
CORAL: Solving Complex Constraints for

Symbolic PathFinder

Matheus Souza1, Mateus Borges1, Marcelo d’Amorim1, and Corina S.
Păsăreanu2

1 Federal University of Pernambuco, Recife, PE, Brazil
{mbas,mab,damorim}@cin.ufpe.br

2 CMU SV/NASA Ames Research Center, Moffett Field, CA, USA
corina.s.pasareanu@nasa.gov

Abstract. Symbolic execution is a powerful automated technique for
generating test cases. Its goal is to achieve high coverage of software.
One major obstacle in adopting the technique in practice is its inability
to handle complex mathematical constraints. To address the problem,
we have integrated CORAL’s heuristic solvers into NASA Ames’ Symbolic
PathFinder symbolic execution tool. CORAL’s solvers have been designed
to deal with mathematical constraints and their heuristics have been
improved based on examples from the aerospace domain. This integration
significantly broadens the application of Symbolic PathFinder at NASA
and in industry.

1 Introduction

Systematic testing is widely accepted in academia and industry as a major ap-
proach to improve quality of general-purpose software. Perhaps less popularized
is the role of testing as an economic viable technique to improve reliability of
critical systems. In the aerospace domain, for instance, systematic testing has
been used to reduce cost of bug finding, i.e., to increase application reliability.
NASA, in particular, maintains open-source tools to assist systematic testing.

Symbolic execution [15] is an automated technique to generate test input
data. The input to symbolic execution is a parameterized method m of the ap-
plication under test and the output is a test suite that maximizes path coverage
for m. Internally, a symbolic execution tool is organized in two components: the
constraint generator and the constraint solver. The constraint generator builds
constraints on the input parameters of m for achieving path coverage while the
solver attempts to solve these constraints, i.e., to generate concrete assignments
to input parameters. A major obstacle for techniques that build on constraint
solvers, such as symbolic execution, is the inability to deal with complex con-
straints. In particular, constraints that build on undecidable theories, constraints
that build on decidable theories but are very expensive to deterministically solve,
and constraints that the solver cannot handle.

The goal of this work is to improve the solving of constraints that use floating-
point variables and complex mathematical functions. Such constraints often oc-
cur in the analysis of software from the aerospace domain; for example, consider

software such as TSAFE [4, 5] that helps air-traffic controllers in detecting and
resolving short-term conflicts between aircrafts. This software estimates the lo-
cation of an aircraft based on several factors including speed and direction and
makes extensive use of floating-point variables and trigonometric functions. Good
handling of complex constraints is fundamental for testing software of this kind
using a symbolic execution tool such as NASA Ames’ Symbolic Pathfinder [20].

Symbolic PathFinder (SPF) is a symbolic execution tool used at NASA and
Fujitsu for testing complex applications. This paper reports the results of using
the constraint solver CORAL to solve the complex mathematical constraints gener-
ated with SPF. CORAL uses meta-heuristic search, such as genetic algorithms [12]
and particle-swarm optimization [14], to look for solutions to constraints that
the SPF tool generates. The hypothesis is that search can be effective in solving
such constraints not managed by traditional decision procedures. The princi-
ple of meta-heuristic search is to iteratively refine a set of solution candidates,
initially chosen at random, for a fixed number of times. Informed fitness func-
tions evaluate the quality of a candidate to solve a constraint in each generation
round. A new generation of candidates is obtained with modifications to the best
fit candidates. The search terminates after a determined number of iterations.
In our case, it succeeds only when the best fit candidate is also a solution to the
input constraint.

To deal with numeric constraints CORAL uses a specialized fitness function
that conceptually measures the distance of a candidate solution to satisfying a
particular constraint. To reduce the search space, it additionally tries to infer
the units and ranges of variables from the functions where these variables are
used. The design of CORAL has been influenced in part by the constraints that
SPF generated from the analysis of several NASA applications. In particular,
some rewriting rules have been added and the fitness function has been adjusted
based on examples from the NASA domain.

This paper makes the following contributions:

– New constraint solver: We present CORAL a meta-heuristic constraint
solver specialized to handle complex mathematical constraints;

– Integration: We report the integration of SPF and CORAL. This integration
moves forward the limits of symbolic execution to manage a wider range of
programs;

– Evaluation: We evaluate this integration on several examples from NASA
and also compare the use of CORAL with other constraint solvers (with some
support for real arithmetic) that have been previously integrated in SPF.

The rest of the paper is organized as follows. Section 2 briefly illustrates
how symbolic execution works. Section 3 describes the Symbolic PathFinder
tool. Section 4 describes CORAL. Section 5 evaluates the integration of CORAL in
Symbolic PathFinder. Finally, Section 6 discusses related work and Section 7
gives our conclusions.

2 Symbolic execution

Symbolic execution is a program analysis technique that executes a program
with symbolic inputs as opposed to concrete inputs. It computes the effect of
program execution on a symbolic state, which maps variables to symbolic expres-
sions. When execution evaluates a branching instruction, the technique needs to
decide which branching choice to select. In a regular execution the evaluation
of a boolean expression is either true or false so only one branch of the condi-
tional can be taken. In the case of a symbolic execution the evaluation of the
boolean expression is a symbolic value, so both branches can be taken resulting
in different paths through the program. Symbolic execution characterizes each
path it explores with a path condition over the input variables −→x . This condi-
tion is defined with a conjunction of boolean expressions pc(−→x) =

∧
bi. Each

boolean expression bi denotes a branching decision made during the execution
of a distinct path in the program under test. Symbolic execution terminates
when it explores all such paths corresponding to the different combinations of
decisions. Note, however, that programs with loops and recursion can have an
infinite number of paths. In those cases, symbolic execution needs to bound the
number of paths it explores.

We illustrate symbolic execution using a simple example. Consider the frag-
ment of code from Figure 1 (left) taken from a flight abort executive:

i f (p r e s su r e < 640 .0 | |
pre s su r e > 960 . 0) {

abort () ;
} else { continue () ; }

1. SY M < 640.0
2. SY M >= 640.0 ∧ SY M > 960.0
3. SY M >= 640.0 ∧ SY M <= 960.0

Fig. 1: Abort example and corresponding path conditions.

If the value of the input variable pressure is outside nominal values 640.0 and
960.0, then the mission is aborted, otherwise the mission is continued. Tradi-
tional testing of this code involves assigning some concrete values to the inputs
and executing the code; for example, if the value of variable pressure is 460.0,
testing will exercise only one path through the code, corresponding to the condi-
tion pressure < 640.0 being true, resulting in an abort. In contrast, symbolic
execution assigns a symbolic value to the input variable pressure and analyzes
all the three possible paths through the code, corresponding to the three path
conditions in Figure 1 (right). The path conditions correspond respectively to
the cases where the first term of the disjunction (“||”) is satisfied, the second
term is satisfied, and none is satisfied. Note that due to the short-circuit opera-
tor, it is only possible to satisfy the second term of the condition negating the
first. Solving these path conditions with a constraint solver gives the test inputs
that achieve complete path coverage through the code.

3 Symbolic PathFinder

Symbolic PathFinder (SPF) is a symbolic execution tool for Java bytecode.
SPF is used primarily for automated test case generation of code and also of
Simulink/Stateflow and UML models, via a translation into bytecode [19]. SPF

has been used at NASA (JSC Onboard Abort Executive, fault tolerant protocols,
PadAbort-1 models, T-SAFE Java code), in industry (most notably at Fujitsu
– 60K LOC), and in various research projects from academia. SPF is part of the
Java PathFinder verification tool-set [8], a freely available open-source project.
We describe here SPF’s main features and how it builds complex mathematical
constraints, which are then used with CORAL’s heuristic solvers.

Features. The Java Pathfinder tool-set includes the JPF-core project, an
explicit-state model checker for Java programs, and several extension projects,
one of them being SPF (jpf-symbc Java project). The JPF-core implements
an extensible custom Java Virtual Machine (VM), equipped with state stor-
age and backtracking capabilities, different search strategies, as well as listeners
for monitoring and influencing the search. By default, JPF-core executes the
program based on the standard semantics of Java. SPF replaces this concrete
execution semantics with a non-standard symbolic interpretation of bytecodes.
It uses a custom bytecode instruction factory for that. More precisely, SPF uses
the instruction factory class SymbolicInstructionFactory to build bytecode
instructions that manipulate symbolic values and expressions. For example, the
result of the symbolic interpretation of the bytecode IADD is to pop from the
stack two symbolic integers sym1 and sym2 and to push the symbolic expression
sym1 + sym2 back to the stack. SPF stores these symbolic values that symbolic
execution computes in special “attributes” associated with the program data,
i.e. variables, fields and stack operands.

The symbolic execution of conditional instructions (such as if statements)
leads to the exploration of distinct program paths, corresponding to the boolean
expression of the conditional evaluating to true or to false. SPF relies on the
JPF-core framework to systematically explore the different choices of symbolic
execution paths as well as thread interleavings. These choices are explored ex-
haustively (up to some bounds) using a mechanism of the JPF-core known as
choice generators. The SPF implementation uses a specialized choice generator,
the PCChoiceGenerator, for the construction of path conditions. Each gener-
ated choice is associated with a path condition encoding the condition or its
negation, respectively. The path conditions are checked for satisfiability using
off-the-shelf decision procedures or constraint solvers. If the path condition is
satisfiable, the search continues; otherwise, the search backtracks (meaning that
the path is unreachable).

Decision Procedures and Constraint Solvers. To check the feasibility of
path conditions, SPF uses multiple decision procedures and constraint solvers
through a generic interface. Currently, SPF supports the following solvers: CHOCO
for integer/real constraints, CVC3 for linear constraints, and the interval arith-
metic solver IASolver, as well as the SMT decision procedures CVC3 and YICES.
Both CHOCO and IASolver have support for handling constraints on reals and
complex mathematical functions, however they both perform poorly in practice
(in terms of correctness, speed and tool support). This paper reports the inte-
gration of a new constraint solver to SPF for handling complex mathematical
constraints, namely CORAL.

Handling Math Functions. SPF uses JPF-core’s native peers mechanism to
model native libraries and any other program parts that cannot be analyzed
directly with symbolic execution. Most notably, SPF incorporates native peers
models for the methods in the java.lang.Math library; these models create
symbolic expressions encoding the mathematical functions, that are left un-
interpreted. Such use of native peers lifts the interpretation of Math functions
from the concrete level to the abstract “model” level: whenever the symbolic exe-
cution reaches a call to a complex Math function, that call is intercepted by SPF
and it is used as a symbolic operator to build a new symbolic expression. The
path conditions containing such expressions are dispatched to an appropriate
constraint solver that can handle complex Math constraints, such as CORAL.

SPF uses native peers for the following functions from the Java Math library:
ACOS, ASIN, ATAN, ATAN2, COS, EXP, LOG, POW, ROUND, SIN, SQRT, TAN.
For the rest of the Math functions, which are much simpler, we provide simple
implementations that are interpreted directly by SPF.

i f (Math . pow(in , 2 . 0) >16 . 0) {
do1 () ;

} else { do2 () ; }

1. pow(in SY M, CONST 2.0) < CONST 16.0
2. CONST 16.0 == pow(in SY M, CONST 2.0)
3. pow(in SY M, CONST 2.0) > CONST 16.0

Fig. 2: Example with Math function and corresponding path conditions.

Figure 2 shows one example that uses the pow math function. Variable in stores
the symbolic input in SY M . The symbolic execution of this code produces the
three path conditions to the right side of this figure. As mentioned before SPF
does not directly interpret the call to the standard Java library function Math.pow.
Instead, it constructs a symbolic expression pow(in SYM,CONST 16.0) which is
then used to build the symbolic constraints. When executing the if statement
above, SPF creates a 3-choice split point related to the outcomes of the relational
expression3. Each execution will explore one choice. As execution goes along,
more boolean expression are added to the current path, building longer path
constraints. The constraints are solved with an appropriate constraint solver;
i.e., one that can handle such complex mathematical functions directly.

4 CORAL heuristic solvers

This section describes design and implementation of the CORAL heuristic con-
straint solvers. We first elaborate on the representation of the search space and
the search strategies used by CORAL. Then we illustrate the fitness function used,
and finally, the optimizations.

4.1 Search Algorithms

Representation of space and search. Our characterization of a candidate

solution is a map from symbolic variables to concrete values. A population cor-
responds to the set of candidates that are active in a given moment in the
search. Our work follows an evolutionary approach to search. In this setting, the

3 The 3-way split reflects the three possible outcomes of the Java bytecode that com-
pares two doubles, according to the Java semantics.

population evolves during the search according to some user-defined principle.
Conceptually, each evolution step approximates the candidates to a solution.
The search starts with a population obtained from the random assignment of
values to variables and terminates after a fixed number of iterations or when it
finds candidates with optimal fitness.

The CORAL infrastructure provides two different search strategies: random and
Particle-Swarm Optimization (PSO). We discuss here PSO, the strategy that
performed best in our experiments. Random search is described elsewhere [21,
22]. PSO is a search algorithm, similar to the popular genetic algorithm search
(GA), used in combinatorial optimization problems. Both PSO and GA use spe-
cial operators to mutate candidates during the evolution process. While GA
mimics biological evolution (e.g., with mutation and reproduction) PSO mimics
movements of a group of animals in swarms. Although GA and PSO operate
similarly with successive refinements of the population, they have different com-
putational costs. At each iteration, GA needs to eliminate less fitted individuals,
add new ones with crossover, and modify existing ones with mutation. The PSO
algorithm updates the search state more efficiently: it uses efficient matrix arith-
metic to update a fixed-size population. In PSO terminology candidate solutions
are called particles. The particles collaborate to compute a solution (this is a cen-
tral difference between GA and PSO). Each particle has a position in the search
space and a contributing factor to the population, typically called velocity, which
PSO uses to update the next position of each particle. The next position of a
particle depends on its current position and velocity. The next velocity of a par-
ticle depends on the best position the swarm has seen from the start of the search
(global) and the best position of that particle from the start (local). Details on
design and implementation of these algorithms can be found elsewhere [12, 14].

Fitness functions. The role of a fitness function (a.k.a. objective function) is
to drive the search towards (fitter) solutions. This function gives a score denot-
ing the quality of an input candidate to solve the problem. Our solvers use a
variation of the Stepwise Adaptive Weighting (SAW) fitness function that dy-
namically adjusts the importance of different sub-problems for solving the whole
problem [9]. For constraint solving, the problem is to solve the entire path con-
dition pc(−→x) =

∧
bi and the sub-problem is to solve a clause bi of the input path

condition. The definition of SAW is as follows:

f(−→x) =
∑

i

wi ∗ gi(−→x)

Function f is the weighted sum of gi(−→x), which denotes the score of candidate
−→x to solve the clause bi of the path condition. This score is given in the con-
tinuous interval [0.0, 1.0] with higher values (respectively, low) indicating better
(respectively, worse) fitness. The search goal is to maximize function f , i.e., to
find inputs that produce maximal outcomes: high valuations of inputs on this
function indicate fitter candidates. The search procedure dynamically increases
the weight wi associated to each clause bi as that clause remains unsolved for
longer than some specified number of times. The use of weights helps the search
to positively differentiate candidate solutions that satisfy “difficult” clauses from

solutions that satisfy many “easy” clauses. We note that a final solution is only
relevant if it satisfies all clauses bi.

SAW was originally created to solve SAT problems, i.e., propositional formula
with boolean variables. We adjusted the definition to handle numeric variables.
Recall that gi(−→x) denotes the score of −→x on bi. Function gi is defined as follows,
where each clause bi is a disjunction of terms bi1 ∨ . . . ∨ bim:

gi(−→x) = max
1<j<m

1 − d(bij ,−→x)

Note that the codomain of functions gi and d are the same; the interval [0.0, 1.0].
Function d conceptually measures “how far” the candidate −→x is from a so-
lution that satisfies the term bij . We want to maximize gi and for that we
need to minimize d, the distance to solution. For example, for the case where
bij is an equality expression of the form eq(e1, e2) we define the distance d as
norm(|e2(−→x) − e1(−→x)|). The modulo of the difference denotes the distance be-
tween the evaluations of the expressions e1 and e2 on input −→x . The function
norm normalizes the distance in the expected range. This function considers
any input above some defined threshold t to return the upper bound 1 for the
distance, otherwise it divides the input by t to obtain a value in the expected
range. The evaluation of function d on a satisfying solution produces value 0.
Definitions of the distance function d to other relational operators are similar.

Example. This example illustrates how the meta-heuristic search operates to
find a solution to the constraint sin(a) = −sin(b) ∧ sin(a) > 0 using the fitness

it. (a, b)
distance (weight)

fitness
sin(a)=−sin(b) sin(a) > 0

0
0.0000,0.0000 0.0 (1) 0.01 (1) 1.9900
0.3927,5.7596 0.0011 (1) 0.0 (1) 1.9988

1
0.3927,6.2832 0.0038 (1) 0.0 (2) 2.9962
0.3927,5.4978 0.0032 (1) 0.0 (2) 2.9968

2
0.5236,6.2832 0.0049 (2) 0.0 (2) 3.9900
0.3927,5.7596 0.0011 (2) 0.0 (2) 3.9977

3
0.5236,5.2360 0.0036 (3) 0.0 (2) 4.9890
0.3927,5.7596 0.0011 (3) 0.0 (2) 4.9965

4
0.0000,6.2832 0.0 (4) 0.01 (2) 5.9800
0.5236,5.7596 0.0 (4) 0.0 (2) 6.0000

Fig. 3: Fitness-guided constraint solving.

function we defined. Table 3
illustrates the evolution of a
fixed-size population of only
two candidates. Each row de-
tails one candidate in a given it-
eration. Columns “it.”, “(a, b)”,
“distance(weight)”, and “fit-
ness” show respectively the it-
eration number, the input as-
signment (candidate), the dis-
tance to satisfy a clause of the
constraint with the current weight of the clause in parenthesis, and the fitness
value of the candidate. The constraint is satisfied when the fitness equals the
sum of the weights. Iteration 0 denotes the initial population. CORAL performs
4 iterations to find a solution. Note the increase in weight of the first clause
(equality) relative to the second (inequality) as the search progresses.

Implementation. We have integrated CORAL in SPF by specializing SPF’s
generic decision procedure interface for CORAL; this involves encoding SPF’s sym-
bolic expressions into a format that is suitable for solving with CORAL and reading
the solutions from CORAL back into SPF. CORAL currently uses the opt4j Java
library [3] for implementing the search. The library essentially requires the user
to define a fitness function and the representation of candidate solution, which,
in our case, is a vector of integers and reals.

1. Math.Pow(E, E1) == Math.Pow(E, E2) ⇒ E1 = E2
2. Math.Pow(E1, E) == Math.Pow(E2, E) ⇒ E1 = E2
3. Math.Log(E) == c ⇒ E = POW (2, c)
4. Math.Log10(E) == c ⇒ E = POW (10, c)
5. x1 [+,−, ∗, /] x2 == E ⇒ x1 = E [−, +, /, ∗] x2

6. x1 + c ∗ x1 = E ⇒ x1 = E/(1 + c)

Table 1: Some rewriting rules of CORAL.

4.2 Optimizations

This section describes optimizations that CORAL uses.

Inference of variable domains. The quality of initial states is an important
factor to determine overall search quality: a solution is obtained with a sequence
of modifications on candidate inputs, starting from their initial assignments.
CORAL tries to improve the quality of initial random assignments by inferring
specific domains associated to each symbolic variable. The principle is that the
search becomes more exhaustive when confined to a smaller space. For example,
it infers the unit radian for variables that appear free within the context of
sine and cosine expressions. For variables of this kind, CORAL starts the search
assigning random values from a selection of values in the range 0 − 2π. It also
infers ranges which are explicit on the input constraint. For example, it will
update the range [lo0 , hi0] associated to variable v to [c, hi0] if the constraint
v >= c is observed in the path condition and c > lo0 holds, where c is a constant.

Elimination of variables. Before passing a constraint to the search procedure,
CORAL attempts to simplify the input formula. The approach it uses for that is to
identify variables whose values can be fully determined by others. This is similar
to a decision procedure for equality that partitions expressions in equivalence
classes [17]. CORAL uses rewriting rules in attempt to isolate variables. Table 1
shows some of the rewriting rules it uses. Note that rule 2 is lossy, e.g., E1=−2
and E2=2. Rule 5 inverts the side of the arithmetic operation to isolate the
variable. Rule 6 factors variable x1 and inverts the side of the multiplication
factor. Note that, considering fixed-precision arithmetic, the rules could lead to
incorrect results. However, the search only terminates successfully if the optimal
input satisfies the original constraint.

Evaluation of boolean expressions in postfix notation. In our context,
evaluation refers to the operation that checks whether a candidate solution
satisfies the input formula. Random(ized) search is very sensitive to evaluation
time in general [12]. In principle, random search performs increasingly better as
evaluation time decreases: more distinct inputs will be selected from an uniform
distribution in the same allotted time. It is in our interest to improve evaluation
time for a fair comparison with random solving and for more efficient solving. To
that end the solver uses a postfix notation to evaluate path conditions on a given
input. A postfix expression is scanned from left to right, therefore the operators
can be applied efficiently to the operands located at the top of an operand stack.
We use a fixed-size array of reals to implement such stack.

4.3 Sample constraints

Table 2 gives a set of representative constraints that CORAL is able to solve.
The first column shows the constraint and the second shows the source of the

constraint source

(1.5 − x1 ∗ (1 − x2)) == 0 Beale
(−13 + x1 + ((5− x2) ∗ x2− 2) ∗ x2) + (−29 + x1 + ((x2 + 1) ∗ x2− 14) ∗ x2) == 0 Freudenstein

and Roth
pow((1 − x1), 2) + 100 ∗ (pow((x2 − x1 ∗ x1), 2)) == 0 Rosenbrock
((pow(((x ∗ (sin((((y ∗ 0.017) − (z ∗ 0.017)) + ((((((((pow(w, 2.0))/((sin((t∗

TSAFE

0.017)))/(cos((t∗0.017)))))/68443.0)∗0.0)/w)∗−1.0)∗x)/(((pow(x, 2.0))/((sin((t∗
0.017)))/(cos((t ∗ 0.017)))))/68443.0)))))) − (w ∗ 0.0)), 2.0)) + (pow(((x∗
(cos((((y ∗ 0.017) − (z ∗ 0.017)) + ((((((((pow(w, 2.0))/((sin((t ∗ 0.017)))/(cos((t∗
0.017)))))/68443.0)∗0.0)/w)∗−1.0)∗x)/(((pow(x, 2.0))/((sin((t∗0.017)))/(cos((t∗
0.017)))))/68443.0)))))) − (w ∗ 1.0)), 2.0))) == 0.0
((exp(x) − exp((x ∗ −1.0)))/(exp(x) + exp((x ∗ −1.0)))) >

PISCES
(((exp(x) + exp((x ∗ −1.0))) ∗ 0.5)/((exp(x) − exp((x ∗ −1.0))) ∗ 0.5))

xtan(y)+z < x∗atan(z)∧sin(y)+cos(y)+tan(y) >= x−z∧atan(x)+atan(y) > y manual

Table 2: Sample of constraints that CORAL handles.

constraint. Some of these constraints are taken from the literature while others
were generated by CORAL users and also by SPF from the analysis of NASA
applications. Capitalized names indicate subjects from NASA. Note that most
of the constraints are non-linear and use mathematical functions. The first 3
constraints are used elsewhere to evaluate the FloPSy constraint solver [18] (see
also Section 6). The PISCES subject is discussed in Section 5.4. The manual
constraints have been written by 3 users of CORAL. Note that solving equality
constraints such as the first 4 in this table is challenging with random and
heuristic search as they significantly reduce the solution space.

5 Evaluation

This section presents our evaluation of CORAL. Section 5.1 shows the setup of
the various constraint solvers we used in our comparison. Section 5.2 compares
the use of CORAL in SPF with other public solvers already integrated to SPF
and also compares variations of CORAL. Section 5.3 discusses the impact of the
number of search iterations set in CORAL on effectiveness and runtime. Finally,
sections 5.4 and 5.5 discuss the analysis of the NASA PISCES library and the
Java translation of the Apollo Lunar Autopilot Simulink model.

5.1 Setup

Solvers. The user can control the duration of a solving task in CORAL either by
time or number of iterations. In our experiments we use number of iterations
to obtain deterministic results. When not mentioned otherwise CORAL uses in
each query request PSO as search strategy and 600 iterations (See Section 5.3).
We consider the following solvers in our comparison: CORAL, CHOCO [1], CVC3 [2],
and YICES [7]. All these solvers have been already integrated to SPF. We note
that these solvers have different goals. For example, CVC3 and YICES are decision
procedures for Satisfiability Modulo Theories (SMT). In particular, YICES can
decide over linear real arithmetic and CVC3 can decide over rational linear arith-
metic. But neither CVC3 nor YICES can handle complex mathematical functions
directly. CHOCO, on the other hand, is a constraint-programming solver for the
theories of integers and reals with support to mathematical functions.

The Wrapper solver. In order to compare the different solvers, we developed
a “wrapper solver” to encapsulate all the solvers considered in our evaluation.

Similar to the basic solvers, such solver needs to implement a SPF-defined Java
interface with operations for building the objects denoting the terms of a con-
straint and for calling the solver. We implemented the general solver for two
reasons. First, it is possible that one of the solvers fails to solve a constraint that
appears in a shallow exploration depth even though it could solve more elabo-
rated constraints. With the wrapper solver, exploration will continue if at least
one solver answers positively to a satisfiability check query. All solvers have the
chance to answer each query generated with the symbolic execution. Second,
the wrapper solver was useful to detect discrepancies between results that would
often point to a bug in the SPF-solver integration or the solver itself.

5.2 Comparison with other solvers

Results for decidable constraints. We evaluated CORAL with all the other
solvers for the symbolic execution of two set data-structures popularly used in
testing: binary search tree and tree map. For these subjects, we used the im-
plementation and test drivers available on the SPF codebase. The test drivers
explore all sequences of method calls and inputs up to informed bounds. The
symbolic execution of these data-structures generates constraints that only in-
volve decidable theories. A decision procedure with support for linear integer
arithmetic should be able to find solutions to all satisfiable path constraints.
We observed that CORAL could solve as many constraints as any other solver in
this experiment. The test driver was set to generate sequences up to bound 5.
Solving decidable fragments is also important in this context as it is often the
case that the input constraint mix decidable and undecidable parts.

Results for constraints with Math functions. We evaluated CORAL with
78 manually-written test cases including mathematical function expressions. In
this setup, three users of CORAL first developed the constraints with the help of
the Wolfram Alpha visualization tool [6] and then translated to Java. Although
each constraint is satisfiable the translation to Java creates unsatisfiable paths.
To note that Java models short-circuit boolean expression with control flow. In
this setup we compared only CORAL and CHOCO since they provide support to
math functions. Out of 678 queries CORAL solved 595 (87.7% of total). Of these,
CHOCO did not solve 526. In addition, for no query CHOCO could solve and CORAL

could not. CHOCO solved a total of 68 constraints (10.1% of total).

pso-opt pso ran-opt ran total
pso-opt - 116 38 209 722

pso 36 - 50 118 642
ran-opt 10 102 - 179 694

ran 12 1 10 - 525
Total: # Queries=838, SOLVED=763

Fig. 4: Different configurations of CORAL.

Results for different configura-

tions of CORAL. In this experiment,
we used all manually-written test
cases. This includes complex con-
straints with and without math func-
tions. The table from Figure 4 com-
pares four instances of CORAL in this
setup. We use a matrix to show how
many constraints one solver could
solve that another could not. More specifically, each cell A[i, j] of the square
matrix A stores the number of constraints that solver i could solve and solver j

could not. Last column and row show summaries. Last column shows the total
of constraints the solver in that line could solve. Last row shows the total num-
ber of queries submitted to the solvers and the total number of queries solved.
The label “pso” refers to CORAL using particle swarm optimization, while “ran”
refers to use of random search. The label “-opt” indicates that the solver enabled

optimization with the inference of variable domains and attempted to isolate
variables that no other variables depend as discussed in Section 4. The random
solvers use a bound of 360,000 iterations while the PSO solvers a bound of 600
corresponding to approximately the same time of search. (See Section 5.3.) We
make the following observations:

– CORAL performed well even for cases where it was not designed for. It solved
well the linear integer constraints generated from the symbolic execution of
binary search and treemap. This result is important considering that sym-
bolic execution of scientific applications builds constraints with both decid-
able and complex parts.

– CORAL performed significantly better than CHOCO for the queries including
Math functions derived from constraints manually-written by CORAL devel-
opers. In particular, we found cases when CHOCO would report incorrect so-
lutions (e.g. the constraint Math.sin(x)+Math.cos(y)==1). We note that
we did not tweak any parameter of CHOCO. We used the configuration set in
SPF.

– Figure 4 shows that the versions of CORAL with optimizations found more
solutions on average. In addition, “pso-opt” found more solutions than “ran-
opt”. In some cases the optimized solver missed the solution of some con-
straints that its non-optimized version finds. As discussed in Section 4.2 the
optimizations can reduce not only the search space but also the solution
space. Note also that the difference in total number of constraints solved
between “pso-opt” and “ran-opt” is not huge. We observed that one affect-
ing factor for this result is the relative high number of inequality constraints
(e.g., >=) compared to that of equality constraints for which random search
would conceptually have more difficulty to find solutions.

5.3 Impact of number of iterations on precision and runtime

This section discusses the impact of the number of iterations (using the PSO
search) in runtime and precision (as measured by the number of solutions found)
and present the method used to select a default value for the maximum number
of iterations per query to the solve.

We considered manually-written and NASA’s benchmarks in this experiment.
We varied the number of iterations from 10 to 3000 and measured how many
solutions the solver can find for each selection. The leftmost plot from Figure 5
relates number of iterations with numbers of solutions that CORAL finds for each
assignment. The plot indicates that the ratio of increase varies in different rates.
For the lower end of the range (say, less than 500 iterations) the increase is
sharp; for larger values the increase is smoother and often unpredictable. For
example, CORAL finds 1153 solutions when using 600 iterations and only 51 more
when using 3000 iterations (which is 5x increase in number of iterations). The

 950

 1000

 1050

 1100

 1150

 1200

 1250

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 s

ol
ve

d
co

ns
tr

ai
nt

s

Number of iterations

600

coral

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

R
un

tim
e

of
 u

ns
ol

ve
d

co
ns

tr
ai

nt
s

Number of iterations

coral

Fig. 5: Left plot relates number of iterations with number of solutions. Right plot
relates number of iterations with runtime.

vertical line in the figure shows this point of “stabilization”, which we use as
default selection for the maximum number of iterations. It is perhaps worth
mentioning that the plot is not increasing monotonically with the number of
iterations. This occurs because the search algorithm in the opt4j library uses the
number of iterations itself as a factor to regulate the perturbation of candidate
solutions. That does not imply, however, that the search is non-deterministic for
given seed and maximum number of iterations.

The rightmost plot shows average runtime in milliseconds for each assignment
of number of iterations. For that, we used a machine with an Intel Core i7-920
processor (8M Cache, 2.66GHz), 8GB RAM, and running Ubuntu 10.04 32bits.
In contrast to the previous experiment, we only considered unsolved constraints
as they dominate runtime. In principle, the cost of a search iteration varies with
the size of the constraint. In this setup, however, the size of the constraints
does not vary significantly and the plot reveals an apparent linear relationship
between number of iterations and average runtime.

Considering only the constraints that the solver could solve in the experi-
ments from Section 5.2, CORAL took on average 60ms, CHOCO 3ms, CVC3 9ms,
and YICES <1ms. As mentioned, this runtime difference can increase favorably
to non-CORAL solvers when considering the constraints that CORAL cannot find
solutions. Section 7 points to our plans to improve CORAL’s runtime.

5.4 Analysis of the PISCES library

We have applied SPF with the new CORAL solvers to the analysis of the PISCES
(Platform Independent Software Components for the Exploration of Space)
mathematical library. PISCES implements a collection of mathematical util-
ity functions and it is used at NASA’s Johnson Space Center for Web-based,
collaborative development of computer programs for planning trajectories and
trajectory-related aspects of spacecraft-mission design.

We have analyzed 20 methods in the library (version 2006), that perform com-
plex mathematical computations such as hyperbolic (arc) sine, cosine, tangent,
floating point reminder, factorial, as well as converting time and degrees into
radians and back, etc. We were able to analyze all the methods with CORAL, and
we discovered some problems, that were due to illegal arguments not properly

caught in the code. Furthermore, we tested the implementations by performing
checks of known mathematical properties of the PISCES functions.
For example, we checked the following:

public static void testHyperbolicTangent(double x) {

double sinH = MathFunctions.sinh(x); /* hyperbolic sine */
double cosH = MathFunctions.cosh(x); /* hyperbolic cosine */
double tanH = MathFunctions.tanh(x); /* hyperbolic tangent */

assert (tanH == sinH/cosH);
}

SPF with CORAL generates 6 path conditions, and it correctly determines that
only 2 are feasible and that the assertion is not violated. If the assertion is
changed to assert (tanH != sinH/cosH), SPF correctly finds two cases when
the assertion is violated.

5.5 Analysis of the Apollo Lunar Autopilot

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 q

ue
rie

s
so

lv
ed

Number of queries received (5x)

50% time

217 (57% of total)

99

383
coral

Fig. 6: Number of queries received vs. solved.

We have also applied SPF
with CORAL to the analysis of
the Apollo Lunar Autopilot, a
Simulink model that was auto-
matically translated to Java using
the Vanderbilt tool-set [19]. This
2.6KLOC subject is deployed in
a single package with 54 classes.
(Numbers computed with the Ja-
vaNCSS tool [13].) The Simulink
model was created by one of
the engineers who worked on
the Apollo Lunar Module digital
autopilot design team to see how he would have done it using Simulink if it had
been available in 1961. The model is available from MathWorks4. It contains
both Simulink blocks and Stateflow diagrams and makes use of complex Math
functions (e.g. Math.sqrt). The model could not be analyzed using CHOCO (or
other constraint solvers that were previously in SPF), since these solvers could
not handle the sqrt operation. In this experiment we set the bound on the
length of a path condition to 50 and the bound on time to 2h. The bound on
length makes the search to backtrack when it makes more than 50 consecutive
branching choices. CORAL could solve 383 out of 905 queries generated (i.e., 42%
of total) during the state-space exploration. Figure 6 summarizes the search.
In one axis it shows the number of queries the constraint solver received (note
the 5x scale) and the other shows the number of solutions found. The figure
highlights the 1h data point. Note from the plot a small increase in saturation
as time advances: in 50% of the time 57% (217 out of 383) of the total number
of solutions are found. One reason for this is the increase of the path condition
size (and cost of solving) with the increase of exploration depth. CORAL is
sensitive to the path condition size in two ways. On the one hand as the path

4 http://www.mathworks.com/products/simulink/demos.html?file=/products/

demos/shipping/simulink/aero_dap3dof.html

condition grows bigger the evaluation time also increases. On the other hand,
a fitness function conceptually makes better judgments when more conjuncts
appear in the path condition.

6 Related Work

Random-symbolic solving [11, 21, 22] has been recently proposed as an approach
to solve constraints with undecidable fragments. The approach is to selectively
randomize variables from the input constraint before passing a simplified version
of it to a decision procedure. Empirical results show that such collaboration is
very promising. We plan to investigate novel ways to promote collaboration
between CORAL and decision procedures. For example, to first pass the input
constraint to a decision procedure (with mathematical functions uninterpreted)
and use solutions to seed the initial state of CORAL.

The constraint solver FloPSy [18] has been recently developed with similar
purpose and approach as CORAL. CORAL and FloPSy use a similar notion of dis-
tance in their fitness functions. Different from CORAL, FloPSy does not adjust
the weights of constraint clauses in its fitness function as the search advances.
As for the search, FloPSy uses a variation of the AVM method [16] and genetic
algorithms. Another difference is that CORAL performs some optimizations (e.g.,
inference of domains and rewriting to eliminate variables) which are orthogonal
to the search. (See Section 5.) FloPSy is used under the concolic execution of
PEX [23], developed at Microsoft Research. CORAL has been customized specially
for SPF; this could not be done readily with FloPSy.

Heuristic search has been previously proposed to improve random (concrete)
testing [24, 10] as opposed to symbolic testing. In the context of a concrete exe-
cution the fitness function operates directly over program elements. It measures
how close execution is to discover a new program path using structural path
coverage. One central distinction between the concrete and symbolic approaches
is that, to evaluate fitness with concrete testing, one needs to execute the pro-
gram to collect path coverage data while in the context of symbolic execution
one needs to evaluate path conditions, which is an abstraction of the path.

7 Conclusions

This paper proposes the meta-heuristic solver CORAL for dealing with constraints
involving mathematical functions and floating-point variables that symbolic ex-
ecution can generate. The integration of CORAL with the NASA’s Symbolic
PathFinder tool (SPF) indicates that the approach is promising. The use of
CORAL broadens the application of SPF at NASA and industry. CORAL is publicly
available for use at the following address.

http://pan.cin.ufpe.br/coral

In future work, we plan to add incremental solving capability to CORAL (within
the context of symbolic execution) and to investigate novel ways to collaborate
with decision procedures. Finally, we plan to thoroughly evaluate CORAL in the
context of constraints generated from the analysis of other NASA applications.

Acknowledgments. This work was partially supported by the National Institute of Science and

Technology for Software Engineering (INES5), funded by CNPq and FACEPE, grants 573964/2008-4

and APQ-1037-1.03/08. Matheus Souza is supported by the CNPQ fellowship 118428/2010-1.

References

1. CHOCO web page. http://www.emn.fr/z-info/choco-solver/.
2. CVC3 web page. http://www.cs.nyu.edu/acsys/cvc3/.
3. Opt4J web page. http://opt4j.sourceforge.net/.
4. TSAFE maryland. http://www.cs.umd.edu/~mvz/cmsc435-s09/.
5. TSAFE mit. http://sdg.csail.mit.edu/TSAFE/downloads/.
6. Wolfram Alpha web page. http://www.wolframalpha.com/.
7. YICES web page. http://yices.csl.sri.com/.
8. JPF project, 2010. http://babelfish.arc.nasa.gov/trac/jpf.
9. T. Bäck, A. E. Eiben, and M. E. Vink. A superior evolutionary algorithm for

3-SAT. In Evolutionary Programming (EP), pages 125–136, UK, 1998.
10. L. Baresi, P. L. Lanzi, and M. Miraz. Testful: An evolutionary test approach for

java. In ICST, pages 185–194, 2010.
11. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random

Testing. In PLDI, pages 213–223, 2005.
12. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.
13. JavaNCSS website. JavaNCSS - A Source Measurement Suite for Java.

http://www.kclee.de/clemens/java/javancss/.
14. J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Neural

Networks, pages 1942–1948, 1995.
15. J. C. King. Symbolic execution and program testing. Communications of ACM,

19(7):385–394, 1976.
16. B. Korel. Automated software test data generation. IEEE Transactions on Soft-

ware Engineering, 16(8):870–879, 1990.
17. D. Kroening and O. Strichman. Decision Procedures – an Algorithmic Point of

View. EATCS. Springer, 2008.
18. K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux. FloPSy - search-based

floating point constraint solving for symbolic execution. Springer Verlag, November
2010. (To Appear)In Intl. Conference on Testing Software and Systems (ICTSS).

19. C. S. Pasareanu, J. Schumann, P. Mehlitz, M. Lowry, G. Karasai, H. Nine, and
S. Neema. Model based analysis and test generation for flight software. In Pro-
ceedings of SMC-IT, 2009.

20. C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry,
S. Person, and M. Pape. Combining unit-level symbolic execution and system-
level concrete execution for testing nasa software. In ISSTA, pages 15–26, 2008.

21. M. Takaki, D. Cavalcanti, R. Gheyi, J. Iyoda, M. d’Amorim, and R. Prudencio. A
comparative study of randomized constraint solvers for random-symbolic testing.
In NFM, pages 56–65. NASA, May 2009.

22. M. Takaki, D. Cavalcanti, R. Gheyi, J. Iyoda, M. d’Amorim, and R. Prudencio.
Randomized constraint solvers: a comparative study. Innovations in Systems and
Software Engineering (ISSE), 6(3):243–253, September 2010.

23. N. Tillmann and J. de Halleux. Pex: White box test generation for .NET. In Tests
and Proofs, volume 4966 of LNCS, pages 134–153. 2008.

24. P. Tonella. Evolutionary testing of classes. In ISSTA, pages 119–128, New York,
NY, USA, 2004. ACM.

5 www.ines.org.br

