Balancing Soundness and Efficiency
for Practical Testing
of Configurable Systems

e ‘1 A ;‘i‘k A . »
Sabrina Souto Marcelo d’Amorim Rohit Gheyi
UEPB, Brazil UFPE, Brazil UFCG, Brazil

/ &
G Y

UEPB e LN
sabrinadfs@gmail.com damorim@cin.ufpe.br rohit@dsc.ufcg.edu.br

Configurable Systems

Configurations

Configurable System Many other
examples!

class Code{

if (OPTION 1)({

-\

AN

O SN s

<= =
[aee IN

Bugs in Configurable Systems

System
Configurations

v

Configurable
System

Y ¢

2 wi x Configuration-related bug!
[D

v

Testing Configurable Systems

System
Configurations

Monolithic Tests
System

Limitations of EXisting Techniques

Efficacy A
(#failures)

>
Efficiency
(#samples)

Limitations of Existing Techniques

Efficacy 4
(#failures)| *
Exhaustive

Find all bugs
Very expensive

>
Efficiency
(#samples)

Limitations of Existing Techniques

Efficacy 4
(#failures)| *
Exhaustive

Find all bugs
Very expensive

Very efficient

* Default
> Can miss bugs

Efficiency
(#samples)

Limitations of Existing Technlques

Efficacy
(#failures)

A

X

Exhaustive

Find all bugs
Very expensive

BESas

Try to find bugs with less samples

* Samplin
pling False positives and false negatives

*)Default Very efficient

— Can miss bugs
Efficiency

(#samples)

Limitations of Existing Techniques

Efficacy
(#failures)

A

X 3

Exhaustive Dynamic
Find all bugs (SPLat [FSE'13,SPLC'15])

Very expensive Consider code and test
It may not scale in all cases

Try to find bugs with less samples

* Samplin
pling False positives and false negatives

Very efficient

* Default
>

Efficiency
(#samples)

Can miss bugs

Limitations of Existing Techniques

Efficacy 4
(#failures)| * %

Exhaustive Dynamic
(SPLat) 4,

S-SPLat
Sampling + SPLat

,

* Sampling

* Default
>

Efficiency
(#samples)

Example

Sampling (one-enabled)

SPLat S-SPLat (one-enabled)

Example
Notepad

« 17 configuration variables -
« Only 3 are reached by toolbar() Sampling (one-enabled)

Test

[ofF = &

o F .
R
class Notepad {

- void

SPLat S-SPLat (one-enabled)

} 12

Notepad
« 17 configuration variables
* Only 3 are reached by toolbar()

Test

0= .

class Notepad ({
» void toolbar() {
A

Example

Sampling (one-enabled)

17 configurations

SPLat

S-SPLat (one-enabled)

13

Notepad
« 17 configuration variables
* Only 3 are reached by toolbar()

Test

0= .

class Notepad ({
» void toolbar() {
A

Example

Sampling (one-enabled)

17 configurations

SPLat

e D [l

AN

6 configurations

S-SPLat (one-enabled)

14

Notepad
« 17 configuration variables
* Only 3 are reached by toolbar()

Test

class Notepad ({
+» void toolbar() {
if (TOOLBAR) ({
A

Example

Sampling (one-enabled)

17 configurations

SPLat
T N (- AN

6 configurations

S-SPLat (one-enabled)

S

2 configurations

one-enabled 1

Input

Instrumented
Configurable
System

y b
<‘@ e@
Tests

o

Sampling Heuristic

5

Feature Model
(Optional)

S-SPLat

Output

Tests executed with
reachable and
satisfiable
configurations

C1, T1
C2, T1
Cl1, T2
C5, T2
C4, T3

16

S-SPLat

Input Output
For all tests

Yes ~ Run the test T;

Instrumented
Configurable
System Tests executed with
reactr_laflgl?J Iand
7 VAL satisfiable
*‘{3} °B,1 configurations
% %) &2, 11
<‘_ J([g/ 7
Ci, T2
" s C4, T3

=5

Sampling Heuristic

' Check: 7

: - Sampling heuristic /5
;@, . - Feature model i

Feature Model
(Optional)

17

EVALUATION

Research Questions

- ~

RQ1 > Which heuristics maximize efficiency (#samples)?
RQ2 > Which heuristics maximize efficacy (#failures)?

RQ3 > Which heuristics (basic or combination) maximize
efficiency and efficacy?

Scenarios

e 17K+ tests
« 2k+ variables

Software
Product Lines
(SPLs)
[8 subjects] [Veg:s{on] [vﬁrgfg" }
« All existing tests « 3,557 tests
« All existing options « 50 most frequently

cited options in
bug reports

Evaluation
SPLs

Evaluation

SPLs
Evaluation Techniques
[ICSE’16,ASE’'14]
,—Most-enabled-disabled (med)
[8 subjects } e sndblad (ot}
Techniques: _ ‘T—
1. SPLat e 0
2. SPLat + med —_
3. SPLat + oe pairwise (ow)
4. SPLat + od v N e N s N s N
5. SPLat + pw — —
6. SPLat + ran Random (ran)
NN N N ‘j

Evaluation
SPLs

Findings

RQ1: Which heuristics maximize efficiency (#samples)?

Random (ran)

SPLat and SPLat+j j ﬁ ﬁ j

Most-enabled-disabled (med)

sPLat+ =

RQ2: Which heuristics maximize efficacy (#failures)?

One-enabled (oe)

spLat+ ||

i ise (pw)

I G EN

_

)

23

Evaluation
SPLs

Findings

RQ3: Which heuristics maximize efficiency (#samples) and
efficacy (#failures)?

Combinations of heuristics

0oe x od x med x pw
cl = oe+od
«c2 = oe+med
*C3 = 0e+pW ...
cll = oe+od+med+pw

Evaluation
SPLs

Findings

RQ3: Which heuristics maximize efficiency (#samples) and
efficacy (#failures)?

#failures

[SPLat+Most-enabled-disabled
notepad optimized #samples at the expense
4 of #failures

®
® c1e ‘| @ SPLat+c11 (oe + od + med + pw)
Q¢ optimized #failures at the expense
Ocl of #samples

[SPLat did not scale for some subjects

2 06 Q¢S5
oe The sampling heuristics
0 pw reduced the number of samples
188 explored by SPLat yet retaining their
: 8 i &) s ability to reveal failures.

#samples

Evaluation

8

Evaluation

Evaluation Techniques

[ICSE'16,ASE'14]

Most-enabled-disabled (med)

e

One-enabled (oe)

[Version J [Version } s B‘ ﬁ
6.1 4.8.2 r— |
Techniques: EENE N
1. SPLat e
2. SPLat + med patrwise (o)
3. SPLat + oe v N P AN I AN B AN
4., SPLat + od | [p—
5. SPLat + PpW Random (ran)
6. SPLat + ran == B ﬁ T ﬁ ;

RQ1: Which heuristics maximize efficiency

£V

ﬁ and SPLat+)

SPLat+

SPLat+

Random

Findings

(ran)

=

=

i

Most-enabled-disabled (med)

=%

Evaluation

&

Version
6.1

1=

RQ2: Which heuristics maximize efficacy (#failures)?

One-enabled (oe) —

SPLat+

SPLat+|_

28

Evaluation

Findings

RQ3: Which heuristics maximize efficiency (#samples) [Version]
and efficacy (#failures)? '

o 9> & Bugs found
—7
- cl1™ o
n C,lo GCC Bugzilla - Bug 71512 ICE: vert fuampumm with UBSAN
1.1 5 7 [User acoount croation fitered due 1o spam.
05 Bug 71512 - ICE: verify_gimple failed with UBSAN
¢ Status: RESOLVED FIXED Reported: 2016-06-13 01:27 UTC by Sabrina Souto
o Modified: 2016-08-12 19:58 UTC (History)
las: CC List: 2 users (show)
® <c7 pw—> @ e e —
Homo | New | Browso | Search | E253 (7] | Roports | Holp | New Account | Log In | Forgot Password.
1.10 - Ne3 ‘ :
c6
L4 601 [User acoount fiherod due 1o spam.
Bug 77320 - ICE: get_ubsan_type_info_for_type, at ubsan.c:305
Status: RESOLVED FIXED Reported: 2016-08-22 13:11 UTC by Sabrina Souto
od > @ <«c4 Modified: 2016-08-22 15:28 UTC (Histary)
Alias: None ©C List: 2 users (show)
1.05 A 22 ®
C PY ws)
mgd N e e
nnnnnnnnnnnn
[J oe own
cont

]]
0 50 100 150
#samples L

2 new bugs reported.

It is preferable to pick the best performing heuristics
in the leftmost group > the best choices! 29

Findings

Evaluation

&

RQ3: Which heuristics maximize efficiency (#samples) [Version]
and efficacy (#failures)?

#bugs

504 O €«C7 c6=> o o) o
N K *
c8 c9 ci1i
4.5 -
med cl10
¥ 4
404 e o o <«ci c3=> 00 0 «c5
7
c4
3.5 A
3.01 oe—> ® <od o «pw
0 500 1000 1500
#samples

4.8.2

Bugs found
Basic Crash Id
Technigue 1 2 3 4 5
med v Vv v v
oe v v VY
od v v
pwW v v Y

All five bugs were captured.

SPLat+c2(oe+med) found all bugs with a relatively small number of samples. |*

Lessons Learned ',OC

*®For SPLs > c11 (oe+od+med+pw)
% For GCC > c2(oe+med)
% For SPLs and GCC - c7 (oe+od+med)

« [ICSE 2016] A comparison of 10 sampling algorithms for configurable systems.

% Combine different simple heuristics

% Avoid heuristics with a large number of requirements

ﬁS-SPLat found a good balance between bugs and samples
The sampling heuristics helped to reduced the number of
samples explored by SPLat without loss the ability to find bugs

ﬁS-SPLat could deal with scalability
It revealed bugs in potentially large configuration spaces

= P A —" o *B & AD =
S S P L Evaluation
™ at SPLs
Input = e . Output FI ndlngs
. orall tes s-SPLat
yes * Runthe testT,; .
g:)e/ RQ3 : #sam 8] les x #failures Balancing Soundness and Efficiency for Practical Testing of Configurable Software
Instrumented
Configurable Moo s e e 2 i
{Find reachable variables : T | g d = SPI‘.atl+Most enabled-disabled
o i ; reachable and 5 notepa optimized #samples at the expense
I IRy .) 8l & . of #failures
f e . #
"-&7 h: f’ﬂ‘ iLnak for 2% -:e‘:acllahmmt_:nn!!g‘urfglron5 $ A cW = SPLat+c11 (Oe +od+ meq + pw) Abstract
Tests Otherwise () H 3 0o performed consistently well in all cases
i i Oc1 ; g Testing configurable systems fs important and challenging due to the enormous space of
= s [y L an ala - [SPLat did not scale for some subjects configurations where errors can hide. Existing approaches to test these systems are often costly or
Sampling Heuristic O : Gcs unreliable. This paper proposes S-SPLat, a technique that combines heuristic sampling with symbolic
e ICheck: } C b ? The sampling heuristics search to obtaln both breadith and depth In the exploration of the configuration space. S-SPLat bullds
= Sampling heuristic i 5 S reduced the number of samples on SPLat, our previously developed technigue, that explores all reachable configurations from tests,
i - Feature model } O pw e i In contrast to its predecessor, S-5PLat sacrifices soundness in favor of efficiency. We evaluated our
: Gt Tt & explored by SPLat yet retaiing thelr i Ve o o SR e S o i 5
Feature Model ? 8 14 20 6 abliity to reveal fallures. Considering the results for GCC, S-SPLat was able to reproduce all five bugs that we previously found
(opronal} #samples in'a previous study with SPLat but much faster and it was able to find two new bugs in a recent
https://sabrinadfs.github.io/s-splat/
= = S.//Saprinadrs.gitnub.lo/S-Spla
Findings — Findings
Version Version
6.1 . l 4.8.2
RQ3: #samples x #failures RQ3: #samples x #failures
»
) e Bugs found 24 — —
3 cii’e a L
o 87 cgo # 8 el
* s e - . Bugs found
o
i
e - 7 51 Basic Crash Id
1.10 t 40 . o «ct R X T *c5 i %
e 2
o Technique 1 3 4 5
b med v v
elane » e ¥ 7 L
KA od v v \ '
2 30] oesweos o o o Et v Y
C 20 00 350 = 0 500 1000 1500 . .
g - Famopkes sabrinadfs@gmail.com
.
It is preferable to pick the best performing heuristics 2 new bugs reported. All five bugs were CaDFUfed- 37
in the leftmost group - the best choices! SPLat+c2(ce+med) found all bugs with a relatively small number of samples.

BACKUP SLIDES

Evaluation [
SPLs |

RQ2: #failures

RQ1: #samples

#samples
©® N

N

#failures

2001

150-
100-)
50-\ _
I * .
ol .

\u/ _Aechnique
echnique

od and pw found almost the same
SPLat and ran explored much samples. number of failures as splat but they

required much fewer samples.

med explored the smallest sample sets.
od explored the largest sample sets.

34

#failures

RQ3: #samples x #failures

14

Oc1

Oc4

O od

Jtopas °
c7® splat
Qco9
2
¢l
Q Qo
d c4 o O c5 £10
oce Q c8
Oc3
15 oe @ Qc2
pwd@ cb O 1,25
2 6 10 14
notepad @

c/e®

Oc5

20

®
c10

O c9

26

#samples

Evaluation [
SPLs |

« Combinations of heuristics

0e x od x med x pw
« cl = oe+od
* €2 = oe+med
* C3 = 0e+pWw...
* cll1l = oe+od+med+pw

SPLat and med optimize one dimension
at the expense of the other.

cll (oe + od + med + pw)
performed consistently well in all cases.

The sampling heuristics
reduced the number of samples

explored by SPLat yet retaining their ability to

reveal failures.

35

Evaluation
GCC

pw found more failures.
It was one of the most
expensive techniques.

#samples

ran med oe od W ran]
Technique Technique

W
o
o

.. oe and od found almost
the same number of
failures as pw but with
much fewer samples.

#samples
N
o
<

100 1

med ran] med \oe od pw ran
Technique Technique 36

Evaluation | Evaluation
SPLs GCC

Discussion

- c2 found all crashes with a relatively low number of
configurations

- c7 performed better, it detected most failures and crashes
through a relatively small number of configurations

« Combine different simple heuristics instead of using one
that entails a larger number of test requirements

« S-SPLat is promising to reveal errors in potentially large
configuration spaces

37

Handling Constraints

Complex models
SPLs « 549% of the selected configurations are invalid
» 43% of failures are false positives
The use of validation is not necessary
« Crashes was only revealed in valid configurations

The techniques performed consistently
with and without feature constraints &

Evaluation | Evaluation
SPLs GCC

Additional Evaluations

S-SPLat Random Sampling

with more rates:
10% and 30%

X
Regular Sampling

Regular Sampling New results are
detected the same bugs proportional to the
as S-SPLat with more change in the sampling

configurations. rates of random.

39

Threats to Validity and Limitations

« The selection of subjects

« We used subjects from a variety of sources, including a large configurable
system with hundreds of options

« Eventual implementation errors
« We thoroughly checked our implementation and our experimental results

« Our datasets and implementations are publicly available:
https://sabrinadfs.github.io/s-splat/

« SPLat currently only supports systems with dynamically bound
feature variables])

« It remains to investigate how SPLat and S-SPLat would perform on
systems with #ifdef variability

