
Faster Bug Detection for Software Product Lines with
Incomplete Feature Models

Sabrina Souto‡ Divya Gopinath† Marcelo d’Amorim‡ Darko Marinov∗
Sarfraz Khurshid† Don Batory†

‡ Federal University of Pernambuco
Recife, PE, Brazil

† University of Texas
Texas, Austin, USA

∗ University of Illinois
Urbana, IL, USA

ABSTRACT
A software product line (SPL) is a family of programs that are differ-
entiated by features — increments in functionality. Systematically
testing an SPL is challenging because it requires running each test
of a test suite against a combinatorial number of programs. Feature
models capture dependencies among features and can (1) reduce the
space of programs to test and (2) enable accurate categorization of
failing tests as failures of programs or the tests themselves, not as
failures due to illegal combinations of features. In practice, sadly,
feature models are not always available.

We introduce SPLif, the first approach for testing SPLs that does
not require the a priori availability of feature models. Our insight is
to use a profile of passing and failing test runs to quickly identify
failures that are indicative of real problems in test or code rather
than specious failures due to illegal feature combinations.

Experimental results on five SPLs and one large configurable
system (GCC) demonstrate the effectiveness of our approach. SPLif
enabled the discovery of five news bugs in GCC, three of which
have already been fixed.

CCS Concepts
•Software and its engineering→ Software verification and val-
idation;

Keywords
Software Testing, Feature Models, GCC.

1. INTRODUCTION
Software product lines (SPLs) improve the quality and reduce

maintenance costs for a family of related programs [45, 52]. Each
program of an SPL is identified by a unique combination of features –
increments in functionality. SPLs can be constructed using feature
variables, which guard the execution of feature-specific code (in the
spirit of ifdef preprocessing directives) [11, 17].

Feature models (FMs) formally capture dependencies among
features; they distinguish which combinations of features are le-
gal from those that are not. Feature models play a key role in
testing SPLs. They constrain the space of products to test and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c© 2015 ACM. ISBN 978-1-4503-3613-0/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2791060.2791093

enable accurate categorization of failing tests as failures of pro-
grams or the tests themselves, not as failures due to illegal config-
urations. Consequently, testing SPLs ignoring such dependencies
is senseless. Although most cited prior work on testing SPLs as-
sumes the availability of complete formally-specified feature mod-
els [10, 12, 14, 26, 36, 37, 39, 51, 53], in practice, feature models are
not always available, presenting a huge challenge to SPL testers.

We address the important problem of finding tests that fail on
legal configurations of SPLs regardless of how complete a feature
model may be. Intuitively, only tests that fail on legal configurations
indicate real faults so finding such fault-revealing legal configura-
tions soon is important for quick bug detection.

We introduce SPLif, a technique for testing SPLs that does
not require a priori availability of complete feature models. SPLif
guides the developer by classifying configurations related to the
parts of the incomplete model that are relevant for failing test runs.
Our insight is that by running each test against many configurations,
we can utilize information from failing and passing runs to help
developers prioritize their inspections.

It is important to note that this problem is distinct compared to
reverse-engineering feature models from code [5, 7, 8, 18, 21, 32, 42,
50,56]. Although it is possible to use testing to complement existing
feature models the goal of this paper is to detect legal fault-revealing
configurations quickly.

This paper makes the following contributions:
• Technique: We present SPLif, a technique that synergistically
exploits tests and incomplete feature models (in the limit, starting
with an empty feature model) to help users both (1) distinguish test
failures caused by problems in test/code from those caused by illegal
configurations and (2) build a more complete feature model, as a
consequence.
• Implementation: SPLif builds on the SPLat tool [39] to execute
tests on reachable configurations. SPLif works both for Java SPLs
and configurable systems such as GCC.
• Evaluation: SPLif has been evaluated on five SPLs. The results
demonstrate the utility of SPLif in testing SPLs with incomplete
feature models. Further, we evaluated SPLif on one large exten-
sively tested configurable system, GCC, where it helped to reveal 5
new bugs, 3 of which have been fixed after our bug reports.

2. FEATURE MODELS
Let φ be a set of boolean variables denoting SPL features. A

configuration c : φ ⇀ { f alse, true} is a partial function from vari-
ables to boolean values; c maps some (not necessarily all) feature
variables to values false or true. A configuration can be encoded
as a boolean formula fc =

∧
pi, where pi = (xi|¬xi) for xi ∈ φ. We

denote with | fc| the number of variables referenced in fc. We say

http://dx.doi.org/10.1145/2791060.2791093

that a configuration c is complete iff | fc|=|φ|; it is incomplete oth-
erwise. An incomplete configuration c represents a set of 2|φ|−| fc|

complete configurations (we call them extensions of fc), which map
all variables to boolean values.

Example. Let φ = {A,B,C,D,E}. Configuration fc1 =A∧B∧
¬C∧D∧E is complete. Configurations fc2 =A∧¬B and fc3 =A∧
B∧¬C∧E are incomplete. c2 can be also written as “10???”,
where the ith position corresponds to the ith feature variable
according to a given total order of variables. We use the numbers
1 and 0 to indicate, respectively, the presence or absence of a
feature and the symbol “?” to indicate “undefined”.

A feature model defines which configurations are legal for a given
SPL. We use the label “3” (for valid) to indicate that a complete
configuration does not violate model constraints, while the label “7”
(for invalid) indicates that some constraint has been violated.
Incomplete Feature Models An incomplete feature model is a
partial function M_ : 2φ ⇀ {3, 7} that maps complete configuration
c ∈ 2φ to a configuration label. If the label of a configuration is not
in M_, it is “unknown”. In one limit, the feature model is empty if it
assigns an “unknown” label to all 2|φ| configurations. In another, the
feature model is complete if it assigns 3or 7 to every configuration.
Modeling Incomplete Feature Models Analogous to the labels
3and 7 used to indicate validity of complete configurations, we use
the labels “L” (for legal) and “notL” (for illegal) to indicate legality
of incomplete configurations. An incomplete configuration c ∈ 2φ

is illegal if it violates some constraint in the feature model; it is
legal otherwise. We model an incomplete feature model as a total
function M : 2φ→{L,notL}.

Example. Formula fM=(x→¬z)∧(¬y→ z) encodes an incom-
plete feature model M. The configuration 1?1?? is illegal as
it violates x→¬z whereas the configuration 11?11 is legal as
it does not violate any constraint in M. Indeed, it is possible
to obtain legal complete configuration (aka valid 3) in M from
11?11 with the assignment of 0 to z, however the assignment of
1 to z produces an illegal complete configuration (aka invalid 7).

The diagram from Figure 1 characterizes the key relationships across
configurations that we use. The diagram unifies the notions of
completeness and legality of configurations. An edge from one
configuration kind to another indicates extension.

Note that similarity to legal configurations does not imply legality:
when an incomplete configuration is legal (see top element of the
hierarchy), extensions of that configuration may or may not be
legal. In contrast, when an incomplete configuration is illegal, all its
extensions must be illegal. Provided that one preserves this invariant,
it is possible to augment fM incrementally by reducing uncertainty
associated with incomplete configurations.

3. EXAMPLE
The main problem for testing SPLs with incomplete feature mod-

els (in the limit empty models) is that if a test fails it is difficult to
determine with absolute certainty if there is a bug in the code, a bug
in the test, or the bug manifests because of an illegal combination of
features. SPLif addresses this problem.

Notepad. To illustrate, we use Notepad, a simple visual text editor
that has been previously used in related research [37–39]. Notepad
has 2,074 lines of code, 17 features, and 62 tests. While Notepad
has a complete feature model formally specified, for the sake of
illustration, we assume here an empty model.

A Notepad test (failure). Figure 2 shows a test for Notepad –
testEditToolBar. This test is implemented using the GUI testing
framework FEST [25] and uses buttons available from the toolbars

<C,L>

<I,L>

<C, notL>

<I, notL>

Figure 1: Hierarchy of configuration types. The first element of the pair
indicates completeness of a configuration: “I” is Incomplete and “C” is
Complete. The second element of the pair indicates legality of a configura-
tion: “notL” is for not Legal and “L” is for Legal. An edge indicates that
it is possible to extend a configuration of one type to another. Complete
configuration types appear at the leaves of the tree. The check mark 3 labels
a complete and legal configuration (aka valid) whereas the cross mark 7
labels a complete and illegal configuration (aka invalid).

1 public void testEditToolBar() {
2 JTextComponentFixture textArea = window.textBox();
3 textArea.enterText("Hi");
4 JButtonFixture cutButton =

getButtonByTooltip("Cut", window);
5 cutButton.requireVisible();
6 cutButton.requireEnabled();
7 textArea.selectAll();
8 cutButton.click();
9 assertThat(textArea.text()).contains("");

10 JButtonFixture pasteButton =
getButtonByTooltip("Paste", window);

11 pasteButton.click();
12 pasteButton.click();
13 assertThat(textArea.text().contains("HiHi"); } }
14
15 private JButtonFixture getButtonByTooltip(

String toolTipText , ContainerFixture frame){
16 GenericTypeMatcher <JButton > buttonMatcher =
17 new GenericTypeMatcher <JButton >(JButton.class){
18 @Override
19 protected boolean isMatching(JButton button){
20 return button.getToolTipText().equals(msg);
21 }
22 }; return frame.button(buttonMatcher); }

Figure 2: Test of Notepad that checks the cut and paste functionalities. This
test fills the text area with a string, selects the text area, and presses the “cut”
button. It then asserts that the text area is indeed empty, presses the “paste”
button twice, and checks for the presence of the repeated string.

to cut and paste a string written to the text area. To find these buttons,
this test uses the auxiliary function getButtonByToolTip (line 15),
which iterates over all buttons reachable from the parent window
of the text area until finding one that matches the given tooltip text,
passed as parameter. This test fails when the feature UNDOREDO-
TOOLBAR is enabled. That feature adds to the Notepad window
a new toolbar containing the buttons “undo” and “redo”; they be-
come reachable in the search for buttons. The failure manifests
because this feature initializes the toolTipText field of these buttons
with null. Consequently, execution raises NullPointerException at
line 20 when trying to derreference this field from the “undo” button.

SPLat. SPLif builds on SPLat [39], a technique that we previ-
ously developed, to execute each test several times, once for each
configuration that a test encounters during execution. Failing tests
are tests whose executions failed on at least one configuration. We
call such executions failing runs, and call configurations on which
tests fail failing configurations. With Notepad and an empty model,
SPLat explores all given 62 tests, a total of 5,094 runs (excluding
time-outs) on distinct configurations. Out of these 5,094 runs, 300
were failing runs that were attributed to 3 tests on different configu-
rations. It is daunting to inspect all 300 failures to find real problems.
SPLif reduces the number of inspections to 10.

SPLif in a nutshell. SPLif takes as input an SPL with its test suite
and incomplete feature model. It explores each test with various
configurations, and produces a ranked list of failing tests and config-
urations for the user to inspect. Inspired by Tarantula [35], SPLif
ranks tests based on the ratio of failing and passing configurations.

SPLif also ranks configurations using various strategies to priori-
tize the order in which they should be inspected. An inspection can
result in a repair of the test, a repair of the feature model, and/or a
repair of the code under test. If a test fails on a legal configuration, a
real problem is revealed in the target source code or in the test itself.

If a test fails on an illegal configuration, the incomplete feature
model can be updated to incorporate the violated constraint. Tests
that pass for all the unknown or known legal configurations do not
appear in the ranking that SPLif reports. The user continues inspect-
ing failing tests and configurations until a budget limit is reached;
the goal is to quickly find fault-revealing legal configurations that
cover (all) failing tests.

SPLif on Notepad Tests. With an empty feature model, SPLat
explores all given 62 tests of Notepad and a total of 5,094 runs.
Out of these, 300 were failing and were attributed to 3 tests on 265
distinct configurations.

Most failing runs can be attributed to illegal configurations. We
want to find failing tests for legal configurations. If a user randomly
inspected the 133 failed runs for testEditToolBar (ti=31 for Notepad
table under Figure 7), (s)he would examine 37 configurations on
average before arriving at the first legal configuration. SPLif does
better than this: by following its ranking, the first legal configura-
tion is found in the first 10 inspections. By prioritizing tests and
configurations to inspect, SPLif makes users more productive.

Proceeding with this process until all failing tests have been
inspected, a random ranking would require a total of 90 inspections,
and a ranking generated by SPLif would require no additional
inspection, because the same legal configurations that SPLif reports
for the first test inspected is reachable by the other 2 failing tests as
well. So, SPLif detects that all 3 tests expose a bug in the test code
or in the source code by inspecting 10 configurations. This result
represents a reduction of 88% compared to random inspection, and a
reduction of 96% compared to inspect all 300 failing configurations
(the worst case).

4. TECHNIQUE
SPLif takes as input a test suite and an incomplete feature model

for an SPL and reports as output a ranked list of failing tests sorted
by their likelihood of containing legal failing configurations.

We represent an incomplete feature model as two sets of configu-
rations, one encoding legal configurations (ML) and one encoding
illegal configurations (MnotL). As shown in Section 2 we can view
each set as a formula, a disjunction of the (conjunctive) formulas
that represent each configuration in the set. A well-formed feature
model should have disjoint legal and illegal sets of configurations,
i.e., ML∧MnotL should be unsatisfiable. A feature model is empty
if both ML and MnotL are empty, and a feature model is complete if
ML∨MnotL is equivalent to true.

For such test from the input test suite, SPLif reports a ranked list
of configurations for inspection by their likelihood of being legal.
These rankings expose real problems in code or tests more quickly.

SPLif has three fully automated parts: Test Exploration (Sec-
tion 4.1), Test Ranking (Section 4.2), and Configuration Ranking
(Section 4.3). The overall approach consists of the following steps:

1. Use SPLif to run a given test suite with an incomplete or empty
feature model (Section 4.1).

2. SPLif ranks tests (Section 4.2).
3. User chooses the highest ranked test.
4. SPLif ranks failing configurations for that test (Section 4.3).
5. User inspects the highest ranked configuration.
6. If the configuration is illegal, user provides that information to

SPLif to make the feature model more complete.

7. If the configuration is legal, user repairs the test or the code
under test.

8. Repeat steps 1-7 until running out of time budget or finishing
the inspection of all failing tests.

Note that we could have chosen to inspect a configuration that
fails for multiple tests and then sort tests to inspect. We prioritized
tests and then configurations because we found it more intuitive to
focus on one test at a time and to reason about multiple configura-
tions for that one test.

Further, SPLif exploits illegal configurations discovered during
the inspection process. When that happens SPLif can reduce in-
completeness of feature models, which can help to better categorize
remaining tests and configurations.

4.1 Test Exploration
SPLif uses SPLat [39] to obtain, for each test, all (not known

to be illegal) configurations that have a unique trace during the test
execution. We described SPLat in detail elsewhere [39], so we
summarize it only briefly here, and then describe the changes we
made for SPLif.

Given an SPL code base, a test and an complete feature model (we
discuss incomplete models in the next paragraph), SPLat executes
the test on one configuration, observes the values of feature vari-
ables that have been accessed during the execution, and uses these
values to determine what other configurations should be considered
in subsequent test executions. For example, if a test execution ac-
cessed only one feature variable, f , with value f alse, then SPLat
re-executes the test with f set to true. If that second execution
accesses no other feature variables, the search stops. Otherwise,
it continues to explore the combinations of values of the other ac-
cessed variables. SPLat repeats this process until it explores all
dynamically reachable configurations or until it reaches a specified
bound on the number of configurations.
SPLat assumes that, in addition to the test, a complete feature

model is provided as input. This allows SPLat to substantially re-
duce the space of possible configurations to explore. In contrast,
SPLif assumes an incomplete feature model, so we had to change
SPLat to treat every unknown configuration as valid (3), if the
model is complete, or as legal, if the model is incomplete. When
SPLat runs now, it prunes test execution paths that correspond to
definitely illegal configurations and explores all other paths. Ad-
ditionally, we changed SPLat to accept a time limit for each test
execution, because executing illegal configurations can take a long
time or even lead to infinite loops.

4.2 Test Ranking
SPLif ranks tests for all executions with unknown configurations.

For illegal configurations, SPLif/SPLat does not even execute a
test. For legal configurations, the situation is quickly resolved: if the
test passes, the execution is ignored; if the test fails, the execution
immediately shows a real problem in the test or the code.

For each test t, we define the following terms:

• Pt
def.
= number of passing unknown configurations of t,

• Ft
def.
= number of failing unknown configurations of t,

• FLt
def.
= number of legal configurations for which t fails,

• St
def.
= suspiciousness rating or fraction of failed unknown con-

figurations. (i.e., St =
Ft

(Ft+Pt)
).

Ranking is obtained by lexicographically sorting the triples
〈FLt , St , Ft〉 associated with each test t. Spectrum-based fault

localization algorithms (e.g., Tarantula [35] and Barinel [2]) use a
similar criterion to classify suspicious statements.

Tests that appear higher in this ranking are considered more likely
to contain a legal configuration FLt > 0 . Note that if a test fails
for a legal configuration, we know it has a bug (in code or test)
and that test needs inspection irrespective of the number of legal
configurations it succeeds or fails.

The metrics St and Ft differentiate tests in the middle of the
ranking. In case of ties on metric FL, test t1 will be ranked higher
than t2 if St1 > St2. The rationale for using St is that there is a higher
chance of finding a failing legal configuration when SPLat reaches
a relatively high number of failing configurations. Finally, if the
first two metrics do not differentiate t1 and t2, SPLif uses the third
metric as a tie-breaker (Ft1>Ft2).
SPLif can rank tests once at the beginning of its execution (option

STATIC) or rerank tests after every test inspection (option DYNAMIC).
Intuitively, reranking could help SPLif to better categorize the tests
remaining for inspection: after the user labels the configurations
from one test, the feature model becomes more complete. So if
inspecting one test determines that some configuration is illegal, then
the same configuration can be ignored for all other tests. Likewise,
if inspecting one test determines that some configuration is legal,
and another test fails for that configuration, then that other test
immediately shows a real problem and goes to the top of the ranking.

4.3 Configuration Ranking
The previous section explained how SPLif ranks tests. Now, we

explain how SPLif ranks configurations for a given test. SPLif has
two independently selectable options to rank configurations, namely
UPDATEFM and WEIGHTED. If no option is selected, SPLif randomly
orders configurations for inspection.

If UPDATEFM is set, SPLif uses previously labeled configurations
to update the incomplete feature model such that configurations
whose labels can be inferred from the model are not inspected
again. Note that UPDATEFM does not define an explicit order of
configurations. If WEIGHTED is set, SPLif sorts the configurations
according to three different criteria. For each configuration c, we
define the following terms:

• ?c
def.
= number of undefined features variables in c,

• Fc
def.
= number of failing tests that execute c, and

• SLc
def.
= boolean that indicates if c is similar to some previously

seen legal configuration.
If the option WEIGHTED is set, the ranking of configurations is ob-
tained by lexicographically sorting the triples 〈?c, Fc, SLc〉 associ-
ated with each configuration c. Configurations that appear higher in
the ranking are considered more helpful to improve overall perfor-
mance of SPLif.

The first element of the triple helps to rank higher those con-
figurations that could be obtained with instantiations of undefined
variables, and the second element helps to rank higher those con-
figurations that occur in yet-to-be-inspected tests. The rationale for
these metrics is to optimize future labelings (L or notL) of config-
urations. For example, if a configuration is illegal, all complete
extensions of it must be illegal; hence it is beneficial to label such
configurations quickly as they label more complete configurations.
The third element ranks higher those configurations that look similar
to legal configurations. Similarity is determined by checking if ML∧
fc is satisfiable, which suggests that the configuration is in accor-
dance with the current feature model learned from the previously
labeled legal configurations. Note, however, that similarity to legal
configuration does not imply legality. In case of ties in the ranking
SPLif uses random ordering.

1 /* summary of SPLat execution for a test */
2 class TestInfo { Test , Set<Conf > pass, fail; }
3
4 /* models and test suite */
5 INPUTS: T , ML, MnotL
6 SPLif()
7
8 /* collect test profiles */
9 Set<TestInfo > Π = ∅

10 Π = {SPLat(MnotL,ti)| ti ∈ T} /*test info*/
11
12 R = list(Π)
13 /* rank tests by their execution profiles */
14 if (STATIC) R = rankTests(R)
15
16 attest:
17 while R 6= [] do
18
19 /* dynamically (re-)rank tests */
20 if (DYNAMIC) R = rankTests(R)
21 t = head(R); R = tail(R)
22
23 /* inspect test t if a configuration has been

previously inspected and labeled as legal */
24 if (t.fail ∩ ML 6= ∅)
25 break /* inspect test! */
26
27 /* fk is the logical encoding of configuration k */
28 Set<Conf > ∆ = {k ∈ t.fail | isSAT (fk ∧¬MnotL)}
29 if (∆ = ∅) continue /* ignore test! */
30
31 /* ranking confs. with unknown labels */
32 while ∆ 6= ∅
33 c = head(rankConfs(∆))
34 ∆ = ∆ - {c}
35 switch ulabel(c) /* user labels c */
36 case L:
37 if (UPDATEFM)
38 ML = ML ∨ fc
39 break attest /* inspect test! */
40 case notL:
41 if (UPDATEFM)
42 MnotL = MnotL ∨ fc
43 /* update set of unknown configurations */
44 ∆ = {k ∈ ∆ | isSAT (fk ∧¬MnotL)}
45 break
46 update(c,T); /* update the counts of passing and

failing configurations */
47
48 /* ranking tests*/
49 List <TestInfo > rankTests(List <TestInfo > R)
50 return sortLexicographically(R , λt :Test.〈FLt ,St ,Ft 〉)
51
52 /* ranking configurations*/
53 List <Conf > rankConfs(Set<Conf > ∆)
54 if (WEIGHTED)
55 return sortLexicographically(∆, λc :Conf.〈?c,Fc,SLc〉)
56 else return randomOrder(∆)

Figure 3: The SPLif Algorithm.

4.4 Algorithm
Figure 3 shows the pseudo-code of SPLif. It takes as input a test

suite T for a software product line and its incomplete feature model.
At line 10 the algorithm calls SPLat, which returns results for

each test in the test suite. For example, it outputs the results (pass
or fail) for each configurations SPLat explores on a given test. The
algorithm proceeds by iteratively choosing the top ranked test and
then focusing on the failing configurations for each selected test.

There are two strategies for resorting the ranking of tests. The
basic mode (option STATIC) sorts all the tests at the beginning of
execution whereas the adaptive mode (option DYNAMIC) resorts the
remaining tests after each test is inspected.

If any failing configuration is already in the legal set, the test
shows a real problem that should be repaired (lines 24–25). If that
does not hold but all configurations are in the illegal set, then the
test should be ignored (line 29). Otherwise, the algorithm iterates
through the set of still unknown configurations (lines 17–46). The
algorithm sorts these configurations using one of the strategies dis-
cussed in Section 4.3.

Finally, the algorithm picks the highest ranked configuration and
asks the user to label it. If the configuration is legal, this scenario
reveals a real problem, and the user should stop the inspection of
additional configurations to fix it. If the configuration is illegal, it is

added to the set of illegal configurations, and the inspection for this
test proceeds to the next configuration. Note that the set of failing
unknown configurations (∆) is updated accordingly. The inspection
finishes after the user finds a legal configuration (as that is a clear
indication of a real problem in code or test) or inspects all the illegal
configurations for each failing test.

The call to update (line 46) updates the counts of passing and
failing configurations (i.e., Pt and Ft for each test t from T) after
every configuration labeling. In DYNAMIC mode, this update can
potentially modify the relative ranking of each test in R .

5. EVALUATION
We pose the following research questions to evaluate SPLif:

RQ1 How well does SPLif rank faulty tests for inspection?
RQ2 How well does SPLif rank configurations (of selected tests)

for inspection?
RQ3 How well does SPLif scale to real code?

5.1 Subjects
We initially evaluated SPLif using five small subjects (size

range: 1.7–3.6KLOC) that were used to test SPLs previously. Fig-
ure 4 tabulates, for each subject, the source of the subject, the
number of feature variables, the number of valid (complete) config-
urations, and the code size.

Subject Source # # Valid LOCFeatures Configs.

Companies [34] 10 192 2,059
DesktopSearcher [41] 16 462 3,779

GPL [43] 13 73 1,713
Notepad [38] 17 256 2,074
ZipMe [9] 13 24 3,650

Figure 4: Target SPLs used in SPLif evaluation.

5.2 Setup
Tests analyzed. We asked 5 students to create tests. We assigned

two subjects per student and two students per subject, and provided
instructions on how to create tests. In brief, we instructed students to
create a test suite that achieves maximum feature coverage. Detailed
instructions that students received for creating tests can be found
elsewhere [24]. We provided support to students on how to use the
FEST framework [25] to create GUI tests for DesktopSearcher
and Notepad.

Figure 5 shows the number of tests and the number of configura-
tions those tests dynamically reached for each SPL. Column “All”
is the total number of reachable configurations and column “≥1
Failing” is the number of reachable configurations that cause at least
one test to fail. Values in parentheses denote the number of legal
configurations in the corresponding set.

Subject Source # # Valid LOCFeatures Configs.

Companies [34] 10 192 2,059
DesktopSearcher [42] 16 462 3,779

GPL [44] 13 73 1,713
Notepad [39] 17 256 2,074
ZipMe [8] 13 24 3,650

Figure 4: Target SPLs used in SPLif evaluation.

RQ2 How well does SPLif rank configurations (of selected tests)
for inspection?

RQ3 How well does SPLif scale to real code?

5.1 Subjects
We initially evaluated SPLif using five small (size range: 1.7–

3.6KLOC) subjects that were used to test SPLs previously. For
all subjects the decision of which features are enabled occurs at
runtime; ie, the binding of features to values takes place at the
setup of each test. Figure 4 shows, for each subject, the source of
the subject, the number of feature variables, the number of valid
complete configurations, and the code size. We used pre-existing
feature models as reference to evaluate consistency of configurations.
We used the GUI DSL [31] tool to check configuration consistency;
internally, the tool translates the input model to CNF format and
uses the SAT4J SAT solver [50] to check satisfiability.

5.2 Tests
We asked 5 students to create tests. We assigned two subjects per

student and two students per subject, and provided instructions on
how to create tests. In summary, we instructed students to create
a test suite that achieves maximum feature coverage. Detailed
instructions that students received for creating tests can be found
elsewhere [23]. We provided support to students on how to use the
FEST framework [24] to create GUI tests for DesktopSearcher
and Notepad.

Figure 5(a) shows, for each SPL, the number of tests and the num-
ber of configurations those tests dynamically reached. Column “All”
shows the total number of reachable configurations and column “≥1
Failing” shows the number of reachable configurations that cause
at least one test to fail. Values in parentheses denote the number of
legal configurations in the corresponding set. Figure 5(b) shows the
distributions of legal configurations (column “LCs”) vs number of
failing tests (column “FTs”). For example, 14 configurations of GPL
fail in only one test (but not necessarily the same test). Figure 5(c)
shows, for each SPL and test, the number of configurations that
make the test run fail (column “F”), the number of configurations
that the test passes (column “P”), and the number of legal config-
urations that produce failure (column “FL”). Each table contains
two sections: the first section includes entries where FL=0 and the
second where FL6=0. We omit test entries that only pass, i.e., entries
where F = 0.

It is worth noting that in this experiment we initialize SPLif with
an empty feature model; the purpose of existing models is to validate
configurations.

Don comment on the last 2 paragraphs: why is this information
so opaque? Can’t there be a simpler way to present this material? I
would literally pull apart figure 5 into smaller pieces, just to make
it easier to follow (for me and for other readers).

Marcelo: [[for the figure: i think they are related but feel free to
split if you think it helps. for the paragraphs: i think it is important to
explain what the columns mean; if you do that, please do change.]]

5.3 Ranking Tests Using Suspiciousness Score
The purpose of test ranking is to speed up discovery of bugs

through the prioritization of tests that fail on legal configurations.

Reachable Configs.
Subject # Tests All ≥1 Failing

Companies 19 152 (64) 72 (4)
GPL 25 1,268 (137) 497 (49)

Notepad 62 3,273 (66) 265 (6)
DesktopSearcher 44 254 (160) 125 (83)

ZipMe 62 2,431 (153) 261 (12)
(a) Tests and Reachable Configurations. Values in parenthe-
ses show the subset of legal configurations.

Companies
LCs FTs

4 1

GPL
LCs FTs
14 1
35 2
Notepad
LCs FTs

5 1
1 3

DesktopSearcher
LCs FTs
66 1
9 2
7 3
1 4

ZipMe
LCs FTs
12 1

(b) Distribution of number of legal configurations (LCs) per number
of failing tests (FTs).

Companies
ti Fi Pi FLi
13 16 16 0
14 24 8 0
15 48 16 0
16 48 16 0
17 1 1 1
18 7 5 1
19 12 4 2

GPL
ti Fi Pi FLi
18 4 4 0
19 4 4 0
20 33 78 0
21 192 64 0
22 7 1 1
23 26 26 2
24 248 8 35
25 256 256 46

Notepad
ti Fi Pi FLi
29 67 62 1
30 100 138 4
31 133 94 3

DesktopSearcher
ti Fi Pi FLi
10 1 4 0
11 1 8 0
12 1 8 0
13 1 2 0
14 1 8 0
15 1 8 0
16 1 8 0
17 1 8 0
18 1 32 0
19 1 8 0
20 1 32 0
21 1 4 0
22 1 8 0
23 1 32 0
24 1 0 0
25 1 0 0
26 2 8 0
27 3 8 0
28 3 8 0
29 3 2 0
30 3 8 0
31 1 25 1
32 3 1 3
33 3 1 3
34 3 1 3
35 4 0 3
36 5 0 4
37 7 1 7
38 7 1 7
39 14 0 8
40 14 1 13
41 15 2 14
42 17 1 16
43 28 3 27

ZipMe
ti Fi Pi FLi
30 1 1 0
31 1 1 0
32 1 3 0
33 1 3 0
34 1 8 0
35 1 2 0
36 1 3 0
37 1 3 0
38 1 3 0
39 1 3 0
40 1 3 0
41 1 2 0
42 1 1 0
43 1 3 0
44 1 3 0
45 2 12 0
46 2 8 0
47 2 6 0
48 2 2 0
49 4 33 0
50 5 7 0
51 10 38 0
52 11 43 0
53 12 12 0
54 31 201 0
55 32 198 0
56 61 399 0
57 61 1244 0
58 1 2 1
59 3 1 1
60 3 3 2
61 4 5 2
62 136 132 6

(c) Counts of passing and failing executions per test and SPL. ti is the test
id. Fi is the number of failures of ti. Pi is the number of passing executions
of ti. FLi is the number of legal configurations in which ti fails. We omit
test entries without failing runs.

Figure 5: Statistics on Tests.

Figure 6 shows, for each SPL, the ranking of tests from Figure 5(c).
Column R shows the rank of test ti. The suspiciousness score Si for
that test is computed by: Si = Fi/(Fi +Pi).

Recall that Section 4.2 states that the ranking of tests is obtained
by lexicographically sorting the triples 〈FCi, Si, Fi〉. However, at
this stage no configurations are known to be (in)legal. For this
reason, we used the tuple 〈Si, Fi〉 and reported only Si.

We observed that for the cases with a relative small number of
failing tests (Companies, GPL, and Notepad) classification of tests
is not very helpful. Although the first tests with legal configuration
appear high in the ranking (positions 3, 1, and 1, respectively),
overall other tests that do not fail on legal configurations are also
highly ranked. For the cases with relatively many failing tests
(DesktopSearcher and ZipMe), we found that ranking tests was
helpful: most tests that fail on legal configurations appear at top
positions in the ranking.

5

Figure 5: Tests and Reachable Configurations. Values in parentheses show
the subset of legal configurations.

Figure 6 shows the distributions of legal configurations (column
“LCs”) that fail for some number of failing tests (column “FTs”).
For example, 14 configurations of GPL fail in only one test (but not
necessarily the same test).

Figure 7 shows, for each SPL and test, the number of config-
urations that make the test run fail (column “F”), the number of

Subject Source # # Valid LOCFeatures Configs.

Companies [34] 10 192 2,059
DesktopSearcher [42] 16 462 3,779

GPL [44] 13 73 1,713
Notepad [39] 17 256 2,074
ZipMe [8] 13 24 3,650

Figure 4: Target SPLs used in SPLif evaluation.

RQ2 How well does SPLif rank configurations (of selected tests)
for inspection?

RQ3 How well does SPLif scale to real code?

5.1 Subjects
We initially evaluated SPLif using five small (size range: 1.7–

3.6KLOC) subjects that were used to test SPLs previously. For
all subjects the decision of which features are enabled occurs at
runtime; ie, the binding of features to values takes place at the
setup of each test. Figure 4 shows, for each subject, the source of
the subject, the number of feature variables, the number of valid
complete configurations, and the code size. We used pre-existing
feature models as reference to evaluate consistency of configurations.
We used the GUI DSL [31] tool to check configuration consistency;
internally, the tool translates the input model to CNF format and
uses the SAT4J SAT solver [50] to check satisfiability.

5.2 Tests
We asked 5 students to create tests. We assigned two subjects per

student and two students per subject, and provided instructions on
how to create tests. In summary, we instructed students to create
a test suite that achieves maximum feature coverage. Detailed
instructions that students received for creating tests can be found
elsewhere [23]. We provided support to students on how to use the
FEST framework [24] to create GUI tests for DesktopSearcher
and Notepad.

Figure 5(a) shows, for each SPL, the number of tests and the num-
ber of configurations those tests dynamically reached. Column “All”
shows the total number of reachable configurations and column “≥1
Failing” shows the number of reachable configurations that cause
at least one test to fail. Values in parentheses denote the number of
legal configurations in the corresponding set. Figure 5(b) shows the
distributions of legal configurations (column “LCs”) vs number of
failing tests (column “FTs”). For example, 14 configurations of GPL
fail in only one test (but not necessarily the same test). Figure 5(c)
shows, for each SPL and test, the number of configurations that
make the test run fail (column “F”), the number of configurations
that the test passes (column “P”), and the number of legal config-
urations that produce failure (column “FL”). Each table contains
two sections: the first section includes entries where FL=0 and the
second where FL6=0. We omit test entries that only pass, i.e., entries
where F = 0.

It is worth noting that in this experiment we initialize SPLif with
an empty feature model; the purpose of existing models is to validate
configurations.

Don comment on the last 2 paragraphs: why is this information
so opaque? Can’t there be a simpler way to present this material? I
would literally pull apart figure 5 into smaller pieces, just to make
it easier to follow (for me and for other readers).

Marcelo: [[for the figure: i think they are related but feel free to
split if you think it helps. for the paragraphs: i think it is important to
explain what the columns mean; if you do that, please do change.]]

5.3 Ranking Tests Using Suspiciousness Score
The purpose of test ranking is to speed up discovery of bugs

through the prioritization of tests that fail on legal configurations.

Reachable Configs.
Subject # Tests All ≥1 Failing

Companies 19 152 (64) 72 (4)
GPL 25 1,268 (137) 497 (49)

Notepad 62 3,273 (66) 265 (6)
DesktopSearcher 44 254 (160) 125 (83)

ZipMe 62 2,431 (153) 261 (12)
(a) Tests and Reachable Configurations. Values in parenthe-
ses show the subset of legal configurations.

Companies
LCs FTs

4 1

GPL
LCs FTs
14 1
35 2
Notepad
LCs FTs

5 1
1 3

DesktopSearcher
LCs FTs
66 1
9 2
7 3
1 4

ZipMe
LCs FTs
12 1

(b) Distribution of number of legal configurations (LCs) per number
of failing tests (FTs).

Companies
ti Fi Pi FLi
13 16 16 0
14 24 8 0
15 48 16 0
16 48 16 0
17 1 1 1
18 7 5 1
19 12 4 2

GPL
ti Fi Pi FLi
18 4 4 0
19 4 4 0
20 33 78 0
21 192 64 0
22 7 1 1
23 26 26 2
24 248 8 35
25 256 256 46

Notepad
ti Fi Pi FLi
29 67 62 1
30 100 138 4
31 133 94 3

DesktopSearcher
ti Fi Pi FLi
10 1 4 0
11 1 8 0
12 1 8 0
13 1 2 0
14 1 8 0
15 1 8 0
16 1 8 0
17 1 8 0
18 1 32 0
19 1 8 0
20 1 32 0
21 1 4 0
22 1 8 0
23 1 32 0
24 1 0 0
25 1 0 0
26 2 8 0
27 3 8 0
28 3 8 0
29 3 2 0
30 3 8 0
31 1 25 1
32 3 1 3
33 3 1 3
34 3 1 3
35 4 0 3
36 5 0 4
37 7 1 7
38 7 1 7
39 14 0 8
40 14 1 13
41 15 2 14
42 17 1 16
43 28 3 27

ZipMe
ti Fi Pi FLi
30 1 1 0
31 1 1 0
32 1 3 0
33 1 3 0
34 1 8 0
35 1 2 0
36 1 3 0
37 1 3 0
38 1 3 0
39 1 3 0
40 1 3 0
41 1 2 0
42 1 1 0
43 1 3 0
44 1 3 0
45 2 12 0
46 2 8 0
47 2 6 0
48 2 2 0
49 4 33 0
50 5 7 0
51 10 38 0
52 11 43 0
53 12 12 0
54 31 201 0
55 32 198 0
56 61 399 0
57 61 1244 0
58 1 2 1
59 3 1 1
60 3 3 2
61 4 5 2
62 136 132 6

(c) Counts of passing and failing executions per test and SPL. ti is the test
id. Fi is the number of failures of ti. Pi is the number of passing executions
of ti. FLi is the number of legal configurations in which ti fails. We omit
test entries without failing runs.

Figure 5: Statistics on Tests.

Figure 6 shows, for each SPL, the ranking of tests from Figure 5(c).
Column R shows the rank of test ti. The suspiciousness score Si for
that test is computed by: Si = Fi/(Fi +Pi).

Recall that Section 4.2 states that the ranking of tests is obtained
by lexicographically sorting the triples 〈FCi, Si, Fi〉. However, at
this stage no configurations are known to be (in)legal. For this
reason, we used the tuple 〈Si, Fi〉 and reported only Si.

We observed that for the cases with a relative small number of
failing tests (Companies, GPL, and Notepad) classification of tests
is not very helpful. Although the first tests with legal configuration
appear high in the ranking (positions 3, 1, and 1, respectively),
overall other tests that do not fail on legal configurations are also
highly ranked. For the cases with relatively many failing tests
(DesktopSearcher and ZipMe), we found that ranking tests was
helpful: most tests that fail on legal configurations appear at top
positions in the ranking.

5

Figure 6: Distribution of number of legal configurations (LCs) per number
of failing tests (FTs).

Subject Source # # Valid LOCFeatures Configs.

Companies [34] 10 192 2,059
DesktopSearcher [42] 16 462 3,779

GPL [44] 13 73 1,713
Notepad [39] 17 256 2,074
ZipMe [8] 13 24 3,650

Figure 4: Target SPLs used in SPLif evaluation.

RQ2 How well does SPLif rank configurations (of selected tests)
for inspection?

RQ3 How well does SPLif scale to real code?

5.1 Subjects
We initially evaluated SPLif using five small (size range: 1.7–

3.6KLOC) subjects that were used to test SPLs previously. For
all subjects the decision of which features are enabled occurs at
runtime; ie, the binding of features to values takes place at the
setup of each test. Figure 4 shows, for each subject, the source of
the subject, the number of feature variables, the number of valid
complete configurations, and the code size. We used pre-existing
feature models as reference to evaluate consistency of configurations.
We used the GUI DSL [31] tool to check configuration consistency;
internally, the tool translates the input model to CNF format and
uses the SAT4J SAT solver [50] to check satisfiability.

5.2 Tests
We asked 5 students to create tests. We assigned two subjects per

student and two students per subject, and provided instructions on
how to create tests. In summary, we instructed students to create
a test suite that achieves maximum feature coverage. Detailed
instructions that students received for creating tests can be found
elsewhere [23]. We provided support to students on how to use the
FEST framework [24] to create GUI tests for DesktopSearcher
and Notepad.

Figure 5(a) shows, for each SPL, the number of tests and the num-
ber of configurations those tests dynamically reached. Column “All”
shows the total number of reachable configurations and column “≥1
Failing” shows the number of reachable configurations that cause
at least one test to fail. Values in parentheses denote the number of
legal configurations in the corresponding set. Figure 5(b) shows the
distributions of legal configurations (column “LCs”) vs number of
failing tests (column “FTs”). For example, 14 configurations of GPL
fail in only one test (but not necessarily the same test). Figure 5(c)
shows, for each SPL and test, the number of configurations that
make the test run fail (column “F”), the number of configurations
that the test passes (column “P”), and the number of legal config-
urations that produce failure (column “FL”). Each table contains
two sections: the first section includes entries where FL=0 and the
second where FL6=0. We omit test entries that only pass, i.e., entries
where F = 0.

It is worth noting that in this experiment we initialize SPLif with
an empty feature model; the purpose of existing models is to validate
configurations.

Don comment on the last 2 paragraphs: why is this information
so opaque? Can’t there be a simpler way to present this material? I
would literally pull apart figure 5 into smaller pieces, just to make
it easier to follow (for me and for other readers).

Marcelo: [[for the figure: i think they are related but feel free to
split if you think it helps. for the paragraphs: i think it is important to
explain what the columns mean; if you do that, please do change.]]

5.3 Ranking Tests Using Suspiciousness Score
The purpose of test ranking is to speed up discovery of bugs

through the prioritization of tests that fail on legal configurations.

Reachable Configs.
Subject # Tests All ≥1 Failing

Companies 19 152 (64) 72 (4)
GPL 25 1,268 (137) 497 (49)

Notepad 62 3,273 (66) 265 (6)
DesktopSearcher 44 254 (160) 125 (83)

ZipMe 62 2,431 (153) 261 (12)
(a) Tests and Reachable Configurations. Values in parenthe-
ses show the subset of legal configurations.

Companies
LCs FTs

4 1

GPL
LCs FTs
14 1
35 2
Notepad
LCs FTs

5 1
1 3

DesktopSearcher
LCs FTs
66 1
9 2
7 3
1 4

ZipMe
LCs FTs
12 1

(b) Distribution of number of legal configurations (LCs) per number
of failing tests (FTs).

Companies
ti Fi Pi FLi
13 16 16 0
14 24 8 0
15 48 16 0
16 48 16 0
17 1 1 1
18 7 5 1
19 12 4 2

GPL
ti Fi Pi FLi
18 4 4 0
19 4 4 0
20 33 78 0
21 192 64 0
22 7 1 1
23 26 26 2
24 248 8 35
25 256 256 46

Notepad
ti Fi Pi FLi
29 67 62 1
30 100 138 4
31 133 94 3

DesktopSearcher
ti Fi Pi FLi
10 1 4 0
11 1 8 0
12 1 8 0
13 1 2 0
14 1 8 0
15 1 8 0
16 1 8 0
17 1 8 0
18 1 32 0
19 1 8 0
20 1 32 0
21 1 4 0
22 1 8 0
23 1 32 0
24 1 0 0
25 1 0 0
26 2 8 0
27 3 8 0
28 3 8 0
29 3 2 0
30 3 8 0
31 1 25 1
32 3 1 3
33 3 1 3
34 3 1 3
35 4 0 3
36 5 0 4
37 7 1 7
38 7 1 7
39 14 0 8
40 14 1 13
41 15 2 14
42 17 1 16
43 28 3 27

ZipMe
ti Fi Pi FLi
30 1 1 0
31 1 1 0
32 1 3 0
33 1 3 0
34 1 8 0
35 1 2 0
36 1 3 0
37 1 3 0
38 1 3 0
39 1 3 0
40 1 3 0
41 1 2 0
42 1 1 0
43 1 3 0
44 1 3 0
45 2 12 0
46 2 8 0
47 2 6 0
48 2 2 0
49 4 33 0
50 5 7 0
51 10 38 0
52 11 43 0
53 12 12 0
54 31 201 0
55 32 198 0
56 61 399 0
57 61 1244 0
58 1 2 1
59 3 1 1
60 3 3 2
61 4 5 2
62 136 132 6

(c) Counts of passing and failing executions per test and SPL. ti is the test
id. Fi is the number of failures of ti. Pi is the number of passing executions
of ti. FLi is the number of legal configurations in which ti fails. We omit
test entries without failing runs.

Figure 5: Statistics on Tests.

Figure 6 shows, for each SPL, the ranking of tests from Figure 5(c).
Column R shows the rank of test ti. The suspiciousness score Si for
that test is computed by: Si = Fi/(Fi +Pi).

Recall that Section 4.2 states that the ranking of tests is obtained
by lexicographically sorting the triples 〈FCi, Si, Fi〉. However, at
this stage no configurations are known to be (in)legal. For this
reason, we used the tuple 〈Si, Fi〉 and reported only Si.

We observed that for the cases with a relative small number of
failing tests (Companies, GPL, and Notepad) classification of tests
is not very helpful. Although the first tests with legal configuration
appear high in the ranking (positions 3, 1, and 1, respectively),
overall other tests that do not fail on legal configurations are also
highly ranked. For the cases with relatively many failing tests
(DesktopSearcher and ZipMe), we found that ranking tests was
helpful: most tests that fail on legal configurations appear at top
positions in the ranking.

5

Figure 7: Counts of passing and failing executions per test and SPL. ti is
the test id. Fi is the number of failures of ti. Pi is the number of passing
executions of ti. FLi is the number of legal configurations in which ti fails.
We omit test entries without failing runs.

configurations that the test passes (column “P”), and the number of
legal configurations that produce failure (column “FL”). Each table
contains two sections: the first includes entries where FL=0 and the
second where FL 6=0. We omit test entries that only pass, i.e., entries
where F = 0.

Initial Feature Model and Ground Truth. In the experiments,
we initialized SPLif with an empty feature model, i.e., the execu-
tion of SPLat at line 10 had no illegal configuration. To classify
configurations (and hence model the user), we used pre-existing
feature models as reference to label legality of configurations.

5.3 Ranking Tests Using Suspiciousness Score
The purpose of test ranking is to speed up discovery of bugs

through the prioritization of tests that fail on legal configurations.
Figure 8 shows, for each SPL, the ranking of tests from Figure 7.
Column R shows the rank of test ti. The suspiciousness score Si for
that test is computed by: Si = Fi/(Fi +Pi).

Recall that Section 4.2 states that the ranking of tests is obtained
by lexicographically sorting the triples 〈FLi, Si, Fi〉. However, at
this stage no configurations are known to be (il)legal. For this reason,
we used the pair 〈Si, Fi〉 and reported only Si.

We observed that for the cases with a relatively small number of
failing tests (Companies, GPL, and Notepad) classification of tests
is not very helpful. Although the first tests with legal configuration
appear high in the ranking (positions 3, 1, and 1, respectively),
overall other tests that do not fail on legal configurations are also
highly ranked. For the cases with relatively many failing tests

Companies
R ti Si
1 15 0.75
2 16 0.75
3 19 0.75
4 14 0.75
5 18 0.58
6 13 0.50
7 17 0.50

GPL
R ti Si
1 24 0.97
2 22 0.88
3 21 0.75
4 18 0.50
5 19 0.50
6 25 0.50
7 23 0.50
8 20 0.30
Notepad

R ti Si
1 31 0.59
2 29 0.52
3 30 0.42

DesktopSearcher
R ti Si
1 24 1.00
2 25 1.00
3 39 1.00
4 35 1.00
5 36 1.00
6 42 0.94
7 40 0.93
8 43 0.90
9 41 0.88
10 37 0.88
11 38 0.88
12 32 0.75
13 33 0.75
14 34 0.75
15 29 0.60
16 13 0.33
17 27 0.27
18 28 0.27
19 30 0.27
20 10 0.20
21 26 0.20
22 21 0.20
23 11 0.11
24 12 0.11
25 14 0.11
26 15 0.11
27 16 0.11
28 17 0.11
29 19 0.11
30 22 0.11
31 31 0.04
32 18 0.03
33 20 0.03
34 23 0.03

ZipMe
R ti Si
1 59 0.75
2 62 0.51
3 30 0.50
4 31 0.50
5 60 0.50
6 42 0.50
7 53 0.50
8 48 0.50
9 61 0.44

10 50 0.42
11 58 0.33
12 35 0.33
13 41 0.33
14 32 0.25
15 33 0.25
16 36 0.25
17 37 0.25
18 38 0.25
19 39 0.25
20 40 0.25
21 47 0.25
22 43 0.25
23 44 0.25
24 51 0.21
25 52 0.20
26 46 0.20
27 45 0.14
28 55 0.14
29 54 0.13
30 56 0.13
31 34 0.11
32 49 0.11
33 57 0.05

Figure 8: Ranking of tests. Column R shows the rank of test ti from Figure 7;
Si shows the suspiciousness score of ti. A row in gray color indicates a test
for which at least one failing configuration it reaches is legal.

(DesktopSearcher and ZipMe), we found that ranking tests was
helpful: most tests that fail on legal configurations appear at top
positions in the ranking.

RQ1. Based on these results we conclude the following:

The use of a suspiciousness score based on pass-fail ratios of
test runs is a good predictor for labeling tests that fail on legal
configurations when the number of failures is relatively high.

5.4 Ranking Configurations
Once a test is selected, the tester needs to identify the configura-

tions more likely to be legal out of those that trigger failure. Such
task can be overwhelming: a test run can expose many distinct
failures and there can be many tests. We considered 4 prioritization
techniques for inspecting configurations, defined as follows.

• Random is our comparison baseline. It randomly orders failing
configurations associated to a test.
• UpdateFM is a variation of Random that memoizes previously

labeled configurations.
• Weighted is a variation of UpdateFM that ranks the configura-

tions for inspection according to their weights.
• Adaptive is a variant of Weighted that re-ranks tests on-the-fly.

We obtain these techniques by setting the option flags (STATIC,
UPDATEFM, WEIGHTED, and DYNAMIC) in the SPLif algorithm.

When the tester finds a legal configuration for a failing test, SPLif
skips to the next test, and when he/she finishes inspecting all tests,
he/she repairs the test/code for all recognized bugs, i.e., for failures
of pairs of legal configuration and test. Section 5.5 discusses another
scenario where the tester stops to repair the test/code after finding a
failure of a pair of legal configuration and test.

Figure 9 shows the number of configuration inspections needed
to find the first legal configuration for each test. In Random mode,
this number is >= to the number of tests. In the other modes, the
number is smaller because SPLif recognizes already inspected con-
figurations. If they appear again, SPLif skips to the next test.

Mode Companies GPL Notepad DesktopSearcher ZipMe
Random 146 257 90 44 269

UpdateFM 69 211 40 30 45
Weighted and Adaptive 69 223 10 34 49

Figure 9: Total number of inspections considering the 4 variants: Random,
UpdateFM, Weighted and Adaptive.

From the results, we recommend two techniques be used to in-
spect configurations, depending on the scenario the tester may have:

1. UpdateFM is more appropriate when there is a considerable
number of tests failing on illegal configurations that are com-
mon among them; and

2. Weighted and Adaptive are more appropriate when there is a
considerable number of tests failing on legal configurations that
are common among them.

Discussion. Results indicate that for DesktopSearcher, GPL and
Notepad the use of variant Random revealed more legal configura-
tions than any other variant. Recall that Random only uses SPLif to
rank tests. This is expected as Random does not memoize already-
labeled configurations, increasing the number of inspections (of
legal configurations or not). The other variants record already-
labeled configurations (to detect bugs in other failing tests faster)
and hence may not visit all failing configurations. However, for all
subjects, the total number of configuration inspections necessary
to inspect all tests was much higher in Random compared to other
variants. This highlights the importance of SPLif to filter out tests
that fail on legal reachable configurations.

UpdateFM is the simplest variant of SPLif that ranks both tests
and configurations. In this variant, SPLif memoizes configuration
labelings in symbolic models. Intuitively, this enables faster classifi-
cation of other buggy tests that fail for legal configurations and helps
to ignore failures on illegal configurations (lines 24–29 in Figure 3).
We found that this variant helps to speed up classification of buggy
tests when a large number of configurations repeat across tests.

Weighted and Adaptive also use memory (UpdateFM) of pre-
vious labelings. Results indicate that UpdateFM performs better
compared to these variants for most of the subjects. The reason
for this can be attributed to the observation that when there is a
considerable number of tests failing on common illegal configura-
tions, then it helps if these illegal configurations are identified soon.
Such a characteristic appears in ZipMe (27 tests failing on illegal
configurations vs. just 5 tests failing on legal configurations), in
DesktopSearcher (30 tests failing on illegal configurations vs. 13
tests failing on legal configurations), and in Companies. The large
number of common illegal configurations bring about the difference
for GPL (see Figure 8).

In contrast, for Notepad, all failing tests have failures due to legal
configurations. Furthermore, there is 1 legal configuration common
amongst all failing tests. The Weighted (which performs heuris-
tic ranking of configurations based on configurations previously
labeled) and Adaptive (which re-ranks tests after every labeling)
variants help detect this common legal configuration in just 10 con-
figuration inspections. This leads to the detection of the other buggy
tests without requiring any further inspection of configurations. Up-
dateFM, which randomly ranks configurations brings to the top
a different legal configuration (unique to a single test), and then
ranks the legal configuration common to the other tests after 40
inspections.

RQ2. Based on these results we conclude the following:
The overall number of inspections needed to find problems in
tests or source code is fewer when SPLif uses an inferred feature
model (UpdateFM) as opposed to randomly selecting configu-
rations (Random). Re-ranking of tests (Adaptive) and ranking
of configurations (Weighted) seem to help when the number of
tests failing on common legal configurations is high.

5.5 Incremental Runs of SPLif
Re-execution of SPLif for one test (or the entire test suite) after

every test/code repair can be expensive, and potentially wasteful if
the repair had corrected all faults in the inspected test and the change
did not impact any other test. One approach to deal with this cost
is to optimistically assume that the repair in the test corrects all its
related faults and, in such a case, not re-execute SPLif. Instead, this
approach removes the repaired test from the list and control proceeds
to the next test in the ranking. The rationale for this approach is to
inspect tests quicker looking for new faults.

After all failing tests have been inspected once, SPLif is re-
started to run on the new version of the repaired tests alone. Note
that all configurations for the other tests must have been inspected in
previous runs of SPLif. This incremental pass acts as a validation
phase for the test repairs and also helps to identify other faults that
could have been exposed by other legal configurations. This is
exactly what we did in the experiments of Section 5.4. We elaborate
on the subsequent passes in the following. We observed that, except
for GPL, none of the repairs modified application code. For all
subjects, except DesktopSearcher, SPLif did not reveal any other
faults in the second pass. For DesktopSearcher, the first pass
discovered 13 tests failing on legal configurations (out of 34 reported
in SPLif’s ranking). The second pass found 6 of the 13 repaired
tests to fail again. These tests failed for unseen legal configurations
that had not been explored earlier. The third pass again revealed a
failure in one of the 6 tests for another unseen configuration.

5.6 Case Study: GCC
We next considered the GNU Compiler Collection (GCC) [28], a

large system with hundreds of configuration options [30]. The GCC
testing infrastructure runs each test for only one configuration; we
used SPLat to run each test for multiple configurations, reachable
from tests, and then we applied SPLif to rank both the failing tests
and configurations, as we did in Section 5. Our primary goal was
to see how SPLif could scale to such a large system and what
kind of failures it could find. With the recent work on testing
GCC [15, 40, 58], we did not expect to find new bugs, but SPLif
did. As we do not have extensive GCC knowledge to properly
classify general failures, we focused our inspection of failures on
crashes, which provide a stronger indication of a real bug in code.
We first give a high-level summary of setup and results, and then
more details of applying SPLif on GCC.

5.6.1 Setup
Test execution. Test execution in GCC is time consuming. It

takes ∼45min to run all 2,608 tests from the dg-gcc test suite
considering 1 configuration per test and our running environment.
This corresponds to roughly 1s per test run. To deal with the high
cost of test execution, we focused on a selection of test suites, ran
SPLat using a limited number of options, limited the number of
configurations per test to 50, and randomized the execution of SPLat
to sample different, dynamically reachable, configurations.

Tests analyzed. Overall, we analyzed a total of 4,108 tests
from three different test suites: 2,608 from gcc-dg, 548 from
dg-torture, and 952 from tree-ssa. We focused on these suites
for this experiment because we observed from bug-reports that the
incidence of bugs revealed with these suites was higher.

Options analyzed. To make the runtime reasonable, we restricted
the number of options that SPLat considers (see [30]). We used the
40 most frequently cited options in the GCC bug reports (from the
month of July 2014). The rationale was that more bugs could be
found close to where some bugs have been recently reported (we
noticed that the top options do not change much across months).

●●
●●
●●
●●●
●●

●●
●●●●●●
●●●● ●●

●●
●●●●
●●●●
●●●●●●

●●
●

●
●●

●
●
●●●●●●
●●●
●●

●
●

●
●●●
●
●●
●
●● ●

●
●
●
●●
●●
●
●
●●

●
●
●
●

0 20 40 60 80 100

0
10

20
30

40

Number of Configuration Inspections

N
um

be
r

of
 L

eg
al

 C
on

fig
ur

at
io

ns

●
●

 Random
UpdateFM
Weighted
Adaptive

Figure 10: Configuration inspection progress for GCC.

Initial Feature Model and Ground Truth. In this experiment
we initialized SPLif with an empty feature model (i.e., the exe-
cution of SPLat at line 10 is unconstrained) and used an existing
feature model of GCC [27] as the ground truth to model developer
knowledge for classifying configurations. Other choices of initial
model and ground truth are possible.

For the ground truth we built on the work of Garvin et
al. [27] that documented 110 constraints from GCC. We aug-
mented this model with constraints that we manually extracted
from the online documentation of GCC [29]; we found a to-
tal of 136 new constraints. For example, we found that
the option -fsel-sched-pipelining enables software pipelin-
ing of the innermost loops during selective scheduling and
has no effect unless the options -fselective-scheduling or
-fselective-scheduling2 are turned on.

5.6.2 Results
Ranking tests and configurations. The main goal of ranking

both tests and configurations is to find a legal configuration that fails
quickly. In total, 4,108 tests failed in 3,986 configurations, due to
crash or not. Recall that we ran each test against 50 reachable con-
figurations. Considering only crashes, a total of 43 tests manifested
crashes in 268 pairs of test and configurations. From a total of 43
crashing tests, only 2 tests had all crashing configurations illegal.
These bad cases ranked lower, at positions 23 and 38 respectively.

Figure 10 illustrates the progress in number of legal configurations
found with the progress in number of configurations inspected, using
the four alternative variants for inspecting configurations presented
in Section 5.4. Using the Weighted or Adaptive mode, from a total
of 268 failing configurations (218 distinct), only 45 configurations
needed inspection (26 of which were legal). This indicates that with
a relatively low number of inspections SPLif enables one to find a
legal failing configuration in all 43 crash-revealing tests.

New bugs found. To provide informative bug reports to the GCC
team we needed to simplify observed failures. For that we grouped
failing test-configuration pairs in clusters and minimized configu-
rations (from each pair) inside clusters. We clustered failing pairs
according to the GCC error message and the code location respon-
sible for the failure/crash, when it is available. For example, all
crashes with the message “int_cst_value” corresponding to loca-
tion tree.c:10625 were grouped in one cluster. Figure 11 shows
all clusters defined according to these heuristics, and lists the crashes
we found in the main trunk of GCC. Column “Properties” lists the
properties, column “Tests” shows the number of crashing tests, col-
umn “Pairs” lists the number of test-configuration pairs that crashes,
column “Id” denotes the id of the bug as reported in the GCC bug-
tracking system, column “Date Confirmed” shows the date the team
confirmed the bug as new. A bug report is initially given the status
“unconfirmed”. Column “Current Status” shows the current status of

Cluster data Bug report data
Properties #Tests #Pairs Id Confirmed Fixed Status

compute_affine_dependence, tree-data-ref.c: 4233 34 223 61980 Aug.1, 2014 - NEW
int_cst_value, tree.c: 10625 4 34 62069 Aug.8, 2014 - NEW

verify_ssa failed, tree-ssa.c: 1056 1 6 62070 Aug.8, 2014 Aug.11, 2014 RESOLVED FIXED
build2_stat, tree.c: 4265 1 4 62140 Aug.14, 2014 Oct.16, 2014 RESOLVED FIXED
Segmentation fault: 11 1 1 62141 Aug.14, 2014 Nov.19, 2014 RESOLVED FIXED

Figure 11: GCC bugs. Details at: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=<Column"Id">.

the bug, and finally column “Date Fixed” shows the date the GCC
team fixed the bug.

Unfortunately, there may be configuration options that do not
reproduce the crash. For that reason, we manually applied delta-
debugging [59] to simplify configurations inside each bucket. More
specifically, we selectively removed options from the input configu-
ration and re-executed the test in separate. We repeated this process
until the test would no longer reveal the crash.

We applied these simplification mechanisms as follows. For each
cluster we randomly picked one pair of test and configuration and
minimized the configuration to reproduce the crash at the same
location. Then we re-run all tests from the same cluster with the
minimized configuration to confirm that we would be able to repro-
duce the crash. The average number of options before minimization
was 7. With minimization we found that only 1 or 2 options were
relevant to reproduce crashes. With the minimized configuration at
hand, we filed a bug-report, one per cluster. When we observe that
the GCC team fixed 3 of the reported bugs (case of bugs: 62070,
62140, 62141) we validated the fix by re-running all pairs of tests
and configurations inside the corresponding cluster for the updated
version of GCC. If this validation fails it would likely indicate a
different problem which would demand the split of the cluster and
the report of a new bug. That did not happen for those 3 bugs, i.e.,
apparently, the fixes were effective.

RQ3. Based on these results we found the following:

Our proposed technique helped to reveal new bugs in GCC, a
large configurable system that has been under active develop-
ment for almost three decades.

5.6.3 Details of applying SPLif on GCC
GCC testing infrastructure. We briefly introduce DejaGnu [23],

the GCC testing framework. The code snippet below shows an
example DejaGnu test.
/*{ dg-do compile }*/
/*{ dg-options "-std=gnu99 -Wformat"}*/
#include format.h
void vbar(char **sp, wchar_t **lsp) { ... }

This test is for the C front-end of GCC. The directive dg-do in-
structs DejaGnu to only compile the function vbar. Other directives
can run other tasks (e.g., preprocess, assemble, link, and run) on this
test and combine these tasks. The directive dg-options instructs
DejaGnu to override the default option values with the assignments
that follow. In this example, the code will be compiled according to
two options: “-std=gnu99” (uses ANSI C dialect) and “-Wformat”
(checks format of string arguments of several functions). DejaGnu
determines test verdicts by matching specified regular expressions
with the outputs of test runs.

Instrumentation. It is important to distinguish input option from
feature variable. Input options correspond to the configuration
parameters passed to the system, typically on the command line (e.g.,
“-Wformat”) whereas feature variables are the program variables
that reflect these options in code (e.g., “warn_format”). To enable
execution of SPLat on GCC (see Figure 3, line 10), we instrumented
GCC to monitor all accesses to feature variables by wrapping the
uses of accessor macros with a call to a function we defined. These

macros are automatically generated from option definition files [1].
The execution of each test on instrumented GCC produces a log file
containing the values that feature variables assume during execution.

Variables-to-option map construction. To determine new input
vectors from variable accesses we constructed a map to express the
correspondence between feature variables (with their values) and
configuration options. It is important to note that the construction
of this map can be automated (see [57]). This map expresses, for
example, the correspondence of warn_format=0 with the option
-Wno-format. From the log file of accessed variables produced with
the test run and the variable-option map, SPLat is able to generate
new test inputs (i.e., option vectors).

5.7 Threats to Validity
The selection of subjects constitutes an important threat to gener-

alization. To mitigate this threat we considered not only open-source
previously-used SPLs but also one real configurable system (GCC)
that has been under active development (and testing) for almost
three decades.

The selection of tests is another threat to generalization. For SPLs
to reduce bias in the selection we did not provide details to the
testers on how we would use the tests. For a configurable system
like GCC we used all test suites (hundreds of tests) related to the
features we tested.

Another threat is the potential high number of variables in incom-
plete configurations that testers may need to inspect. To mitigate
this problem we ran our techniques on large code and observed that
many variables appear undefined in several configurations to inspect,
confirming our expectations (as discussed in previous paper [39])
that not all variables are accessed in every path. It is also impor-
tant to note that SPLif favors configurations with more undefined
variables for inspection (see “?c” in Section 4.3).

Our selection of feature options to analyze in GCC could in-
troduce bias. It is possible that on a larger set of options more
configurations would fail, creating a different scenario for SPLif.
We remain to evaluate how different heuristics (for selecting feature
options) influences SPLif results.

Finally, another threat to generalization is the assumption that the
labeling provided by the user is accurate. SPLif allows the user to
skip the labeling of a configuration that he/she is not sure of. This
problem could also be mitigated by checking the legality of each
labeling with the feature model learned until that point.

6. RELATED WORK
Product Line Testing. Testing software product lines is an active
area of research [10,12,14,16,26,36,37,39,46,51,53,55]. The main
focus of prior work is to optimize test execution. Two approaches
have been considered: (1) detection of relevant products to test and
(2) optimization of execution of sets of products.

For the first part the focus is to find the set of products that a test
must be run against. Kim et al. [37] proposed a static analysis to
compute a conservative approximation for the set of relevant prod-
ucts to run a given test. SPLat [39] also computes a sound estimate
for the set of relevant products to test but it uses a low-overhead
dynamic analysis, specifically execution-driven monitoring [13], to

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=<Column "Id">

determine relevant products.
For the second part the focus is to reduce the cost of running

a test against the products that must be executed. Kim et al.’s
shared execution [36] allows sharing the results of computations that
are common across different tests, thereby allowing certain results,
which under traditional execution would be computed multiple times,
to be computed just once. Kästner et al. [16] propose to model
variability as non-deterministic choices and then using a model
checker to run the tests – which shares computations common to
different products and avoids the need to enumerate products for
a test. Nguyen et al. [44] extends that work by applying previous
technique [16] to applications that build on top of plugins. SPLif
can benefit from test execution optimization by computing its results
more quickly. Moreover, SPLif’s output could be used to guide the
selection of subsequent configurations for execution.

Qu et al. [46] focus on regression testing of evolving configurable
software systems. They present an empirical study about the impact
of configuration selection heuristics used in regression testing on
fault-detection capability. Their results highlight that a number of
bugs may be missed if certain configurations are not tested and that
prioritizing configurations allows for more effective testing. It is
natural to consider the context of regression testing for applying
SPLif; this context would allow failing and passing runs across
different program versions to be compared and analyzed to more
accurately identify causes of test failures and illegal configurations.

Uzuncaova’s approach [55] addresses the test input generation
problem for product lines. The approach generates input for a prod-
uct by augmenting previously generated inputs for other products.
Test generation techniques can enhance the usefulness of SPLif.

Al-Hajjaji et al. [6] propose a technique to speedup sampling
based on configuration dissimilarity. The rationale is that similar
products are likely to contain the same defects. Although SPLif
uses similarity to rank configurations, the goal is different. We plan
to investigate how dissimilarity can improve SPLif even further.
Feature Model Extraction and Inference. There is a large body
of work on inferring/extracting feature models [5,7,18,21,32,42,47,
50, 56, 57] that include: static analysis to extract feature dependen-
cies from code, information retrieval and data mining, evolutionary
search, and algorithms based on propositional logic. She et al. [50],
Rabkin and Katz [47], and Xu et al. [57] use static analysis to ex-
tract feature dependencies from code. Alves et al. [7] and Davril et
al. [21] use information retrieval/data mining. Lopez-Herrejon et
al. [42] use evolutionary search. Haslinger et al. [32] provide cus-
tom algorithms, they assume that the user provides a list of all legal
configurations. Czarnecki and Wasowski [18] extract feature mod-
els from propositional formulas. Acher et al. [5] synthesize feature
models by merging sets of product descriptions. Weston et al. [56]
proposed a guided process to generate feature models, based on
natural-language requirements documents, and represented these
models in a way which details their semantic composition. None
of the above cited works exploit tests and their executions. The
techniques above can complement SPLif by making initial feature
models more complete; hence reducing effort in user inspection.

Recent techniques have been proposed to analyze and validate
feature models. Segura et al. [49] propose using metamorphic
testing for the automated generation of test data for the analyses of
feature models. Henard et al. [33] propose an automated approach
to find and fix inconsistencies between system and re-engineered
feature model. Any further development to improve feature models
will benefit SPLif.
Fault Localization. Suspiciousness metrics have been proposed to
rank code entities in terms of their likelihood of containing faults [2–
4, 19, 22, 35, 48]. Tarantula [35] is a tool that marks a statement as

possibly faulty if it is primarily executed by failing runs than by
passing runs. These approaches are unaware of configurations.

To deal with configurations, Zhang and Zhang [62] and Ghande-
hari et al. [31] independently explored the same idea: given a pair
of test and failing configurations they build new configurations in
an attempt to better localize failure causes, i.e. options that provoke
failure on given tests. They use suspiciousness metrics similar to
those used in previous work. SPLif also discovers faulty configura-
tions, but is aware of features constraints. In fact, it learns feature
constraint during the classification process.
Configuration Troubleshooting. ConfDiagnoser [60] and Conf-
Suggester [61] propose a technique to troubleshoot configuration
errors caused by configurable systems’ evolution. They use dynamic
profiling, execution trace comparison, and static analysis to link the
undesired behavior to its root cause, a configuration option whose
value can be changed to produce desired behavior from the new
software version. Garvin et al. [27] try to predict future failures in
configurable system based on the history of failures; they use config-
uration similarity to make this prediction. Swanson et al. [54] builds
on Garvin et al.’s approach; they propose an automated approach to
reconfigure configurable systems and hence avoid failures. These
techniques complements SPLif, whose focus is on classifying tests
and configurations for inspection.

7. CONCLUSIONS
Software Product Lines (SPLs) are an important design and imple-

mentation paradigm for controlling variability in families of related
software products. Testing SPLs is important as the volume of re-
search on that topic indicates. Prior research makes the assumption
that SPLs come equipped with complete, formally specified feature
models. Unfortunately, this assumption does not always hold.

We presented SPLif, a new approach for testing SPLs with incom-
plete feature models, or even no feature model at all. SPLif helps
the user prioritize failing tests and configurations for inspection. Our
experiments showed that SPLif is promising and can scale to large
systems, such as GCC. In the near future, we plan to apply SPLif
to other large configurable systems and to optimize execution by
leveraging the similarities across multiple similar states [20, 36, 44].

Additional information about SPLif (e.g., experimental data,
instructions on how to reproduce results, etc.) can be found at
http://pan.cin.ufpe.br/splif.

Acknowledgements. We thank Mateus Borges for the help with
GCC. Sabrina is supported by the FACEPE fellowship BPG-0675-
1.03/09. This material is based upon work partially supported
by the US National Science Foundation under Grant Nos. CCF-
0845628, CCF-1012759, CCF-1212683, CCF-1319688, and CCF-
1439957, and the Brazilian CNPq research agency under Grant No.
457756/2014-4.

8. REFERENCES
[1] . Option definition files.

https://gcc.gnu.org/onlinedocs/gccint/Options.html.
[2] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. Spectrum-based

multiple fault localization. In ASE, 2009.
[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of

similarity coefficients for software fault localization. In PRDC, pages
39–46, 2006.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In MUTATION, 2007.

[5] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden,
P. Collet, and P. Lahire. On extracting feature models from product
descriptions. In VaMoS, pages 45–54, 2012.

[6] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake.
Similarity-based Prioritization in Software Product-line Testing. In

https://gcc.gnu.org/onlinedocs/gccint/Options.html

SPLC, pages 197–206, 2014.
[7] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer,

P. Rayson, C. Pohl, and A. Rummler. An exploratory study of
information retrieval techniques in domain analysis. In SPLC, pages
67–76, 2008.

[8] N. Andersen, K. Czarnecki, S. She, and A. Wasowski. Efficient
synthesis of feature models. In SPLC, pages 106–115, 2012.

[9] S. Apel and D. Beyer. Feature cohesion in software product lines: an
exploratory study. In ICSE, pages 421–430, 2011.

[10] S. Apel, A. von Rhein, P. Wendler, A. Groblinger, and D. Beyer.
Strategies for Product-Line Verification: Case Studies and
Experiments. In ICSE, pages 482–491, 2013.

[11] D. S. Batory. Feature-oriented programming and the AHEAD tool
suite. In ICSE, pages 702–703, 2004.

[12] P. Borba, M. B. Cohen, A. Legay, and A. Wasowski. Analysis, Test
and Verification in the Presence of Variability (Dagstuhl Seminar
13091). Dagstuhl Reports, 3(2):144–170, 2013.

[13] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. In ISSTA, pages 123–133, 2002.

[14] I. Cabral, M. B. Cohen, and G. Rothermel. Improving the testing and
testability of software product lines. In SPLC, pages 241–255, 2010.

[15] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr. Taming compiler fuzzers. In PLDI, pages 197–208, 2013.

[16] C.Kastner, A.Rhein, S.Erdweg, J.Pusch, S.Apel, T.Rendel, and
K.Ostermann. Toward variability-aware testing. FOSD’12, pages 1–8,
2012.

[17] K. Czarnecki and U. W. Eisenecker. Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley, 2000.

[18] K. Czarnecki and A. Wasowski. Feature diagrams and logics: There
and back again. In SPLC, pages 23–34, 2007.

[19] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization
for Java. In ECOOP, 2005.

[20] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution for
efficient state-space exploration of object-oriented programs. IEEE
TSE, 34(5):597–613, 2008.

[21] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and
P. Heymans. Feature model extraction from large collections of
informal product descriptions. In ESEC/FSE, pages 290–300, 2013.

[22] J. C. de Campos, R. Abreu, G. Fraser, and M. d’Amorim.
Entropy-based Test Generation for Improved Fault Localization. In
ASE, pages 257–267, 2013.

[23] DejaGnu. GNU Testing Framework. gnu.org/s/dejagnu.
[24] Instructions to students on generating new tests for SPLs.

http://www.cin.ufpe.br/~sfs/splif/experiments.html.
[25] FEST. Fixtures for Easy Software Testing.

https://code.google.com/p/fest/.
[26] B. Garvin and M. Cohen. Feature interaction faults revisited: An

exploratory study. In ISSRE, pages 90–99, 2011.
[27] B. Garvin, M. Cohen, and M. B. Dwyer. Failure avoidance in

configurable systems through feature locality. In Assurances for
Self-Adaptive Systems, volume 7740 of LNCS, pages 266–296. 2013.

[28] GCC. GNU Compiler Collection. gcc.gnu.org.
[29] GCC Documentation. Options That Control Optimization. gcc.gnu.

org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options.
[30] GCC Options. GCC Options.

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html.
[31] L. Ghandehari, Y. Lei, D. Kung, R. Kacker, and R. Kuhn. Fault

localization based on failure-inducing combinations. In ISSRE, pages
168–177, Nov 2013.

[32] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed. On extracting
feature models from sets of valid feature combinations. In FASE,
pages 53–67, 2013.

[33] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon.
Towards automated testing and fixing of re-engineered feature models.
In ICSE, pages 1245–1248, 2013.

[34] Human-resource management system. 101Companies.
http://101companies.org/wiki/@system.

[35] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE, pages 467–477, 2002.

[36] C. Kim, S. Khurshid, and D. Batory. Shared execution for efficiently

testing product lines. In ISSRE, pages 221–230, 2012.
[37] C. H. P. Kim, D. Batory, and S. Khurshid. Reducing Combinatorics in

Testing Product Lines. In AOSD, pages 57–68, 2011.
[38] C. H. P. Kim, E. Bodden, D. S. Batory, and S. Khurshid. Reducing

Configurations to Monitor in a Software Product Line. In RV, pages
285–299, 2010.

[39] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. d’Amorim. SPLat: Lightweight Dynamic Analysis for
Reducing Combinatorics in Testing Configurable Systems. In
ESEC/FSE, pages 257–267, 2013.

[40] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. In PLDI, pages 216–226, 2014.

[41] P. Lengauer, V. Bitto, F. Angerer, P. Grünbacher, and H. Mössenböck.
Where has all my memory gone?: Determining memory
characteristics of product variants using virtual-machine-level
monitoring. In VaMoS, pages 1–8, 2013.

[42] R. E. Loepz-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed. Reverse engineering feature models with evolutionary
algorithms: An exploratory study. In SSBSE, pages 168–182, 2012.

[43] R. E. Lopez-Herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. In GPCE, pages 10–24, 2001.

[44] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Exploring
variability-aware execution for testing plugin-based web applications.
In ICSE, pages 907–918, 2014.

[45] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[46] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware
regression testing: an empirical study of sampling and prioritization.
In ISSTA, pages 75–86, 2008.

[47] A. Rabkin and R. Katz. Static extraction of program configuration
options. In ICSE, pages 131–140, 2011.

[48] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In ASE, 2003.

[49] S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated
test data generation on the analyses of feature models: A metamorphic
testing approach. In ICST, pages 35–44, April 2010.

[50] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse
engineering feature models. In ICSE, pages 461–470, 2011.

[51] J. Shi, M. B. Cohen, and M. B. Dwyer. Integration testing of software
product lines using compositional symbolic execution. In FASE, pages
270–284, 2012.

[52] Software Engineering Institute (SEI) SPL website.
http://www.sei.cmu.edu/productlines/.

[53] C. Song, A. Porter, and J. S. Foster. itree: Efficiently Discovering
High-Coverage Configurations Using Interaction Trees. In ICSE,
pages 903–913, 2012.

[54] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone.
Beyond the rainbow: Self-adaptive failure avoidance in configurable
systems. In FSE, pages 377–388, 2014.

[55] E. Uzuncaova. Efficient Specification-based Testing Using Incremental
Techniques. PhD thesis, Department of Electrical and Computer
Engineering, University of Texas at Austin, Dec. 2008.

[56] N. Weston, R. Chitchyan, and A. Rashid. A framework for
constructing semantically composable feature models from natural
language requirements. In SPLC, pages 211–220, 2009.

[57] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy. Do not blame users for misconfigurations. In SOSP,
pages 244–259, 2013.

[58] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and Understanding
Bugs in C Compilers. In PLDI, pages 283–294, 2011.

[59] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In
FSE, 1999.

[60] S. Zhang and M. D. Ernst. Automated diagnosis of software
configuration errors. In ICSE, pages 312–321, San Francisco, CA,
USA, May 2013.

[61] S. Zhang and M. D. Ernst. Which Configuration Option Should I
Change? In ICSE, pages 152–163, 2014.

[62] Z. Zhang and J. Zhang. Characterizing failure-causing parameter
interactions by adaptive testing. In ISSTA, pages 331–341, 2011.

gnu.org/s/dejagnu
http://www.cin.ufpe.br/~sfs/splif/experiments.html
https://code.google.com/p/fest/
gcc.gnu.org
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://101companies.org/wiki/@system
http://www.sei.cmu.edu/productlines/

