
Faster Faster Faster Faster Bug Detection for Bug Detection for Bug Detection for Bug Detection for

Software Software Software Software Product Lines with Product Lines with Product Lines with Product Lines with

Incomplete Feature Incomplete Feature Incomplete Feature Incomplete Feature ModelsModelsModelsModels

Darko Marinov

University of Illinois
Urbana, IL, USA

Sabrina Souto

Federal University of
Pernambuco

Recife, PE, Brazil

Divya Gopinath

University of Texas
Austin, TX, USA

Sarfraz Khurshid

University of Texas
Austin, TX, USA

Don Batory

University of Texas
Austin, TX, USA

Marcelo d’Amorim

Federal University of
Pernambuco

Recife, PE, Brazil

SPLC 2015

Nashville, TN

July 23, 2015

Ackwoledgements: US NSF

CCF- 0845628, CCF-1012759,

CCF-1212683, CCF-1319688,

CCF- 1439957

Ackwoledgements: Brazil

FACEPE BPG-0675-1.03/09

CNPq 457756/2014-4

Context: Software Product Lines

Feature

selection

Commonality

Variability

Our Research Background

• Mostly software testing

• Generate new tests to find bugs

• Run existing tests faster/better

• Currently dominant approach

• Test real code (ideally from open source)

• May use additional code artifacts (ideally real tests
or comments, sometimes academic specs or more)

• Find real bugs

General Terminology

• Features
• Functionalities of software systems

• A Software Product Line – SPL
• Is a family of programs
• Each program is defined by a unique combination of

features

• Configurations
• Selection of features

• Feature Model – FM
• Defines a set of consistent configurations
• Not always documented

5

Problem:

Testing SPLs with

Incomplete Feature Model

Our Solution:

-- SPLif --

T

M

W

MTW

WT

MW

MT

W

T

M

{}

T1

T2

T3

T4

…

TN

Features

Configurations
Tests

ProblemProblemProblemProblem
Testing SPLs with
Incomplete Feature Model

T

M

W

MTW

WT

MW

MT

W

T

M

{}

T1

T2

T3

T4

…

TN

Features

Configurations
Tests

ProblemProblemProblemProblem
Testing SPLs with
Incomplete Feature Model

✖

✖

✖

✖

✔

✔

✔

✔

T

M

W

MTW

WT

MW

MT

W

T

M

{}

T1

T2

T3

T4

…

TN

Features

Configurations
Tests

✔

✔

✖

✖

✔

ProblemProblemProblemProblem
Testing SPLs with
Incomplete Feature Model

T

M

W

MTW

WT

MW

MT

W

T

M

{}

T1

T2

T3

T4

…

TN

Features

Configurations
Tests

✔

✔

✖

✖

✔

ProblemProblemProblemProblem
Testing SPLs with
Incomplete Feature Model

Possible causes of

failures:

1. Inconsistent

configurations

2. Test too restrictive

3. Bug in code

The FM is essential to

distinguish the causes for test

failures, because it can detect

(in)consistent configurations.

T

M

W

MTW

WT

MW

MT

W

T

M

{}

T1

T2

T3

T4

…

TN

Features

Configurations
Tests

✔

✔

✖

✖

✔

ProblemProblemProblemProblem
Testing SPLs with
Incomplete Feature Model

Possible causes of

failures:

1. Inconsistent

configurations

2. Test too restrictive

3. Bug in code

The FM is essential to

distinguish the causes for test

failures, because it can detect

(in)consistent configurations.

FMs are
not always available!

Problem Summary

• Feature models play a key role in testing SPLs
• Constrain the space of configurations to test
• Enable accurate categorization of failing tests

• Most prior work on testing SPLs assumes the
availability of a complete feature model

• In practice, FMs are not always available
• How to reduce the number of configurations per

tests to run?
• How to discover the causes for test failures?

11

False positives!
A test can fail due to a configuration that
is not in the (absent/incomplete) model.

Related Work

• SPL Testing
[Qu et al. ISSTA’08] [Cabral et al. SPLC’10] [Uzuncaova et al. TSE’10]
[Garvin et al. ISSRE’11] [Kim et al. AOSD’11][Kastner et al. FOSD’12]
[Kim et al. ISSRE’12] [Shi et al. FASE’12] [Song et al. ICSE’12]
[Apel et al. ICSE’13] [Kim et al. FSE’13]

• FM Extraction and Inference
[Czarnecki and Wasowski, SPLC’07] [Alves et al. SPLC’08] [Weston et al. SPLC’09]
[Rabkin et al. ICSE’11] [She et al. ICSE’11] [Acher et al. VaMos’12]
[Lopez-Herrejon et al. SSBSE’12] [Haslinger et al. FASE’13]
[Davril et al. FSE’13] [Xu et al. SOSP’13]

• Fault Localization
[Jones et al. ICSE’02] [Dallmeier et al. ECOOP’05] [Abreu et al. PRDC’06]
[Abreu et al. TAIC’07] [Qu et al. ISSTA’08] [Renieris et al. ISSTA’08]
[Abreu et al. ASE’09]

• Configuration Troubleshooting
[Garvin et al. ASAS’12] [Zhang and Ernst et al. ICSE’13]
[Zhang and Ernst et al. ICSE’14] [Swanson et al. FSE’14]

12

Related Work

• SPL Testing
[Qu et al. ISSTA’08] [Cabral et al. SPLC’10] [Uzuncaova et al. TSE’10]
[Garvin et al. ISSRE’11] [Kim et al. AOSD’11][Kastner et al. FOSD’12]
[Kim et al. ISSRE’12] [Shi et al. FASE’12] [Song et al. ICSE’12]
[Apel et al. ICSE’13] [Kim et al. FSE’13]

• FM Extraction and Inference
[Czarnecki and Wasowski, SPLC’07] [Alves et al. SPLC’08] [Weston et al. SPLC’09]
[Rabkin et al. ICSE’11] [She et al. ICSE’11] [Acher et al. VaMos’12]
[Lopez-Herrejon et al. SSBSE’12] [Haslinger et al. FASE’13]
[Davril et al. FSE’13] [Xu et al. SOSP’13]

• Fault Localization
[Jones et al. ICSE’02] [Dallmeier et al. ECOOP’05] [Abreu et al. PRDC’06]
[Abreu et al. TAIC’07] [Qu et al. ISSTA’08] [Renieris et al. ISSTA’08]
[Abreu et al. ASE’09]

• Configuration Troubleshooting
[Garvin et al. ASAS’12] [Zhang and Ernst et al. ICSE’13]
[Zhang and Ernst et al. ICSE’14] [Swanson et al. FSE’14]

13

No prior work combines FM inference with

tests and their executions

Insight

• Tests that fail on consistent configurations indicate real faults

• We need to find fault-revealing consistent configurations soon
• Enable efficient bug detection

• The FM is not available or is incomplete
• Do not need to discover the entire FM
• Discover only the relevant part to check the consistency of the

fault-revealing configuration

• Assumption
• The developer/user will help to check such consistency
• The developer/user is aware about many feature relationships

14

Proposal: SPLif

Run the tests
exploring all

reachable
configurations

SPLat

Label
configuration

Increment

the FM

Repair the

test or code

List of
passing/failing

tests for all
configurations

Rank

tests

Pick the

top test

Rank failing

configurations#?(c)
t.Fail

(Mc && fc).isSAT

Pick the top

configuration

SPLif

configuration

Mc contains t.fail

t.fail

Source
code

Tests

Feature
Model

(optional)

Specific Terminology

• Each feature can assume 3 values:

• 0: the feature is disabled (=false)

• 1: the feature is enabled (=true)

• ?: the feature has no value yet (=unknown)

• Incomplete vs. Complete Configuration

• Consistent vs. Inconsistent Configuration

16

MTW=0?1 (consistent)

MTW=00? (inconsistent)

Notepad Constraint: M ∨∨∨∨ T

(Initially Undocumented)

MTW=0?1 (incomplete)

MTW=010 (complete)

Notepad Features:

Menubar, Toolbar, and Wordcount

SPLif on Notepad (1 test)

• Configurations (MTW):

17

111

011

110

010

10?

00?

class Notepad {

void toolBar() {

if(T) {

...

if(W)

...

}

if (M) { ... }

}

...

void test() {

toolBar();

}

}

SPLif Notepad (1 test)

• Configurations (MTW):

18

111

011

110

010

10?

00?

Execution of

some tests fails!

SPLif Notepad (1 test)

• Configurations (MTW):

19

011

10?

00?

Select failing

configurations

SPLif Notepad (1 test)

• Configurations (MTW):

20

00?

10?

011

Rank

configurations

for inspection

SPLif Notepad (1 test)

• Configurations (MTW):

21

00?
10?

011

Inconsistent!

SPLif Notepad (1 test)

• Configurations (MTW):

22

00?
10?

011

Inconsistent!

Partial Feature Model (PFM) = !(U ci),

where ci is an inconsistent configuration

In this case ci=(!M ∧∧∧∧ !T) and PFM=
!(!M ∧∧∧∧ !T)

!!M ∨∨∨∨ !!T

M ∨∨∨∨ T

SPLif Notepad (1 test)

• Configurations (MTW):

23

00?
10?

011

Inconsistent!

Partial Feature Model (PFM) = !(U ci),

where ci is an inconsistent configuration

In this case ci=(!M ∧∧∧∧ !T) and PFM=
!(!M ∧∧∧∧ !T)

!!M ∨∨∨∨ !!T

M ∨∨∨∨ T

Configurations that violate this
constraint will not be inspected!

SPLif Notepad (1 test)

• Configurations (MTW):

24

00?

10?

011

Partial Feature Model:

M ∨∨∨∨ T

Consistent

The test failed on configurations where
no inconsistency has been observed.
User should inspect test and/or code!

Evaluation: Setup

• Questions

• RQ1: How well does SPLif rank faulty tests for inspection?

• RQ2: How well does SPLif rank configurations (of selected
tests) for inspection?

• Experiment

• 5 SPLs previously used

• The tests used were created by students

• 4 techniques:

• Random

• Memory

• Weighted

• Adaptive 26

RQ1: How well does SPLif rank faulty tests for inspection?

Evaluation: Results
Ranking Tests

RQ2: How well does SPLif rank configurations (of selected tests)
for inspection?

Ranking Configurations

Evaluation: Results

Total Number of Inspections for All Modes

Mode Companies GPL Notepad
Desktop

Searcher
ZipMe

Random 146 257 90 44 269

UpdateFM 69 211 40 30 45

Weighted and Adaptive 69 223 10 34 49

Case Study: GCC

• RQ3: How well does SPLif scale to real code?

• Experiment

• Applied SPLif against the GNU Compiler
Collection

• 27 years of work from 500+ contributors

• 7+ Million LOCs

• 17K+ tests

• More than 2k configuration variables (not only
boolean)

29

GCC Evaluation: Setup

• Tests
• 4,108 tests from 3 suites (gcc-dg, dg-torture, tree-ssa)
• 50 configurations per test
• Randomized SPLat execution to sample different (reachable)

configurations

• Options
• 40 most frequently cited options in the GCC bug reports
• Initial model (incomplete) built on the work of [Garvin et al.

ASAS’13]

• Failures
• Inspection of failures on crashes

30

GCC Evaluation: Results

• Recall

• We focused only on crash failures

• We ran each test against 50 reachable configurations

• 4,108 tests analyzed

• 497 tests failed (due to crash or not)

• 3,986 pairs of tests and configurations failed (due to crash
or not)

• Considering only crashes

• 43 tests manifested crashes in 268 pairs of test and
configurations

31

GCC Evaluation: Results

Ranking Tests Ranking Configurations

RQ3: How well does SPLif scale to real code?

GCC Evaluation: Results

New bugs found

RQ3: How well does SPLif scale to real code?

Recently the first reported bug has been also fixed

Conclusions

• The FM can detect (in)consistent configurations
• It is essential to distinguish the causes for test failures

• Prior research assumes that SPLs come equipped with
complete, formally specified FMs

• This assumption does not always hold in practice

• We proposed SPLif
• A new approach for testing SPLs with incomplete/absent FM

• Experiments show that SPLif
• Helps the user prioritize failing tests and configurations for

inspection
• Is promising and can scale to large systems, such as GCC

34

