, search-based software engineering

I. INTRODUCTION

As software evolves, regression testing is an essential, yet
expensive activity. Much of the cost of regression testing
comes from test-suite maintenance and, in particular, from
repairing broken test cases (or test-case repair) [1]. Test cases
can (and often do) break when the specification or the interface
of a program change. When that happpens, broken test cases
that are still relevant should ideally be repaired. Moreover,
they should be repaired so that they exercise the same behavior
as the original test, which can require considerable effort in
terms of understanding the test cases and the functionality of
the program being tested. In fact, anecdotal evidence suggests
that developers often do not take the time to manually update
the broken tests (e.g., if they believe these tests do not reveal
faults in the program) [2].

To reduce the cost of test repair, researchers proposed
several test repair techniques (e.g., [2]–[5]). One limitation
of some of these existing techniques is that they focus on
broken tests that result in runtime/assertion failures, where the
fix consists of making the test expect an uncaught exception or
modifying the failing assertion; they do not consider repairing
broken tests caused by compilation errors, where the fix may
involve complex changes in the interaction between the tests
and the code. Another limitation of most existing test-repair
techniques is that they follow (either explicitly or implicitly)
the principle that the repair process should make minimal
changes to a test, so as to limit the risk of changing the intent

of the test. Although this minimal-change principle makes
sense intuitively, it severely restricts the way in which tests can
be repaired and may result in ineffective repairs. For example,
a test case may be repaired by simply changing its assertion,
which may work in some cases but could easily result in
overfitting. Without other mechanisms to provide confidence
that the intent of the original test is preserved, the repaired
test may be useless (i.e., miss faults) or, even worse, wrong
(i.e., fail when it should not). A study on test suite evolution
of real-world software by Pinto and colleagues supports this
argument [6]; they show that, for the subjects they used, nearly
half of the test repairs were modifications that involved non-
trivial changes to the test code, such as changes to method
invocations and additions or deletions of statements. These
earlier results indicate that handling non-trivial changes to the
test code while preserving the intent of the tests is important
for wider applicability of automated test repair.

In this spirit, and to address some of the limitations of
existing test-repair techniques, we propose TRIP (Test Repair
with Intent Preservation), an intent-aware automated unit test
repair technique that can handle broken tests caused by com-
pilation errors. TRIP takes as input a program P , its modified
version P ′, and a test t for P that is broken by P ′. Given
these inputs, TRIP generates possible repair candidates for
t, measures which candidates are most likely to be intent-
preserving, and reports to the developer the top candidates as
repair recommendations for t.

To generate test repair candidates, TRIP uses a search-based
approach that removes the non-compilable statements in t
and reuses the remaining test code. It then generates code
to replace the removed statements incrementally, using the
modified methods in P ′. By doing so, TRIP can handle more
general program changes, rather than being limited to method-
signature changes, like some existing techniques (e.g., [3], [5]).

To model the intent of a test, TRIP uses an approach based
on the path condition generated during dynamic symbolic
execution of the test [7], [8]. Consider a possible repaired
version of t, t′, and let us indicate with P (t) the execution
of test t on P . TRIP determines whether t′ is likely to
exercise in P ′ the same behavior that t exercised in P by
measuring the similarity between the path conditions generated
when symbolically evaluating P (t) and P ′(t′). Intuitively, path
conditions abstract the behavior of the program exercised by
the test, and can thus be used as a proxy for test intent. This
intuition is supported by the results of Banerjee and colleagues

[9]; they show that the path conditions generated for the a
given test input on two programs with analogous functionality
tend to be extremely similar, even when the two programs
have substantially different implementations.

We evaluated TRIP on a benchmark consisting of 4 open-
source programs and 91 broken test cases. Specifically, we
studied whether TRIP can (1) generate intent-preserving repair
candidates for broken tests and (2) rank the actual repairs
high in the list of repair recommendations. Our results are
promising, in that TRIP generated intent-preserving repair
candidates for 72 of the 91 broken tests (79%), including
in cases where the repair involved dealing with significant
program changes. As for the second part of the study, TRIP
ranked the intent-preserving candidates as the first repair
recommendation in 63 of the 72 cases considered (87.5%),
and among the top-3 recommendations in 68 of the 72 cases
(94.4%). Moreover, in a comparison involving over 1,000 tests,
our intent-similarity metric correctly identified corresponding
tests in different versions of the program in over 95% of the
cases considered. Overall, these results provides initial, yet
strong evidence that our approach is effective and that path
conditions can indeed be used to characterize and compare
test intent.

The main contributions of this paper are:
• A new approach for characterizing/comparing test intent.
• A technique, TRIP, that generates and ranks intent-

preserving repair candidates based on our approach for
intent characterization.

• A tool that implements TRIP and that is publicly avail-
able, together with our experiment data and infrastructure
(https://sites.google.com/view/trip-test-repair).

• An evaluation of TRIP’s effectiveness and usefulness.

II. APPROACH

Figure 1 provides an overview of TRIP and shows its
three main components: the Repair Candidate Generator, the
Test Intent Extractor, and the Test Intent Comparator. Edge
numbers represent the order in which the information flows
through the system. To illustrate the approach, and throughout
the paper, we use P and P ′ to refer to the old and new versions
of a program. For each broken test t, TRIP takes as input (1) t,
(2) P (on which t compiles and passes), and (3) P ′ (on which
t fails to compile); given these inputs, TRIP produces as output
a list of repaired test candidates that compile and pass on P ′,
ordered by their likelihood of preserving the intent of t.

We now illustrate TRIP using the example of broken test t
in Figure 2a, which is adapted from a real case we observed
in our evaluation. In P ′, field Entities.map was made private
and thus became inaccessible to (and broke) the test. To repair
t, the Repair Candidate Generator produces a set of repair
(test) candidates that compile and pass on P ′; To do so, it
first compares P and P ′ in terms of their public methods and
fields. It then (1) generates variants of the broken test code, by
removing method calls and field accesses that are no longer
valid and replacing them with public elements in P ′, (2) runs
the generated variants against P ′, and (3) outputs the passing

Repair
Candidate
Generator

Test
Intent

Extractor

Test
Intent

Comparator

① ①

②

④ ⑥

⑦ ⑦

⑧

③

P P’

Original
(Broken) Test

Repair
Candidates

Original Test
Intent Repair Candidates

Intent

Ranked List of
Best Candidates

⑤

Figure 1: Overview of the approach.

ones as repair candidates. Due to space limitation, we only
show two of the generated candidates, in Figures 2b and 2c.
The Test Intent Extractor executes t on P using dynamic sym-
bolic execution [7], [8] and uses the resulting path condition
as the intent of the original test. It then computes the intents of
the repair candidates in the same way, by executing them on
P ′. Finally, the Test Intent Comparator computes the similarity
between the test intents of each repair candidate and t, ranks
the candidates according to the computed similarity score, and
reports the ranked list of candidates to the developer. Although
the path conditions generated for the example are too complex
to be shown, the relevant bit of information is that both t and
the repair candidate in Figure 2c contain clauses involving
Entities.PrimitiveEntityMap in their path conditions, while
the candidate in Figure 2b does not. Therefore,TRIP ranks the
repair candidate in Figure 2c above the other one and reports
it as the first repair recommendation.

We now discuss the different parts of TRIP in detail. Please
note that we describe our technique assuming that the program
under test (and the tests) are written using an object oriented
language. However, we believe that our technique can be
generalized to other types of languages.

A. Repair Candidate Generator

This module searches for repair candidates of a broken test
in several steps, which we describe individually.

1) Comparing P and P ′: Test code exercises program
functionality by invoking methods and accessing fields in
the program. Therefore, TRIP models P and P ′ in terms of
their public program elements (PPEs). A PPE is basically an
element (i.e., method or field in Java) that a test case can
access in the program. TRIP identifies the PPEs in P and
P ′, compares them, and categorizes them into three partitions:
removed PPEs (PPEs in P but not in P ′), new PPEs (PPEs
in P ′ but not in P) and unchanged PPEs (PPEs in both P

1 public void testHtml40Nbsp() {
2 Entities e = new Entities();
3 e.map = new Entities.PrimitiveEntityMap();
4 Entities.fillWithHtml40Entities(e);
5 assertEquals(" ", e.escape("\u00A0")); }

(a) Broken test eample.
1 public void testHtml40Nbsp() {
2 Entities e = new Entities());
3 Entities.fillWithHtml40Entities(e);
4 assertEquals(" ", e.escape("\u00A0")); }

(b) Non-intent-preserving repair candidate.
1 public void testHtml40Nbsp() {
2 Entities e = new Entities(
3 new Entities.PrimitiveEntityMap());
4 Entities.fillWithHtml40Entities(e);
5 assertEquals(" ", e.escape("\u00A0")); }

(c) Intent-preserving repair candidate.

Figure 2: Test repair example.

and P ′). Intuitively, (1) one or more of the removed PPEs
is the reason why t cannot compile in P ′, and (2) new and
unchanged PPEs are the elements that can be used to fix t.

2) Analyzing the Broken Test: This component analyzes the
code of t and constructs an intermediate representation of t
suitable for searching repair candidates.

To represent method invocations, field accesses, and built-in
language operators in a uniform way, TRIP suitably transforms
read and write field accesses into getters and setters, respec-
tively, and then represents all three entities as operations. An
operation is defined as a 4-tuple 〈d, n, T, r〉, where d is the
declaring type, n is the operation name, T is an ordered list of
parameter types, and r is the return type. This definition has
a straightforward mapping to static method declarations. For
an instance method, T also contains the declaring type as the
first element. A constructor is handled as a static method with
a special n and where r corresponds to the declaring type. For
the getter of a static field, T is empty, and r corresponds to
the type of the field. For the setter of a static field, conversely,
T consists of the type of the field, and r is null. Similar to
instance methods, T for the getter (or setter) of an instance
field contains the declaring type as the first element. Built-
in operators can be converted in a manner similar to static
methods, with the difference that their declaring types are null.

TRIP constructs from the code of the broken test a static
data flow graph (DFG)—a bipartite graph represented as a
3-tuple 〈D,O,E〉, where D is a set of nodes representing
definitions, O is a set of nodes representing operations, and
E ∈ (D×O)∪ (O×D) is a set of directed edges representing
the input-output relation between definitions and operations.
A definition node is labeled with its type and represents either
a literal constant or a definition generated by an operation.

Consider an operation with parameter types T =
(pt1, pt2, . . . , ptn) and return type r = rt. In addition to
creating a definition node of type rt, the operation also
generates a definition node of type pti for each pti that is not a
primitive type; this accounts for the fact that the input objects
could be modified as a side effect of the operation. TRIP
performs an intra-procedural data flow analysis to identify the
input definitions for each operation, treating objects as whole

10: String

12: void TestCase.assertEquals(String, String)

0: Entities Entities.<init>()

1: Entities

4: void !set-field[Entities, map](Entities, EntityMap)

2: PrimitiveEntityMap PrimitiveEntityMap.<init>()

3: PrimitiveEntityMap

5: Entities

6: void Entities.fillWithHtml40Entities(Entities)

8: Entities

9: String Entities.escape(Entities, String)

7: String "\u00A0"

11: String " "

Figure 3: Data-flow graph for the broken test example.

entities (i.e., without analyzing their internal data flow).
Figure 3 shows the DFG for the example of broken test in

Figure 2a. In the figure, rectangles represent operation nodes,
whereas rounded rectangles represent definition nodes. For
ease of readability, in the figure we label the operation nodes
using a Java-like syntax, instead of an actual 4-tuple. The
mapping between the two should be straightforward. Also, for
ease of reference, we prepend an ID to the node labels. Node
0 corresponds to the call to the constructor of class Entities

on line 2 of the code. The operation takes no parameter and
returns an object of type Entities, thus generating the output
definition represented by node 1. Similarly, node 2 represents
the call to the constructor of class PrimitiveEntityMap on
line 3, and node 3 represents its resulting output definition.
Node 4 represents the field assignment on line 3. The special
name !set-field[Entities, map] indicates that this is a
setter generated for field map in class Entities. This operation
node has definition nodes 1 and 3 as inputs, and returns
no result. It nevertheless generates definition node 5 because
the input definition node 1 is an object that might have
been modified by the operation as a side effect. (In fact, the
operation also produces a side-effect output definition node of
type PrimitiveEntityMap, which is never referenced and was
removed to simplify the graph.) Nodes 6 through 12 encode
the data flow involving lines 4 and 5 in a similar way.

TRIP searches for compilable variants of the broken test
by modifying the DFG. Compared to directly changing the
source code, using the DFG representation offers several
benefits. In particular, the availability of data-flow dependency
information allows TRIP to identify relevant parts of the code
that are affected by the non-compilable statements. Also,
by simplifying the handling of variables and references, the
higher level representation of data in the DFG allows TRIP to
avoid generating many semantically equivalent variants that
are different only in variable assignments. Finally, the DFG
models the side effects of operations explicitly, enabling TRIP
to generate variants that cover different combinations of data
flow caused by side effects. This is essential for test repair,
where the basic building blocks are operations and their side
effects cannot be ignored.

1: procedure SEARCHVARIANTS(dfg, nPPEs, uPPEs)
2: variants ← {}
3: partialDfgs ← {onlyWellFormedDefs(dfg)}
4: operations ← genOperations(nPPEs, uPPEs)

5: while time limit not reached do
6: g ← nextPartialDfg(partialDfgs)

7: variants.addAll(fixDfg(dfg, g))

8: for o ∈ operations do
9: extended ← extendPartialDfg(g, o)

10: partialDfgs.addAll(extended)

11: end for
12: end while
13: end procedure
Figure 4: Algorithm for computing variants of a broken test.

TRIP analyzes the DFG to identify the set of invalid
operation nodes that directly cause compilation errors and
thus must be removed, the set of definition nodes that are
affected by the invalid operations, and the set of definition
nodes that can be reused in the repair candidates. An operation
node is marked as invalid if it involves a removed PPE. The
set of affected definitions contains the definition nodes that
are forward reachable from an invalid operation node in the
DFG—their data-flow predecessors could have been changed
as a result of removing the invalid operation nodes, potentially
altering the behavior of the test. The re-usable definition
nodes are those that are still well-formed after the invalid
operations are removed; a definition node d is well-formed if
either it represents a literal constant or the operation node that
generates d (1) is valid and (2) each of its inputs in the DFG
has at least one well-formed reaching definition. It is worth
noting that the sets of affected definitions and well-formed
definitions are not mutually exclusive, as input arguments of
operations can have multiple reaching definitions.

In our example, field Entities.map becomes inaccessible
to the test code in P ′. The operation corresponding to the
setter for that field is thus in the set of removed PPEs. Node 4
would therefore be marked as invalid (indicated by its dashed
border). The affected definition nodes include nodes 5, 8, and
10. Definition nodes 1, 3, 7, and 11 are well-formed and can
be reused. We now discuss how TRIP uses this information to
generate repair candidates for a broken test.

3) Generating the Repair Candidates: To generate repair
candidates, TRIP first generates compilable variants of the
broken test t using a search-based algorithm. It then runs
the variants against P ′, reporting the passing ones as possible
repair candidates.

The variant generation algorithm, SEARCHVARIANTS, is
shown in Figure 4. The algorithm takes as input the DFG for t
and the sets of new and unchanged PPEs (see Section II-A1),
and produces as output a set of compilable variants.

We first introduce a set of functions that are essen-
tial for explaining the SEARCHVARIANTS algorithm. Function
onlyWellFormedDefs (line 3) creates a partial DFG, which
is a subgraph of the original DFG containing only well-
formed definition nodes and corresponding operation nodes.
TRIP generates variants of t based on this partial DFG,
by re-using the well-formed definitions in the original test.

Function genOperations (line 4) takes as input the sets of
new and unchanged PPEs and generates a list of correspond-
ing operations, annotated to distinguish between PPEs in
the two sets. Function extendPartialDfg (line 9) takes as
input a partial DFG and an available operation and extend
the partial DFG using that operation. TRIP adds operation
nodes by matching the types of their parameters with the
types of the existing definition nodes in the partial DFG.
For a given partial DFG g, and an operation that takes
parameter types (pt1, pt2, . . . , ptn), TRIP computes the set
of lists of definition nodes {(d1, . . . , dn) | di ∈ g ∧
type(di) is assignable to pti, 1 ≤ i ≤ n}, where each
list represents a complete assignment of existing well-formed
definitions to the parameters of the operation. For each assign-
ment, the algorithm creates a new partial DFG that contains
the elements of g, a new operation node created from the
parameter assignment, and new output definition nodes for the
added operation node. TRIP builds increasingly more complex
partial DFGs by building on existing ones. Function fixDfg

(line 7) attempts to restore the data flow of a broken DFG using
elements of a partial DFG. Given a partial DFG g, it finds sets
of definition node pairs {(d1, d2) | d1 ∈ affectedDefs(dfg)∧
d2 ∈ g ∧ type(d2) is assignable to type (d1)}, where
each pair (d1, d2) indicates the replacement of d1 with d2,
and affectedDefs(dfg) represents the affected definitions in
the broken DFG. (To replace a definition node d1 with a
definition node d2, TRIP modifies the operation nodes that
have d1 as input arguments to have d2 instead.) Each of these
sets of definition pairs represents a way to replace a subset
of the affected definitions with the well-formed definitions of
compatible types in the given partial DFG, resulting in a new
DFG g′. After removing the unreachable nodes from g′, if all
the remaining nodes are well-formed, TRIP generates code for
the repaired DFG and retains the generated test code as a valid
variant. Finally, the function returns to the main algorithm the
set of valid variants generated from the broken DFG and the
specified partial DFG.

Now that we have introduced the set of functions used by the
SEARCHVARIANTS algorithm, we can describe how the high-
level algorithm works. SEARCHVARIANTS first initializes set
variants, which stores the set of compilable test variants, to
an empty set. It then sets partialDfgs, which keeps track
of the partial DFGs, to contain only the one constructed
from the original DFG. On line 6, function nextPartialDfg

selects a partial DFG g that has not been used before. Line 7
calls function fixDfg to restore the data flow of the broken
DFG using the elements of the selected partial DFG g and
stores the resulting variants. Since TRIP only modifies the
data flow, the resulting code of the variants always has the
same control flow as the original test. At lines 8–11, the
algorithm extends g using the available operations and stores
the extended partial DFGs, discarding possible duplicates. The
algorithm then proceeds to the next iteration and repeats these
steps until a time limit is reached.

It is important to note that function nextPartialDfg con-
trols the order in which the variant generation algorithm

11: String " "

12: void TestCase.assertEquals(String, String)

10: String

0: Entities Entities.<init>()

1: Entities

4: void !set-field[Entities, map](Entities, EntityMap)

2: PrimitiveEntityMap PrimitiveEntityMap.<init>()

3: PrimitiveEntityMap

13: Entities Entities.<init>(EntityMap)

5: Entities

6: void Entities.fillWithHtml40Entities(Entities)

14: Entities

8: Entities

9: String Entities.escape(Entities, String)

7: String "\u00A0"

Figure 5: Repaired data-flow graph.

explores the search space. Specifically, it prioritizes the partial
DFGs (1) that have fewer operation nodes and (2) whose
operation nodes are more likely to be related to the semantics
of the original test. To do so, TRIP assigns a cost to each
available operation and computes the cost of a partial DFG as
the total cost of its operation nodes, excluding those inherited
from the original broken DFG. It then selects first partial DFGs
with lower total cost. TRIP also uses several heuristics to
reduce the cost of the operations that are more likely to be
needed for the fix. In particular, because new PPEs are more
likely to be useful than unchanged ones, TRIP initializes the
cost of their corresponding operations to 1, while the cost of
the other operations is set to 2. TRIP also (1) computes the
textual similarity between each available operation and the
removed operations in the broken DFG and (2) reduces the cost
of the operations with higher similarity scores—operations
more similar to the removed ones are, intuitively, more likely
to correspond to replacements for such operations.

Figure 5 shows the repaired DFG for the example of broken
test in Figure 2. The variant search algorithm created the
new nodes 13 and 14 and the corresponding data-flow edges.
Specifically, TRIP creates node 13 using an operation that
corresponds to the new PPE Entities.<init>(EntityMap).
As its input, which must be of type EntityMap, the new node
takes definition node 3, which is reused from the DFG of the
broken test and has compatible type PrimitiveEntityMap. As
output, node 13 generates the new definition node 14, of type
Entities. The dotted arrow from node 14 to node 5 is not
a DFG edge, and we use it to indicates that the former is
used to replace the latter. As a result of the replacement, the
DFG edge from node 5 to node 6 is removed and replaced by
the edge from node 14 to node 6. Nodes 0, 1, 4, and 5 are
no longer reachable and are therefore removed from the DFG.
TRIP verifies that the resulting graph is a compilable variant by
checking that all nodes are well-formed and, if so, generates
code for it. This variant is among the first a few generated
in the search process for two reasons. First, it requires only
one new operation, and thus its total cost is low. Second, the
operation used in this variant (1) is new and (2) has a relatively

high textual similarity with the removed operation since they
are both constructors and share the same declaring type.

In parallel with variants generation, TRIP executes the code
corresponding to the generated variants (variants) against P ′

and reports the passing variants as repair candidates. Because
algorithm SEARCHVARIANTS is intentionally designed to be
flexible in the modifications it makes to the broken tests,
the repair candidates it generates could potentially exercise
behaviors completely unrelated to the original test. For this
reason, TRIP further analyzes the repair candidates to identify
the ones that are likely to preserve the original test intent.

B. Test Intent Extractor

For a given test, the Test Intent Extractor performs a
form of dynamic symbolic execution [7], [8]: it marks some
test input values as symbolic and runs the test symbolically,
exploring only the path followed by the concrete execution.
This produces a path condition (PC) expressed in terms of
the initial symbolic values. TRIP uses this PC to characterize
the intent of the test; intuitively, the PC encodes the runtime
behavior of the execution expressed in terms of the test inputs,
thus providing an abstraction of the test semantics.

TRIP marks as symbolic two types of test input values:
(1) primitive values in the test code and (2) objects created
in the test code. It is worth noting that by input values we
mean, intuitively, values that flow into the code under test.
Also intuitively, by test code we mean the code in a test case
and in the test initialization code (e.g., a @Before method in a
JUnit test case). Making primitive values symbolic is straight-
forward. For objects in general, TRIP marks as symbolic the
reference to the object, so as to capture operations such as
comparisons to “null” or checks on the type of the object.
For string literal objects, which we consider a special kind
of primitive values, TRIP additionally marks the length of the
string and each individual character as symbolic, so as to be
able to capture more detailed information in the PC.

A special case for TRIP is that of test cases that do not
contain literal input values, as the PCs for these tests (which
are expressed in terms of the symbolic test inputs) contain
little information. In these cases, TRIP also marks the primitive
values in the code under test as symbolic. Note that TRIP does
not marks these values as symbolic by default, as we expect
the information carried by the clauses that involve test inputs,
when present, to overshadow the information in the clauses
that involve only values in the program code.

While executing the test symbolically, TRIP maintains the
association between the concrete values in the program state
and their symbolic values, expressed in terms of the inputs.
It also encodes the branches followed in the execution by
suitably adding to the PC clauses expressed in terms of the
symbolic values involved in the corresponding predicate (if
any). At the end of the execution of the test, the Test Intent
Extractor stores the resulting PC.

Figure 6 shows an example that illustrates how TRIP gener-
ates PCs for test cases. (We used this example as opposed to
that from Figure 2a because it produces a much shorter and

1 public int sumAbs(int x, int y) {
2 if (x < 0)
3 x = -x;
4 if (y < 0)
5 y = -y;
6 return x + y;
7 }
8
9 @Test

10 public void testSumAbs() {
11 assertEquals(5, sumAbs(-2, 3));
12 }

Figure 6: Path condition example.

readable PC.) The function under test is sumAbs, which takes as
parameters two integers, x and y, and returns the sum of their
absolute values. The test method testSumAbs calls sumAbs and
checks whether the return value matches the expected result.

In this example, TRIP would mark as symbolic the two
primitive values −2 and 3 on line 11 and then execute the test.
Let us refer to the symbolic values for −2 and 3 as sym1 and
sym2. On line 2, (−2 < 0) is true, so the clause (sym1 < 0)
is added to the initially empty PC. On line 3, the value of x
is negated, and therefore its value becomes 2 (concrete) and
−sym1 (symbolic). On line 4, (3 < 0) is false, so the clause
¬(sym2 < 0) is conjoined to the current PC. On line 6, the
sum of x and y is returned, which corresponds to 5 (concrete)
and −sym1 + sym2 (symbolic). Because the expected value
(5) is successfully compared to this return value, the clause
(−sym1 + sym2 = 5) is also conjoined to the current PC.
The PC for the test at the end of its execution is therefore
(sym1 < 0) ∧ ¬(sym2 < 0) ∧ (−sym1 + sym2 = 5).

TRIP generates PCs in this way for the original test t by
running it on P , and for the repair candidates by running them
on P ′. It then compares them as described in the next section.

C. Test Intent Comparator

The Test Intent Comparator computes the intent similarity
of two tests by measuring the structural similarity between
the PCs generated for the tests by the Test Intent Extractor.
Although an approach based on logical reasoning for finding
relationships between pairs of PCs (or parts thereof) may
provide more accurate results, we believe that our approach
provides a good cost-accuracy tradeoff.

TRIP represents each PC as a forest (PC forest). To do
so, TRIP first generates a directed acyclic graph (DAG) for
each clause in the PC, where the leaves in the graph represent
symbolic inputs or constant values, and the internal nodes
represent operators. It then transforms the resulting DAG into
a tree (clause tree) by duplicating all the subgraphs that have
multiple predecessors and assigning to each copy a distinct
predecessor. The set of clause trees for all the clauses in a PC
is the PC forest for that PC.

To compute the similarity between two clauses ct1 and ct2,
TRIP runs a tree alignment algorithm [10] on the clause trees
for ct1 and ct2, which identifies matching (i.e., identical) nodes
between the two trees. It then calculates the clause similarity
score for ct1 and ct2 as

√
m2/(ct1.size× ct2.size) where m

is the number of matched pairs of tree nodes in the maximum
alignment, and cti.size is the total number of nodes in cti.

Intuitively, the clause similarity score represents the (geometric
mean of the) proportion of matched nodes in the two trees.

To compute the similarity between two PCs pc1 and
pc2 (computed for tests t1 and t2) TRIP finds a matching
between the two sets of clauses in the PCs that maxi-
mizes the sum of the corresponding clause similarity scores.
If we indicate with maxsum this maximum sum, TRIP
then computes the intent similarity score for t1 and t2
as

√
maxsum2/(pc1.size× pc2.size), where pci.size rep-

resents the number of clauses pci.
Because tree alignment and maximum matching of un-

ordered sets are expensive to compute, the Test Intent Com-
parator uses two optimizations to improve its performance.
First, it finds the pairs of identical clauses in the two PCs
and excludes them from the tree alignment computation. We
observed that, for test cases with similar intents, a significant
proportion of clauses can be matched in this fast way. (This
step can be completed in linear time by using hashing.) Sec-
ond, instead of applying the tree alignment algorithm on every
pair of remaining clauses, TRIP first computes a (much faster)
approximation of clauses similarity. To do so, TRIP leverages
an approach by Yang and colleagues [11] that calculates an
upper bound of similarity by transforming the clause trees into
fixed-dimensional vectors that partially encode the structural
features of the trees; the pairs of clauses that are too dissimilar
in the vector space are simply assigned a similarity score of
0 and excluded from further consideration.

Using this approach, the Test Intent Comparator computes,
for each repair candidate, its intent similarity with respect to
the original (broken) test t. It then sorts the repair candidates
in descending order of intent similarity scores. In the case
of ties, TRIP prefers candidates with a fewer number of new
operations, based on the intuition that candidates more similar
to t are also more likely to preserve its intent. Finally, TRIP
presents the ranked list of repair candidates to the developer
as repair recommendations.

III. EMPIRICAL EVALUATION

We evaluated TRIP on 91 broken tests in 4 open-source
programs, by investigating the following research questions:
RQ1: How effective is TRIP at generating actual test repairs?
RQ2: Are path conditions a good abstraction of test intent?

We next describe our experiment setup and findings.

A. Experiment Setup

1) Implementation: We implemented TRIP for the Java
programming language. To build DFGs, we leveraged Java-
Parser [12], which let us generate ASTs with visitor support.
We used a modified version of Java Pathfinder [13] as a dy-
namic symbolic execution engine to compute path conditions.
Although TRIP was implemented for Java code, the technique
is general and could be implemented for other languages.

2) Benchmark: As a benchmark, we used four open-source
programs used by some of the authors in previous research
on test suite evolution [6]. Table I reports, for each program
considered, the number of versions considered, the number of

Table I: Benchmark programs used in our evaluation.

Program # Versions # Classes # LOC # Tests

commons-lang 8 67–99 36K–52K 1193–2051
commons-math 7 614–990 12K–20K 2379–4587
gson 10 77–96 8K–12K 204–939
joda-time 13 142–157 47K–63K 2420–3838

Table II: Classification of failing test cases.

Program # RF # RE # TR # EX # BT Total

commons-lang 1 28 28 0 14 71
commons-math 44 25 0 0 3 72
gson 234 40 79 10 69 432
joda-time 0 17 0 3 5 25

Total 279 110 107 13 91 600

classes, the number of lines of code, and the number of tests.
Because we considered multiple versions of each program, the
values are reported as numeric ranges.

For each program in our benchmark, we considered each
pair of consecutive versions, P and P ′, and their correspond-
ing (JUnit) test suites, T and T ′. We first identified the tests
in T that pass on P but fail on P ′ and manually inspected
them to determine the reasons why they fail. We identified
five main reasons and classified the test cases accordingly, as
shown in Table II. Some tests (Column # RF) fail because
they test functionality that was removed in P ′; these tests
are obsolete, so we removed them from further consideration.
Other tests (Column # RE) fail due to runtime errors, such
as assertion failures and uncaught exceptions; these tests can
be repaired using existing techniques (e.g., [2], [4]) that are
complementary to our approach. The remaining tests have
compilation errors on P ′, so they are the kinds of tests that
our approach targets. Some of these tests, however, can be
trivially repaired, so considering them would unfairly inflate
the success rate of TRIP. In particular, some tests (Column
TR) could be fixed through trivial refactoring, such as
method renaming. Similarly, tests that fail because of changes
in exception declarations (Column # EX) could be fixed by
changing the type of exceptions caught in the corresponding
catch blocks. We expect that developers would evolve these
tests together with their code (e.g., as part of a refactoring), so
we focused on the remaining tests (Column # BT)—tests that
are broken due to compilation errors and cannot be trivially
fixed. As Table II shows, the number of tests in this category
is comparable to that of tests that are broken due to runtime
errors (91 vs 110) and corresponds to 28% (91 / (600-279))
of the non-obsolete broken tests.

3) Data Collection: To collect the data needed to answer
our research questions, for each broken test t considered we
performed the following steps. First, we searched for a test
t′ in T ′ with the same name. If present, we considered t′ the
repaired version of t (i.e., our ground truth). Note that we did
not try to find repaired test cases that are also renamed in T ′, as
manually determining semantic equivalence between arbitrary
tests is expensive and may introduce bias. Moreover, we expect
this occurrence to be rare, and having slightly fewer data
points does not affect the validity of our results. Second, we

Table III: Empirical evaluation results.
Program New PPEs BT CG CG-noTS Rank1 Rank3

commons-lang 302 14 14 14 14 14
commons-math 2367 3 1 1 1 1
gson 451 69 54 35 45 50
joda-time 66 5 3 3 3 3

Total - 91 72 53 63 68

determined whether TRIP was able to generate an actual repair
for t by checking, for each repair candidate, whether it was
semantically equivalent to t′. It was always straightforward
to determine semantic equivalence between a repair candidate
and t′, as (for the successful checks) the candidate was either
identical to t′ or could be made so through trivial program
transformations. The only exceptions were a few cases in
which developers also extended the functionality of the test in
addition to fixing it. Finally, for all the cases in which TRIP
was able to generate an actual repair for t, we determined the
rank of that repair in the list of intent-preserving candidates.

Table III shows a summary of our results. Column New
PPEs reports the average number of new PPEs (public pro-
gram elements) in each pair of versions (P , P ′) considered.
Because our technique uses a search-based approach, repair
candidate generation is more expensive if the number of
PPEs in P ′ but not in P is higher. (Note that, since it does
not make sense to compute the cumulative number of PPEs
across programs, we omit the total for this column.) For
convenience, Column BT repeats the total number of broken
tests we already reported in the corresponding column of
Table II. Columns CG and CG-noTS report, respectively, the
number of broken tests for which TRIP successfully generated
intent-preserving repair candidates with and without the use of
textual similarity between PPEs to bias the search (see II-A3).
Columns Rank1 and Rank3 report the number of broken tests
for which TRIP ranked the correct repair candidate as the
first repair recommendation and among the top three repair
recommendations, respectively.

B. RQ1: How Effective Is TRIP At Generating Actual Repairs?

The results in Table III show that TRIP was able to generate
an actual repair for a broken test in almost 80% (72 out of
91) of the cases we considered. The results also show that the
use of textual similarity between PPEs to bias the search is
effective, at least in the case of gson, for which the number of
successful repairs generated goes from 54 to 35 without textual
similarity. This is because TRIP generates more (invalid) repair
candidates when the search is not biased, so it may timeout
before generating the actual repair.

It is worth noting that we planned to compare the effective-
ness of TRIP with that of TestCareAssistant (TCA) [5], which
repairs non-compilable broken test cases caused by method
signature changes. However, because TCA is an old project,
the tool was not kept up to date, and the benchmarks used
to evaluate it are no longer available. Therefore, despite the
generous help offered by the authors of TCA, we could neither
run their tool on our benchmark nor evaluate our technique

on their benchmark. We nevertheless provide a qualitative
comparison of TRIP and TCA in Section IV.

C. RQ2: Are PCs a Good Abstraction of Test Intent?

As column Rank1 in Table III shows, among the 72 broken
tests for which TRIP generated an actual repair, such repair
was ranked first in 63 cases, that is, 88% of the cases.
This means that, in a fully automated test-repair scenario,
TRIP could have repaired those broken tests without developer
intervention. If we consider the cases for which TRIP ranked
an actual repair among the top three repair candidates, the
number goes from 63 to 68 (column Rank3 in Table III), that
is, over 94% of the cases. For the remaining four cases, the
rank assigned by TRIP to the actual repair ranges between 13
and 17. A manual inspection of these cases revealed that, in all
four cases, the original tests target methods that simply return
a constant, which causes the PCs to contain no information.

We believe that these results strongly indicate that (1) PCs
are a good way of abstracting test intent, and (2) our technique
for comparing test intents expressed as PCs is effective.

To investigate RQ2 in more depth, we conducted an addi-
tional experiment, aimed to further assess whether tests that
have the same intent would also generate similar PCs, even
when they exercise different code. For the experiment, we
considered all the test cases, rather than only the failing/broken
ones, for one of our benchmark programs: commons-lang. (We
considered only one program due to the computational cost of
performing the experiment.) Specifically, for each pair of con-
secutive versions (P , P ′) of commons-lang and corresponding
test suites T and T ′, we performed the following steps: First,
we computed the set SIT(P,P ′) of pairs of tests (t, t′) such that
(1) t ∈ T , (2) t′ ∈ T ′, (3) t and t′ have the same name, and (4)
t and t′ cover different statements in P and P ′, respectively.
Again, we assumed that tests with the same name have the
same intent, so we used SIT(P,P ′) as our ground truth. Second,
for each test t such that (t, ∗) in SIT(P,P ′), we identified
the set MAXSt of tests in T ′ that have the highest intent
similarity with t (where ‖MAXSt‖ > 1 when more than
one test in T ′ have the same highest similarity score with t).
Finally, we classified the resulting MAXSt into one of three
categories:
Unique match: ‖MAXSt‖ = 1, and the single t′ in MAXSt

is the test with the same intent as t (i.e., (t, t′) ∈ SIT(P,P ′)).
Non-unique match: ‖MAXSt‖ > 1, and one of the t′ in
MAXSt is the test with the same intent as t (i.e., ∃ t′ ∈
MAXSt such that (t, t′) ∈ SIT(P,P ′)).
No match: MAXSt does not contain the test with the same in-
tent as t (i.e., 6 ∃ t′ ∈MAXSt such that (t, t′) ∈ SIT(P,P ′)).

Figure 7 shows the results of this experiment for all the
tests t in all (t, ∗) pairs in all SIT(P,P ′) sets (1,070 overall).
As the figure shows, in 1,024 (95.7%) of the 1,070 cases we
found unique matches—the pairs of tests in T and T ′ with the
same intents also had the highest intent similarity score (across
over 1,000 other tests). In 33 cases (3.1%), we found multiple
matches—the pairs of tests with the same intents also had
the highest intent similarity score, but there were also other

Unique match Non−unique match No match

0
40

0
10

00

1024

33 13

Figure 7: Number of test cases for which the test with the same
intent in the next consecutive version is uniquely matched,
non-uniquely matched, and not matched.

tests with the same intent similarity score. Finally, in 13 cases
(1.2%), we found no matches—the pairs of tests with the same
intents did not have the highest intent similarity score.

We believe that this second set of results provides additional,
even stronger evidence that PCs and PC similarity are good
abstractions for test intent and test intent similarity.

D. Example Repairs

To provide further information on our empirical evaluation,
in this section we present the details of two test cases correctly
repaired by TRIP (i.e., cases in which the repaired tests gen-
erated (and ranked first) by TRIP are semantically equivalent
to the actual repairs performed by the developers).

Figure 8 shows the first example: a broken test t1
in gson version 1.3 (a) and the repaired test t′1 gen-
erated by TRIP (b). Test t1 is broken because method
translateName(NamePolicy, Field), which t1 calls on
line 6, was changed in gson 1.5 to take a parameter of type
FieldAttributes instead of Field. For readability, we slightly
simplified the code in t1 and t′1. Similarly, to simplify the
discussion, in the rest of this section we refer to objects using
the names of the references pointing to them.

As shown in the figure, to repair t1, TRIP removes one
instruction (line 6 in t1, marked with a dashed under-
line) and adds two instructions (lines 4–5 and 8 in t′1,
marked with a solid underline). This corresponds to re-
moving one operation node from and adding two opera-
tion nodes to the DFG for t1. The first new instruction
(re)uses existing objects SomeObject.class and f in t1 to
invoke constructor FieldAttributes(Class, Field) and cre-
ate a FieldAttributes object var0. The second new in-
struction uses existing object policy and the newly cre-
ated object var0 to call method translateName(NamePolicy,

FieldAttribute), which replaces the non-compilable method
call in the broken test. TRIP recommends this intent-preserving
repair candidate as the first choice because t′1 uses object
Field in the same way as t1 does, resulting in a similar PC.

In this case, TRIP can find the correct repair candidate for t1
even without using the textual similarity between PPEs to bias
the search. This happens for two reasons: (1) the operations
used for the repairs are new PPEs, which have lower costs; and
(2) the objects in t1 that can be reused in t′1 provide sufficient
type information to limit the number of compilable variants
generated by TRIP (see Section II-A3).

Figure 9 shows the second example: a broken test t2 in gson
version 2.0 (a) and the semantically equivalent repaired test t′2
(b). In this case, the test is broken because of a complex change

1 public void testFieldWithAnnotation() {
2 String fieldName = "fieldWithAnnotation";
3 Field f = SomeObject.class.getField(fieldName);
4 NamePolicy policy = new NamePolicy();
5 assertEquals("annotatedFieldName",
6 policy.translateName(f)); }

(a) Broken test t1.
1 public void testFieldWithAnnotation() {
2 String fieldName = "fieldWithAnnotation";
3 Field f = SomeObject.class.getField(fieldName);
4 FieldAttributes var0 =
5 new FieldAttributes(SomeObject.class, f);
6 NamePolicy policy = new NamePolicy();
7 assertEquals("annotatedFieldName",
8 policy.translateName(var0)); }

(b) Intent-preserving repair candidate t′1.
Figure 8: Example of test case repair #1.

in the software design. Class InnerClassExclusionStrategy

(referenced on lines 3–4 in t2) was removed in gson 2.1, and
its functionality was moved to class Excluder and provided
through a set of significantly different PPEs. In particu-
lar, method shouldSkipField(FieldAttributes) (invoked on
line 7) is not present in the new class.

To repair t2, TRIP removes three instructions (lines 3–4, 5–
6, and 7 in t2, marked with a dashed underline) and adds three
instructions (lines 3–5 in t′2, marked with a solid underline).
TRIP ranks this repair candidate first despite the significant
changes between t2 and t′2.

In this case, without considering textual similarity of PPEs,
TRIP is able to generate a candidate that contains lines 3
and 5 of the valid repair. However, it fails to generate a
candidate that also contains line 4 because class Excluder

contains several other methods with the same parameter types
as method disableInnerClassSerialization, which results
in too many compilable variants being generated.

When TRIP leverages textual similarity of PPEs, conversely,
the cost associated with the PPEs needed to generate the valid
repair is reduced, as they contain terms that also appear in the
removed PPEs in t2 (e.g., “exclude”, “field”, “inner”). The
search process therefore privileges these PPEs, enabling TRIP
to find the valid repair within the given time limit.

E. Limitations of TRIP

This section discusses cases in which TRIP is unable to find
an intent-preserving repair for a broken test. While searching
for variants of broken tests, TRIP uses only type compatibility
to identify possible operations to add. This makes the search
algorithm more flexible, which allows TRIP to handle many
kinds of program changes. However, this flexibility comes
at a cost, so TRIP works best when repairs involve the
generation of short sequences of method calls that operate on
objects; in these cases, the type constraints involving operation
parameters and available objects tend to limit the number of
compilable variants in the search space. Conversely, when
repairs involve long sequences, the search space could become
too large for TRIP to be successful.

As an example of this situation, Figure 10 shows a broken
test in commons-math 3.2, for which TRIP was unable to find
a valid repair. Test t3 is broken because the constructor of

1 public void testExcludeInnerClassField() {
2 Field f = getClass().getField("innerClass");
3 InnerClassExclusionStrategy strategy =
4 new InnerClassExclusionStrategy();
5 FieldAttributes fAttr =
6 new FieldAttributes(getClass(), f);
7 assertTrue(strategy.shouldSkipField(fAttr)); }

(a) Broken test t2.

1 public void testExcludeInnerClassField() {
2 Field f = getClass().getField("innerClass");
3 Excluder excluder = Excluder.DEFAULT;
4 excluder = excluder.disableInnerClassSerialization();
5 assertTrue(excluder.excludeField(f, true)); }

(b) Intent-preserving repair candidate t′2.

Figure 9: Example of test case repair #2.

PolyhedronSet was changed in commons-math 3.3 to take
one more parameter of type double. There are 11 values
of type double in scope in t3 (i.e., definition nodes in the
corresponding DFG): the 5 constants on lines 2 and 3 plus
the 6 expressions in the original call to the constructor of
PolyhedronSet). Therefore, the number of different assign-
ments for the 7 parameters of the modified constructor is 117,
which is close to 20 millions. In other words, in this case,
the type constraints do little to limit the number of possible
compilable variants, which caused TRIP to reach a timeout
before finding an intent-preserving repair. In future work, we
plan to explore mixed strategies that combine our general
search algorithm with heuristics aimed to repair common types
of program changes. Test t3, for instance, would be easily
repaired by a strategy that simply tries to add parameters to
an existing method call, rather than replacing the call with all
possible (type correct) alternatives.

Our current implementation of TRIP cannot handle broken
tests whose repairs involve generics. Although the technique
can reuse existing objects with generic types, it cannot cur-
rently generate operations using methods that have generic
type parameters. This limitation is not a conceptual one and
can be addressed with extra engineering effort.

F. Threats to Validity

Internal: There may be faults in our implementation. To
mitigate this threat, we checked and tested our code throughout
development. In particular, we performed an extensive manual
inspection of the results, including spot-checking many repair
candidates and intent similarity scores for all the broken
tests considered. We might have made mistakes in manually
determining whether the repaired tests matched the actual
repairs produced by the developers. To mitigate this threat,
we performed each check multiple times. Furthermore, almost
all of these checks were straightforward (see III-A3).
External: Our benchmark might not be representative. To mit-
igate this threat, we chose programs used in previous studies
and that span a variety of domains—numeric computation,
manipulation of complex data structures, and XML parsing.
We also made sure to include in our experiment a large number
of broken tests whose repairs involve non-trivial changes.

1 public void testBuildBox() {
2 double x = 1.0, y = 2.0, z = 3.0;
3 double w = 0.1, l = 1.0;
4 PolyhedronsSet tree = new PolyhedronSet(
5 x - l, x + l, y - w, y + w, z - w, z + w);
6 // (Assertions omitted)
7 }

Figure 10: Example of broken test that TRIP could not repair.

IV. RELATED WORK

Daniel and colleagues propose ReAssert [4] and Symbolic
Test Repair [2], two techniques for fixing tests that are broken
due to runtime exceptions and assertion failures (usually
caused by changes of software specifications). ReAssert exe-
cutes the broken test on P ′ and modifies the failed assertion so
that it matches the observed runtime behavior. Symbolic Test
Repair improves on ReAssert by using symbolic execution to
identify and change the literal values used to compute the
expected values in the assertions. Both techniques require the
broken test to be still compilable and are complementary to
TRIP, which focuses on non-compilable broken tests.

TestCareAssistant (TCA) [5], by Mirzaaghaei and col-
leagues, repairs broken tests that do not compile due to method
signature changes (e.g., parameter additions or removals).
TCA uses a combination of static and dynamic program
analysis to identify signature changes, variables involved in the
changes, and possible initialization values for these variables.
Unlike TCA, TRIP can also repair tests that are broken due
to program changes that are not restricted to method signature
modifications. Moreover, TRIP does not rely on a mapping
between removed and new PPEs based on predefined rules,
but rather uses a general search-based algorithms to find
compilable variants of the broken tests. Finally, TRIP explicitly
models test intent and uses it to rank intent-preserving repairs.

UCov [14], by Assi and colleagues, lets developers specify
test intents by manually providing logic expressions about
coverage of program elements and variable values. As software
evolves, UCov checks these expressions to verify that the
specified test intents are still satisfied. Unlike UCov, TRIP rep-
resents test intents using path conditions that are automatically
generated and does not require any manual annotation.

Similar to TRIP, API migration techniques often use calls to
API methods as building blocks to generate code sequences
that can replace obsolete code while preserving the under-
lying program semantics. Balaban and colleagues propose a
technique that takes the mapping between legacy and new
APIs as input and automatically migrates a program to the new
APIs [15]. TRIP, in contrast, does not require any predefined
mapping between removed and new APIs. Techniques by
Zhong and colleagues [16] and Nguyen and colleagues [17]
perform API migration by mining usage examples from a large
number of client applications. Unlike these techniques, TRIP
does not need examples, which are typically unavailable, and
uses a search-based approach instead.

There is a rich body of research on program repair tech-
niques (e.g., [18]–[21]) that take a faulty program and a test
suite that reveals the fault and try to modify the program so
that all tests pass. These techniques cannot be directly used to

repair broken test cases, as their goal is to alter the (incorrect)
behavior of the program.

Because GUI and web-testing scripts are expensive to
generate and maintain, several researchers have proposed
techniques for repairing broken GUI and web tests (e.g., [22]–
[27]. Unlike these techniques, which focus on repairing testing
workflows that involve GUI elements, TRIP repairs broken
code sequences composed of method calls and field accesses.

V. CONCLUSION AND FUTURE WORK

We presented TRIP, a test repair technique that focuses on
non-compilable broken tests and addresses a key challenge for
test repair techniques: preserving the intent of the original tests
in the repaired ones. Given a broken test, TRIP combines a
search-based algorithm for generating repair candidates with
an approach for measuring intent similarity between broken
and repaired tests. This latter is based on (1) computing path
conditions for broken and repaired tests by executing them in
a dynamic symbolic fashion and (2) measuring the similarity
between the generated path conditions.

The results of our evaluation, performed on 91 real broken
tests in 4 open-source programs, are promising. They show
that not only TRIP is effective at generating actual repairs
for broken tests, but also that the path conditions it generates
are a good abstraction of test intent. In fact, using test-intent
similarity, TRIP was able to rank in first position 88% of the
correct test repairs it generated.

In addition to improving some practical aspects of TRIP
and performing additional experimentation, there are several
direction that we plan to explore in future work. First, although
TRIP currently focuses on repairing broken tests that do not
compile, other repair candidate generation techniques could
be integrated into our approach and leverage its test intent
extractor and comparator capabilities. We will pursue this
line of research and investigate additional repair candidate
generation techniques within TRIP. Second, TRIP does not
currently consider the behavior of the original broken test
while searching for candidates, which can lead the search
to consider a large number of irrelevant variants. To address
this limitation, we will investigate the use of our test-intent
similarity measure to guide the search of the repair candidates.
Finally, applying TRIP to non-unit test cases may result in
path conditions that are too large to be efficiently collected
and compared. We will explore the use of TRIP on integration
and system tests and investigate ways to represent and process
test intents more efficiently as needed.

ACKNOWLEDGMENTS
This work was partially supported by NSF, under grants CCF-

1161821 and 1563991, DARPA, under contracts FA8650-15-C-7556
and FA8650-16-C-7620, ONR, under contract N00014-17-1-2895,
and gifts from Google, IBM Research, and Microsoft Research.

REFERENCES

[1] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, On the
Interplay Between Software Testing and Evolution and its Effect on
Program Comprehension. Springer Berlin Heidelberg, 2008, pp. 173–
202.

[2] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic
execution,” in Proceedings of the 19th International Symposium on
Software Testing and Analysis, ser. ISSTA 2010, pp. 207–218.

[3] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Automatically repairing test
cases for evolving method declarations,” in Proceedings of the 26th IEEE
International Conference on Software Maintenance, ser. ICSM 2010, pp.
1–5.

[4] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec,
S. H. Tan, and D. Marinov, “Reassert: A tool for repairing broken unit
tests,” in Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE 2011, pp. 1010–1012.

[5] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting test suite evolu-
tion through test case adaptation,” in Proceedings of the 5th International
Conference on Software Testing, Verification and Validation, ser. ICST
2012, pp. 231–240.

[6] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE 2012, pp. 33:1–33:11.

[7] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2005,
pp. 213–223.

[8] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” in Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC/FSE 2005, pp. 263–
272.

[9] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang, “Golden
implementation driven software debugging,” in Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2010, pp. 177–186.

[10] T. Jiang, L. Wang, and K. Zhang, “Alignment of trees an alternative
to tree edit,” Theoretical Computer Science, vol. 143, no. 1, pp. 137 –
148, 1995.

[11] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-
structured data,” in Proceedings of the 31st ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD 2005, 2005, pp.
754–765.

[12] “Javaparser,” http://javaparser.org/ (accessed on February 2019).
[13] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation

with java pathfinder,” in Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2004, pp. 97–107.

[14] R. A. Assi, W. Masri, and F. Zaraket, “Ucov: a user-defined coverage
criterion for test case intent verification,” Software Testing, Verification
and Reliability, vol. 26, no. 6, pp. 460–491, 2016.

[15] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class

library migration,” in Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2005, pp. 265–279.

[16] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ser.
ICSE 2010, pp. 195–204.

[17] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining api usage mappings for code
migration,” in Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering, ser. ASE 2014, pp. 457–468.

[18] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017,
pp. 727–739.

[19] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE 2012, pp. 3–13.

[20] F. Long and M. Rinard, “Staged program repair with condition syn-
thesis,” in Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015, pp. 166–178.

[21] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 35th
International Conference on Software Engineering, ser. ICSE 2013, pp.
772–781.

[22] A. M. Memon, “Automatically repairing event sequence-based gui test
suites for regression testing,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 18, no. 2, pp. 4:1–4:36, Nov. 2008.

[23] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving gui-
directed test scripts,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE 2009, pp. 408–418.

[24] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè,
“Automated gui refactoring and test script repair,” in Proceedings of the
1st International Workshop on End-to-End Test Script Engineering, ser.
ETSE 2011, pp. 38–41.

[25] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken
workflows for evolving gui applications,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis, ser. ISSTA
2013, pp. 45–55.

[26] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web
application test repair,” in Proceedings of the 1st International Workshop
on End-to-End Test Script Engineering, ser. ETSE 2011, pp. 24–29.

[27] A. Stocco, R. Yandrapally, and A. Mesbah, “Vista: Web test repair
using computer vision,” in Proceedings of the 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018, pp. 876–
879.

