
Balancing Soundness and Efficiency
for Practical Testing

of Configurable Systems

Sabrina Souto Marcelo d’Amorim Rohit Gheyi
UEPB, Brazil UFPE, Brazil UFCG, Brazil

sabrinadfs@gmail.com damorim@cin.ufpe.br rohit@dsc.ufcg.edu.br

Configurable Systems

Many other
examples!

2

Configurable System

...

…

Configurations

Bugs in Configurable Systems

Configuration-related bug!

3

Configurable
System

…

System
Configurations

...

Testing Configurable Systems

4

…
…

Monolithic
System

Tests

Tests

…

…

…

System
Configurations

...

Limitations of Existing Techniques

Efficiency
(#samples)

Efficacy
(#failures)

5

Limitations of Existing Techniques

*
Exhaustive

6

Efficiency
(#samples)

Efficacy
(#failures)

Find all bugs

Very expensive

* Default

Limitations of Existing Techniques

*
Exhaustive

7

Efficiency
(#samples)

Efficacy
(#failures)

Find all bugs

Very expensive

Very efficient

Can miss bugs

* Sampling

Limitations of Existing Techniques

* Default

*
Exhaustive

8

Efficiency
(#samples)

Efficacy
(#failures)

Try to find bugs with less samples

False positives and false negatives

Very efficient

Can miss bugs

Find all bugs

Very expensive

*
Dynamic
(SPLat [FSE’13,SPLC’15])

Limitations of Existing Techniques

* Sampling

* Default

9

Efficiency
(#samples)

Efficacy
(#failures)

Consider code and test

It may not scale in all cases

Very efficient

Can miss bugs

Find all bugs

Very expensive

*
Exhaustive

Try to find bugs with less samples

False positives and false negatives

Sampling + SPLat
S-SPLat

Limitations of Existing Techniques

*
Dynamic
(SPLat)

* Sampling

* Default

*
Exhaustive

10

Efficiency
(#samples)

Efficacy
(#failures)

Example

1111

SPLat S-SPLat (one-enabled)

Sampling (one-enabled)

Example
Notepad
• 17 configuration variables
• Only 3 are reached by toolbar()

1212

Test

SPLat S-SPLat (one-enabled)

Sampling (one-enabled)

Example
Notepad
• 17 configuration variables
• Only 3 are reached by toolbar()

13

SPLat S-SPLat (one-enabled)

Sampling (one-enabled)

13

Test

17 configurations

Notepad
• 17 configuration variables
• Only 3 are reached by toolbar()

Example

1414

Test

SPLat S-SPLat (one-enabled)

Sampling (one-enabled)

17 configurations

6 configurations

Example
Notepad
• 17 configuration variables
• Only 3 are reached by toolbar()

15one-enabled

2 configurations

Test

6 configurations

SPLat S-SPLat (one-enabled)

Sampling (one-enabled)

17 configurations

S-SPLat
Input

Tests

Feature Model
(Optional)

Output

C1, T1
C2, T1
C1, T2
C5, T2
C4, T3
… ...

Tests executed with
reachable and

satisfiable
configurations

16

Instrumented
Configurable

System

...

Sampling Heuristic

S-SPLat
Output

C1, T1
C2, T1
C1, T2
C5, T2
C4, T3
… ...

Tests executed with
reachable and

satisfiable
configurations

17

Look for next reachable configuration

Run the test TiYes

Otherwise

Check:
- Sampling heuristic
- Feature model

Find reachable variables

Input

Tests

Feature Model
(Optional)

Instrumented
Configurable

System

...

Sampling Heuristic

For all tests

EVALUATION

18

Research Questions

RQ1  Which heuristics maximize efficiency (#samples)?

RQ2  Which heuristics maximize efficacy (#failures)?

RQ3  Which heuristics (basic or combination) maximize
efficiency and efficacy?

19

Scenarios

20

Software
Product Lines

(SPLs)

Version
4.8.2

Version
6.18 subjects

• All existing tests
• All existing options

• 3,557 tests
• 50 most frequently

cited options in
bug reports

• 17K+ tests
• 2k+ variables

Evaluation

21

SPLs

Evaluation Techniques

SPLs

Techniques:
1. SPLat
2. SPLat + med
3. SPLat + oe
4. SPLat + od
5. SPLat + pw
6. SPLat + ran

8 subjects

Evaluation
SPLs

Evaluation

22

[ICSE’16,ASE’14]

RQ1: Which heuristics maximize efficiency (#samples)?

23

Findings

RQ2: Which heuristics maximize efficacy (#failures)?

SPLat+

SPLat+

Evaluation
SPLs

Evaluation

SPLat and SPLat+

SPLat+

Findings

Combinations of heuristics
•oe x od x med x pw

• c1 = oe+od
• c2 = oe+med
• c3 = oe+pw …
• c11 = oe+od+med+pw

RQ3: Which heuristics maximize efficiency (#samples) and
efficacy (#failures)?

24

Evaluation
SPLs

Evaluation

Findings

SPLat did not scale for some subjects

The sampling heuristics
reduced the number of samples
explored by SPLat yet retaining their

ability to reveal failures.

#
fa

il
u

re
s

#samples 25

Evaluation
SPLs

Evaluation

RQ3: Which heuristics maximize efficiency (#samples) and
efficacy (#failures)?

SPLat+c11 (oe + od + med + pw)
optimized #failures at the expense
of #samples

SPLat+Most-enabled-disabled
optimized #samples at the expense
of #failures

Evaluation

26

Evaluation Techniques

Techniques:
1. SPLat
2. SPLat + med
3. SPLat + oe
4. SPLat + od
5. SPLat + pw
6. SPLat + ran

27

Evaluation
SPLs

Evaluation

Version
4.8.2

Version
6.1

[ICSE’16,ASE’14]

28

Findings
Version

6.1

Evaluation
SPLs

Evaluation

SPLat+ and SPLat+

SPLat+

SPLat+

SPLat+

RQ1: Which heuristics maximize efficiency (#samples)?

RQ2: Which heuristics maximize efficacy (#failures)?

29
It is preferable to pick the best performing heuristics

in the leftmost group  the best choices!

Bugs found

2 new bugs reported.

#samples

#
b

u
g

s

Version
6.1

Evaluation
SPLs

Evaluation

RQ3: Which heuristics maximize efficiency (#samples)
and efficacy (#failures)?

Findings

#
b

u
g

s

#samples

All five bugs were captured.
SPLat+c2(oe+med) found all bugs with a relatively small number of samples. 30

Bugs found

Version
4.8.2

Evaluation
SPLs

Evaluation

RQ3: Which heuristics maximize efficiency (#samples)
and efficacy (#failures)?

Findings

• For SPLs  c11 (oe+od+med+pw)

• For GCC  c2(oe+med)

• For SPLs and GCC  c7 (oe+od+med)
• [ICSE 2016] A comparison of 10 sampling algorithms for configurable systems.

• Combine different simple heuristics

• Avoid heuristics with a large number of requirements

31

Lessons Learned

32

S-SPLat found a good balance between bugs and samples
The sampling heuristics helped to reduced the number of
samples explored by SPLat without loss the ability to find bugs

S-SPLat could deal with scalability
It revealed bugs in potentially large configuration spaces

https://sabrinadfs.github.io/s-splat/

sabrinadfs@gmail.com

BACKUP SLIDES

33

Evaluation
SPLs

Evaluation
GCC

Technique

#
sa

m
p

le
s

RQ1: #samples

RQ2: #failures

#
fa

il
u

re
s

Não é possível exibir esta imagem no momento.

Technique

SPLat and ran explored much samples.

med explored the smallest sample sets.
od explored the largest sample sets.

od and pw found almost the same
number of failures as splat but they

required much fewer samples.

34

Evaluation
SPLs

Evaluation
GCCRQ3: #samples x #failures

#
fa

il
u

re
s

#samples

• Combinations of heuristics
• oe x od x med x pw

• c1 = oe+od
• c2 = oe+med
• c3 = oe+pw…
• c11 = oe+od+med+pw

SPLat and med optimize one dimension
at the expense of the other.

c11 (oe + od + med + pw)
performed consistently well in all cases.

The sampling heuristics
reduced the number of samples

explored by SPLat yet retaining their ability to
reveal failures.

35

Technique

#
b

u
g

s

#
sa

m
p

le
s

Technique

Technique
#

b
u

g
s

#
sa

m
p

le
s

Technique

RQ1: #samples
Evaluation

SPLs
Evaluation

GCC

Version
6.1

RQ2: #bugs

36

pw found more failures.
It was one of the most
expensive techniques.

oe and od found almost
the same number of

failures as pw but with
much fewer samples.

Discussion

• c2 found all crashes with a relatively low number of
configurations

• c7 performed better, it detected most failures and crashes
through a relatively small number of configurations

• Combine different simple heuristics instead of using one
that entails a larger number of test requirements

• S-SPLat is promising to reveal errors in potentially large
configuration spaces

37

Evaluation
SPLs

Evaluation
GCC

Handling Constraints

38

SPLs
Complex models

• 54% of the selected configurations are invalid
• 43% of failures are false positives

GCC
The use of validation is not necessary

• Crashes was only revealed in valid configurations

The techniques performed consistently
with and without feature constraints

S-SPLat
x

Regular Sampling

Additional Evaluations

39

Regular Sampling
detected the same bugs
as S-SPLat with more

configurations.

New results are
proportional to the

change in the sampling
rates of random.

Random Sampling
with more rates:
10% and 30%

Evaluation
SPLs

Evaluation
GCC

Threats to Validity and Limitations

• The selection of subjects
• We used subjects from a variety of sources, including a large configurable

system with hundreds of options

• Eventual implementation errors
• We thoroughly checked our implementation and our experimental results
• Our datasets and implementations are publicly available:

https://sabrinadfs.github.io/s-splat/

• SPLat currently only supports systems with dynamically bound
feature variables])

• It remains to investigate how SPLat and S-SPLat would perform on
systems with #ifdef variability

40

