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Abstract. Tainted variable attacks, common in server-side scripting languages,
such as PHP, originate from program inputs maliciously crafted to exploit soft-
ware vulnerabilities. These vulnerabilities can be detected via data-flow analy-
ses, which iteratively compute the abstract state (“tainted” or “clean”) associ-
ated to every program variable at each program point. Existing algorithms for
this problem have a worst-case cubic time on the number of program variables
– an issue for large programs. This paper presents a quadratic-time algorithm
to tackle the tainted flow problem. We have implemented our analysis on top of
phc, an open source PHP compiler, and have scanned over 13 thousand PHP
files, obtaining 130 warnings, out of which 41 are actual security vulnerabilities.

1. Introduction

Web applications are pervasive in the Internet. They permeate sites as diverse as face-
book, google and blogger, are broadly used, and often manipulate sensitive information.
It comes to no surprise that web applications are common targets of cyber attacks. A
cyber attack typically initiates with a remote attacker carefully forging inputs to corrupt
a running system. A study performed in late 2004 (involving sites considered popular
according to the Alexa index1) reports a remarkably high number of 670 security-related
software bugs [Xie and Aiken 2006]. This number represents an 81% increase compared
to the same period from the previous year. To put the significance of these threats in per-
spective, the annual SANS’s report2 estimates that a particular type of attack – malicious
SQL injection – has happened approximately 19 million times in 2009 only. Static detec-
tion of potential vulnerabilities in web applications is therefore an important problem.

The Tainted Variable Attack is a system interaction pattern general enough to char-
acterize different kinds of concrete (real) attacks. Examples include: cross-site script-
ing, SQL injection, local/remote file inclusion, unwanted command executions, malicious
evaluations, and file system attacks [Xie and Aiken 2006, Wassermann and Su 2007].
The pattern consists of a remote individual exploring potential leaks in the system via
its public interface. In this context, the interface is the web and the leak is the lack of
“sanity” checks on user-provided data before using it on sensitive operations. To detect
this kind of attack one needs to answer the following question: does the target program

1http://www.alexa.com/topsites
2http://www.sans.org/top-cyber-security-risks/



contains a path on which data flows from some input to a sensitive place without going
through a sanitizer? A sanitizer is a function that either “cleans” malicious data or warns
about the potential threat. We call the previous question the Tainted Flow Problem.

This paper presents a novel and simple approach to tackle this problem.
The algorithm that we propose is, in the worst case, quadratic on the number
of variables in the source program. This complexity improves on previous ap-
proaches [Jovanovic et al. 2006a, Scholz et al. 2008], which have a cubic worst case.
The low asymptotic complexity is justified by the use of a program representa-
tion called Extended Static Single Assignment (e-SSA) form, introduced by Bodik et
al [Bodik et al. 2000], which can be computed in linear time on the program size. This
intermediate representation makes it possible to associate constraints directly to program
variables, instead of associating them to variables at every program point. This paper
brings forward the following contributions:

• An efficient algorithm to solve the tainted flow problem. Two distinguishing fea-
tures of the algorithm are (i) the use of the e-SSA representation to generate con-
straints and (ii) an on-demand constraint solving algorithm. See Section 3.

• An implementation of the algorithm on top of phc [Biggar et al. 2009], an open
source PHP compiler.

• An evaluation of the proposed approach on public PHP applications,
including benchmarks used in previous works [Jovanovic et al. 2006a,
Xie and Aiken 2006]. See Section 4.
Our analysis solves a general problem and can be generalized to other procedural

languages. We chose PHP because it is popular for developing server-side web applica-
tions. For example, PHP programs can be found in over 21 million Internet domains3.
Another reason was easy access to existing benchmarks.

2. Background
A tainted variable attack consists of a remote individual maliciously crafting program
inputs to explore unknown, but predictable, vulnerabilities of a running application. This
paper tackles the problem of statically finding such vulnerabilities. This problem is best
known as the Tainted Flow Problem.

Definition 2.1. THE TAINTED FLOW PROBLEM

Instance: A tuple T = (P , SO , SI , SA), such that:
• P is the subject program.
• SO is a set of input functions, referred to as sources.
• SI is a set of security-sensitive operations, referred to as sinks.
• SA is a set of functions that validate inputs, referred to as sanitizers.

Problem: Determine if program P can make a call to a sink function si ∈ SI passing a
value v, which has been generated by a source function so ∈ SO , and that has not been
sanitized by any function sa ∈ SA.

The literature describes a number of different tainted variable attacks. Some no-
ticeable examples are cross-site scripting (XSS) [Wassermann and Su 2008], SQL injec-
tion attacks [Xie and Aiken 2006, Wassermann and Su 2007], malicious evaluations 4, lo-

3http://php.net/usage.php
4http://cwe.mitre.org/data/definitions/95.html



cal/remote file inclusions 5, and command execution 6. We describe cross-site scripting in
this section. The other types of attacks follow a similar pattern of operation.

2.1. Cross-Site Scripting

Cross-site scripting typically occurs when a user is able to inject html code within a
dynamically generated page. An attacker uses this vulnerability to execute malicious
JavaScript code on a victim’s machine. For example, one can inject in a URL a script to
steal sensitive cookie information that can provide session privileges to the attacker.

Example. the program below exemplifies the cross-site scripting bug:

<?php $name = $_GET[’name’]; echo $name; ?>

A user of the page above is able to output any given text, including html com-
mands. Consider the scenario where execution reads from input and assigns the follow-
ing data to variable $name: “<script>does.something.evil;</script>”. A
potentially malicious JavaScript program might be executed in the client side of the ap-
plication.

A workaround for this bug is to strip malicious html contents from the user input.
The function htmlentities does the trick by encoding special characters into their
respective html entities. For example, “<” gets translated to “&lt;”.

<?php $name = htmlentities($_GET[’name’]); echo $name; ?>

Cross-site scripting is an instance of a tainted flow attack. A possible input con-
figuration is as follows.

Sources : PHP Superglobals, e.g $_GET[], $_POST[], etc.
Sinks : functions that output data to the page, such as echo, print, printf.
Sanitizers : htmlentities, htmlspecialchars, strip_tags, as well as

type inference functions, such as is_numeric.

3. The Proposed Solution
We propose a novel algorithm to solve the tainted flow problem. Our solution receives
four inputs:

1. the program for analysis;
2. a list of source functions;
3. a list of target functions;
4. a list of sanitizers.

For the sake of simplicity, we will write input programs in Nano-PHP, a reduced
version of PHP, described in Section 3.1. Our analysis proceeds in two steps. First, it
converts the input program into e-SSA form, using the technique described in Section 3.2.
The e-SSA form allows us to characterize the tainted flow problem as a graph reachability
question. In the next step, it traverses such graph to find vulnerable paths from sources to
sinks. Section 3.3 shows that one can find the same solution without building the graph
explicitly. In this case, we perform the traversal on the program structure.

5http://projects.webappsec.org/Remote-File-Inclusion
6http://projects.webappsec.org/OS-Commanding



3.1. Nano-PHP

We define the core language Nano-PHP to illustrate our approach. Our language has seven
basic types of instructions:

Name Instruction Example
Source assignment v = s, v ∈ SO $v = $_POST[’content’]
Sink assignment s = v, s ∈ SI echo($v)
Aliasing set up v1 = &v2 $v1 = & $v2
Simple assignment v = s(v1, . . . , vn) $a = $t1 * $t2
Filter v1 = f(v2), f ∈ SA $a = htmlentities($t1)
Validation if (g(v)) then v1 = σ(v);L1 if (!is_numeric($t1))

else v2 = σ(v);L2, g ∈ SA abort();
φ-function v = φ(v1, v2) $v = phi($v1, $v2)

Figure 1 (Left) contains an example of a Nano-PHP program. The instruction
in line 1 is an assignment from input. Nano-PHP separates sanitizers in two categories:
filters and validators. The instruction in line 3 is an assignment from a filter. A filter,
in this case, could be, for instance, the standard PHP function htmlentities. The
conditional in line 2 is a validator, which could be, for instance, the standard function
is numeric. Finally, in line 5 we have a sink.

3.2. Converting the Input Program to e-SSA Form

We use the Extended Static Single Assignment (e-SSA) representation to simplify our
tainted variable analysis. E-SSA, a superset of the well known Static Single Assignment
(SSA) form [Cytron et al. 1991], is not a new concept. This representation has been used,
for instance, to eliminate array bound checks [Bodik et al. 2000] and to perform bitwidth
analysis [Stephenson et al. 2000]. There are different flavors of e-SSA form, and we use
the version described by Tavares et al [Tavares et al. 2010], because its creation requires a
very small amount of change into the input program. The main property that we use from
this version of e-SSA form is called single upward-exposed-conditional. This property
says that if variable v is used at a branch instruction i, then from i it is possible to reach
at most one use of v without passing across another use.

The e-SSA form guarantees this property via a special instruction called σ-
function, which split the live ranges of variables used in conditionals. The live range
of a variable v is the collection of program points where v is alive, that is, from where it
is possible to reach a statement where v is used. For instance, in Figure 1 (Middle), the σ
function splits the live range of $i0 into two new variables, $i1 and $i2. The former
is alive only in the regions where the conditional evaluates to false. The latter is alive in
the regions where the conditional evaluates to true. We use φ-functions, traditionally seen
in SSA-form, to join the live ranges of variables. Going back to Figure 1 (Middle), the
φ-function in the last basic block joins the live ranges of $i1 and $i3, producing $i4.

The e-SSA representation allows us to acquire static information from the out-
come of conditionals. Hence, we can associate unique constraints to variables, as Fig-
ure 1 illustrates. The original program, in Figure 1 (Left), has one variable named $i.
We know that this variable is clean in some program points, but not all. The e-SSA rep-
resentation allows us to identify these program points precisely. The modified program



1. $i = $_GET['var']

2. if (!clean($i)) {

3.   $i = filter($i);

4. }

5. echo($i);

$i0 = $_GET['var']
!clean($i0)?

($i1, $i2) =σ $i0

$i3 = filter($i2)

$i4 =ϕ ($i1, $i3)
echo($i4)

F
T

Contraints:
$i0 is tainted
$i1 is clean
$i2 is tainted
$i3 is clean
$i4 is clean

Figure 1. Using e-SSA to bind constraints to variables.

Source

Sanitizer
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$i0 $i2

$i1
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!is_clean

filter
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Figure 2. The reachability graph built for the program in Figure 1.

has five variables, $i0, $i1, $i2, $i3 and $i4. Given that $i0 comes from a source
function, we let it be tainted. We know that $i1 is clean, because it is produced by an
operation of validation. That is, a Nano-PHP validation instruction, defined in Section 3.1
always produces two new variables, via a σ-function. According to the semantics of vali-
dation, one of this variables must be clean, and the other must be tainted. Thus, we know
that $i2 is tainted. However, $i3 is produced by the application of a filter onto $i2;
hence, $i3 is clean. $i4 is also clean, because it is formed by the combination of two
clean variables, $i1 and $i3. By associating constraints directly to variables, we obtain
a sparse analysis. That is, we free ourselves from the need to keep information related to
program points, such as “variable v is clean at program point x, but is tainted at program
point y”. An e-SSA variable can only be clean or tainted, but not both.

3.3. Tainted Analysis as Graph Reachability

Given a function F , we represent it as a graph G, in which each node nv ∈ G represents
a variable v ∈ F . There is an edge linking nu to nv if and only if information flows from
variable u to v, that is, if F contains an operation that uses u and defines v. The e-SSA
form program from Figure 1 gives origin to the constraint graph in Figure 2.

The tainted flow problem in a function F is equivalent to the problem of finding
a path, in the constraint graph G built after F , linking a source to a sink that does not
contain any sanitizer. The graph in Figure 2 does not contain such a path; thus, we report
that the underlying program has no security vulnerability. The traversal of the constraint
graph gives us further knowledge about the program. For instance, we know that $i4 is
clean, because every path from a source to this variable will go across a sanitizer.

We build the constraint graph directly from the intermediate program representa-



Instruction Example Nodes

Source assignment $v = $_POST[’content’]
$v$_POST['content'];

Sink assignment echo($v)
$v echo

Aliasing set-up $v1 = & $v2

$v1

$v2
$n

Add an edge from $n to
$v1, where $n is any
node that points to $v2.

Simple assignment $a = $t1 * $t2

$t1

$t2
$a

Filter $a = htmlentities($t1)
$a

htmlentities

$t1

φ-function $v = phi($v1, $v2)

$v1

$v2
$v

Validation if(is_numeric($i))

$i $i2

$i1 is_numeric

Table 1. Mapping program instructions to nodes in the constraint graph.

tion. Each particular type of instruction produces a specific configuration of nodes in the
constraint graph, as Table 1 shows. Once we have the constraint graph, the algorithm in
Figure 3 produces a list with the vulnerable paths that the program contains. The traversal
of the constraint graph is related to the notion of program slicing [Weiser 1981]. Any
node u that reaches a node v is part of the program slice that defines the behavior of v.

3.4. Handling Aliasing via Duplication of Variables

Aliasing is a phenomenon typical of imperative languages, in which two names denote
the same memory location. Aliasing may complicate static analyses because it requires
the analyzer to understand that updates in the state of a variable may also apply to other
variables. To see the implications of aliasing on tainted flow analysis, let’s consider the
PHP program in Figure 4 (Left). Assuming, as in Figure 1, that $_GET is a source and
echo is a sink, then the program is logically bug free. That is, the name $i, which is used
in a sink, has been sanitized as name $j, because both names, $i and $j represent the
same variable. The ordinary e-SSA representation will not catch this subtlety, as Figure 4
shows. There is a clear path from $i0 to the sink that does not go across any sanitizer.

In order to deal with aliasing we use an augmented flavor of the e-SSA representa-
tion, that we derive from a representation called Hashed Static Single Assignment (HSSA)
form [Chow et al. 1996]. This last program representation is used internally by phc, our
baseline compiler. For each assignment v = E in a SSA-form program, the equivalent



warnings=[]; wlist=[ [n] | n <- Sources]; // n is a source node
while wlist != []

seq = head(wlist); n = head(seq); wlist = tail(wlist);
foreach s in succ(n)

if (isSanitizer(s)/*clean*/ | isVisited(s)/*checked*/)
continue;

else if (isSource(s)) wlist = (s::seq)::wlist
else if (isSink(s)) warnings = reverse(s::seq)::warnings
else wlist = (s::n::seq)::wlist

report warnings

Figure 3. Depth-first graph traversal using functional lists.

1. $i = $_GET['var']

2. $j =& $i

3. if (!clean($j)) {

4.   $j = filter($i);

5. }

6. echo($i);

$i0 = $_GET['var']
$j0 =& $i0

!clean($j0)?
($j1, $j2) =σ $j0

$j3 = filter($i0)

$j4 =ϕ ($j1, $j3)
echo($i0)

F

T

$i0
$j2

$_GET['var'] !is_clean

filter $j3 $j4

$j0

$j1

echo

Figure 4. An example of how aliasing complicates the tainted flow analysis. In
the right side we show the constraint graph built for the e-SSA form program.

HSSA-form program contains an assignment (v, a1, . . . , an) = E, where a1, . . . an are the
aliases of v at the assignment location. Following this strategy, our representation con-
tains extra assignments for each σ-function that would exist in an ordinary e-SSA form
program. Every time we build a new σ-function for variable v, at program point p, we
create a σ-function for each variable that is an alias of v and is alive at p.

The literature contains a plethora of methods to conservatively estimate the set of
aliases of a variable. In our implementation we use the context sensitive, interprocedural
alias analysis [Pioli et al. 1999] that we obtain from phc. However, it is important to
emphasize that our solution to the tainted flow problem is orthogonal to the alias analysis
algorithm. We could have used any other points-to solver, be it inter or intra-procedural,
context sensitive or not, flow sensitive or not. We could even have not used any alias
analysis at all, in this case trading precision for efficiency.

Moving on with our example, Figure 5 shows the program and the constraint graph
after augmenting the original e-SSA form program with the results of alias analysis. In
the new constraint graph there is no path from a source to a sink that does not go across a
sanitizer. Thus, we can prove that the program is bug-free.

3.5. A Data-Flow Algorithm to solve the Tainted Flow Problem

This section describes an optimized version of our algorithm that does not build the con-
straint graph explicitly. The algorithm operates in two steps: (i) constraint collection, and



$i0 = $_GET['var']
$j0 =& $i0

!clean($j0)?
($j1, $j2) =σ $j0
($i1, $i2) =σ $j0

$j3 = filter($i2)

$j4 =ϕ ($j1, $j3)
$i3 = $j4

echo($i3)

F

T $i0 $j2

$i1$_GET['var'] !is_clean

filter

$j3 $j4

$j0

$i2 $j1

$i3

echo

Figure 5. (Left) input program in e-SSA form augmented with the results of alias
analyses. (Right) final constraint graph.

(ii) constraint solving. In the first step, a procedure visits every instruction of the program
in order to build a partial abstract state. In the second step, a procedure completes the ab-
stract state with contextual information. Figures 6 and 7 show respectively the constraint
collection and solving algorithms.

State Representation. We use the datatype Abs to characterize the abstract values of
our language. The value C corresponds to clean state, T to tainted state, the value ?

corresponds to unknown which can arise from undefined variables or function calls (which
we do not currently handle), and value F refers to a future value that we will discuss
shortly. We let the function Env to encode states, associating abstract values to variables.

Aliasing. The augmented e-SSA form discussed in Section 3.4 makes explicit the effect
of aliasing. As result, it is unnecessary to model pointers at this stage. Conceptually, we
use copy of value to model copy of reference: the program representation we use assures
simultaneous update of all variables in the same points-to set. For example, consider the
program fragment a =& b; a = 5;. Instead of encoding the final abstract state with
separate environment and store, say with environment {a 7→ 1, b 7→ 1} and store {1 7→
C} as typical in dynamic semantics definitions [Pierce 2004], we collapse environment
and store. In this case, we encode state as {a 7→ C, b 7→ C} because the augmented
e-SSA representation ensures that the updates on a and b are consistent.

Lazyness. Unfortunately, it is not possible to find all potential vulnerabilities in a single
pass on the program. The reason is that, in order to define the state of a variable v, we
need the state of the variables used in the instruction v = E(u1, . . . , un) that defines v.
This requirement forces us to visit the instructions that define each ui before reaching the
instruction that defines v. If we use the dominance tree [Lengauer and Tarjan 1979] of the
target program to guide the order in which we visit the instructions, we ensure this prop-
erty for every type of instruction, except φ-functions [Budimlic et al. 2002]. Consider
the PHP program $x=10; while(...){$x=$x+2;...} and its SSA variant x1=10;
while(...) {x3=phi(x1,x2); x2=x3+2;...}. There is no systematic way to visit
the program instructions which ensures that we will visit the definition of x1 and x2

before reaching the φ-function [Budimlic et al. 2002]. To deal with such “future” value
dependencies (possibly recursive), we create the special value Future. The value of vari-



able x3, for example, is a Future that depends on x1 and x2’s value. The Constraint
Solving procedure finds the fixpoint of futures.

The Constraint Collection procedure. The constraint collection algorithm visits pro-
gram instructions according to the topological ordering of the dominance tree of the
source program. Node n1 dominates node n2 iff any path from the program root to n2

goes across n1. If the source program does not contain uses of undefined variables, then a
traversal of its dominance tree in topological order guarantees that every use of a variable
v will be seen only after the definition of v [Budimlic et al. 2002]. We traverse the tree,
building a partial state according to the type of each node that we visit. The states might
contain future values, which will be evaluated in the next phase of our algorithm. How-
ever, execution can issue warnings for simple vulnerabilities at this stage. We describe
below the construction of states for each type of instruction that we find in Nano-PHP.
Figure 6 uses abbreviations for each command; Nano-PHP syntax appears to the right.

An assignment from source, i.e, v = s, s ∈ SO (source), results in binding v to
T. An assignment from a filter v = f(u) results in binding v to C. An assignment from
another variable results in binding to the abstract value of that variable. Four possibilities
exist for assignment to sink, i.e, s = v, s ∈ SI (sink). The algorithm ignores the assign-
ment if v is bound to C, it signals a warning of tainting if v is bound to T, a warning of
unknown variable if v is bound to ?, or it creates a delayed check, if v is bound to a future
value. The delayed check is a pair that associates a program instruction with the variable
it uses. An alias setup v1 = &v2 proceeds as in a concrete semantics. Recall that the e-
SSA representation enables the analysis to encode copy of reference with copy of value.
The static semantics of a φ-function is as follows. If any variable reaching the function
is tainted the value of the new definition is tainted, if all reaching variables are clean then
the new definition is clean, otherwise the new definition stores a future. Finally, a vali-
dation instruction takes as argument the variable in, and two other variables out 1 and
out 2, one for each branch. These variables are declared in σ-functions and correspond
to versions of in associated with each branch. Variable out 1 defined in the safe branch
is clean. Variable out 2 defined in the other branch stores a copy of in’s values.

The Constraint Solving procedure. Figure 7 describes the constraint solving procedure
for reporting errors due to the access of sink functions to variables storing tainted futures.
For that, the procedure looks for variables marked as tainted in a variable dependency
chain rooted in variables of delayed checks. For example, the dependency chain v1 →
v2 → · · · → vn indicates a vulnerability iff v1 appears in a delayed check, vn is tainted,
and there is a path connecting them as defined by the dependency relation from the futures.
Very important to note is that only necessary variables are checked.

Complexity. The algorithm from Figure 6 is linear. The time to build the dominance
tree of a Nano-PHP program is linear on the number of basic blocks, because each block
has at most two successors [Lengauer and Tarjan 1979]. The algorithm from Figure 7 is
linear for finding a single warning as all variables visited prior to reaching a tainted or
undefined variable must be clean. In the worst case, the algorithm is quadratic on the
number of variables if the graph induced by the dependency relation is dense.



datatype Abs = C | T | ? | F
// state is a map from variables to abstract values
// all variables initially map to ?
Env: Var -> Abs

// output to next stage. future checks
DCheck: [Instr x Var]
Futures: Var -> [Var]

// all variables store initially ? in independent locations
foreach instr in topologicalSort(cfg(P))

switch instr
case SOURCE(v): Env := Env \ {(v,T)} /* v := s, s in SOURCE */
case FILTER(v): Env := Env \ {(v,C)} /* v := f(u), f in FILTER */
case ASSIGN(v,u): Env := Env \ {(v,Env(u))} /* v := u */
case SINK(v): /* s := v, s in SINK */
switch (Env(v))

case C: skip /* source receives clean value */
case T: warn-taint(instr) /* bug */
case ?: warn-undef(instr) /* possible bug */
case F: DCheck = (instr, v) : DCheck /* delayed check */

case ALIAS(v1,v2): Env := Env \ {(v1,Env(v2))} /* v1 = &v2 */
case PHI(out, in_1, ..., in_k): /* out = phi (in_1, ..., in_k) */
tmp = {Env(in_i) | 0<i<=k}
val = if (T in tmp) then T else if (tmp = {C}) then C else F
Env := Env \ {(out, val)}
if (val == F) then Futures = Futures \ {(out,[in_1,...,in_k])}

case GUARD(out_1, out_2, in): /* if (in) { */
Sto := Sto \ {(Env(out_1), C) /* out_1 = sigma(in)...} else { */
Sto := Sto \ {(Env(out_2), Env(in))} /* out_2 = sigma(in)...} */

Figure 6. Collect constraints.

foreach (instr,var) in DCheck
isTainted := false; isUndef := false; wlist := [var]; visited := [];
inner:
foreach var in wlist

visited := visited + [var];
switch (Env(var))
case C: continue;
case T: isTainted := true; break inner;
case ?: isUndef := true;
case F: wlist := wlist + (Futures(var) - visited);

if (isTainted)
warn-taint(instr);
Env := Env \ {(var,T)}

else if (isUndef)
warn-undef(instr);
Env := Env \ {(var,?)}

else /* var is clean. reachable state must be clean */
foreach v in visited

Env := Env \ {(v,C)}

Figure 7. Solve constraints.



4. Experiments

Experimental set up. We have implemented our analysis on top of the phc open source
compiler [Biggar et al. 2009], written in C++. We have run our analysis on 42 publicly
available PHP applications. We chose benchmarks that have been previously used in
the literature [Jovanovic et al. 2006b, Jovanovic et al. 2006b, Xie and Aiken 2006], and
that phc can compile. For these experiments, we have configured our tool to use sets of
sinks, sources and sanitizers that identify cross-site scripting attacks, which Section 2.1
describes. Notice that, by properly setting these three parameters, our analysis can be
easily modified to handle any other kind of vulnerabilities.

Implementation scalability. Out of the 29672 PHP files considered in our evaluation,
our tool was able to process 13516. Our tainted flow analysis is not the reason behind
this low scalability. The omissions are due to the context sensitive alias analysis used
by phc, which consumes too much time and memory, and is unable to handle large PHP
files. Because of this limitation, we have set a 3-minutes time limit for phc to finish alias
analysis. Nevertheless, the compiler was still able to process a significant fraction of the
files and to report non-trivial and previously unknown bugs.

Precision (true and false positives). For this experiment our analysis reported 130 warn-
ing messages across 39 distinct PHP files. Manual inspection on each of these warnings
revealed actual vulnerabilities in 41 of these reports, i.e., a ~2/3 false positive ratio. We
used this list of bugs to perform malicious injections of html code containing JavaScript in
13 distinct PHP files. We have submitted five of the seven bug reports present in Table 2
to bugtraq 7. The Sapid and phpWebSite were using an outdated third party library. New
versions of this library have fixed these issues.

Table 2 details these numbers for the subjects that contain confirmed vulnerabil-
ities. Column “subject” and “version” give the application name. Column “total” (files)
shows the total number of files in the programs, column “processed” shows the total num-
ber of these files that phc was able to process, and column “affected” shows the number of
files involved in warning reports – for the purpose of inspection it is preferable to have the
warnings confined in a small set of files. Average LOCs (commented lines of code) per
PHP file are given by columns “total” and “processed”. Column “TP: true positive”, (re-
spectively, “FP: false-positive”) shows the number of confirmed (respectively, spurious)
vulnerabilities. False positives arise due to several reasons including: the imprecision of
phc’s alias-analysis, our inability to process arrays, and the logical infeasibility of some
program paths, which static analysis typically fail to identify. Several of our applications
use third party software. In particular, four benchmarks out of the seven in Table 2 em-
ployed the same spell checking module – a library responsible for six false-positives in
each of the four programs. Moreover, 28 out of the 30 bugs reported for Exponent
CMS were produced by the output of the same tainted variable in different points of one
PHP file. These are all different, yet similar bugs.

Efficiency (time × program size). Figure 8 relates PHP file size with the time to
statically analyze it with our tool. Each of the 13,516 data points identifies a run of
our tool. We characterize a run with the pair size and time, using a 180-seconds time
limit. Note that the analysis of the vast majority of the files, 90.76%, terminates under

7http://www.securityfocus.com/



subject version
files warnings

total processed affected TP FP# LOC / # # LOC / #
MODx 1.0.3 472 231 308 228 3 1 2

Exponent CMS 0.97 3456 42 2833 32 3 30 6
DCP Portal 7.0beta 535 97 392 61 7 5 6

Pligg 1.0.4 380 146 179 154 3 1 13
Sapid r99 359 181 180 202 4 2 7

RunCMS 2.1 737 134 361 86 2 1 6
phpWebSite 1.6.3 1369 213 554 196 2 1 6

avg. - - - - - 3.42 5.86 6.57

Table 2. Experimental results of subjects with true alarms.

Figure 8. Running time versus program size.

10 seconds. These numbers are on par with numbers from industrial strength analyz-
ers [Jovanovic et al. 2006b], and are orders of magnitude faster than numbers from more
precise tools [Wassermann and Su 2007].

5. Related Work

We chose to attack the tainted flow problem via a variation of data flow analysis. Data
flow analyses are old allies of compiler designers, having been part of compilation
systems since the early seventies [Kam and Ullman 1976]. The first influential work
to see data flow analysis as a graph reachability problem was introduced by Reps et
al. [Reps et al. 1995]. The mapping adopted by Reps et al. deals with general programs,
whereas we use programs in e-SSA form. A disadvantage of the previous approach was
the size of the graph that it produces: the number of nodes in the graph is O(V × B),
where V is the number of variables and B is the number of basic blocks in the source
program. We avoid this growth, because the e-SSA form tends to increase linearly the
number of variables in the source program, and our graph contains O(V ) nodes.

Scholz et al. [Scholz et al. 2008] have also mapped a flow problem, the user-input
dependence analysis [Snelting et al. 2006] to an instance of graph-reachability. Scholz’s
analysis is probably the work that most closely ressembles ours. Scholz et al. are inter-
ested in finding which program variables might be influenced by input data. Contrary to



our approach, Scholz et al. use a program representation called Augmented Static Single
Assignment (a-SSA) form. The a-SSA form provides information not present in e-SSA
form, because it determines which control structures influence program data. That is, in
the program a := read(); c := (a > 0) ? b[0] : 0; the value of a in-
fluences the value of c, even though these two variables are not related in e-SSA form.
However the user-input dependence analysis does not take sanitizers into consideration.
Thus, Scholz et al.’s a-SSA cannot use information learnt from the outcome of condition-
als to bind constraints to variables.

The tainted flow problem is well known in the literature [Jovanovic et al. 2006a,
Pistoia et al. 2005, Wassermann and Su 2007, Xie and Aiken 2006]. Wasserman and
Su [Wassermann and Su 2007] have used grammars to prove that functions manipulate
strings safely. This is an approach very different from ours, as it resorts to a string analy-
sis instead of a data flow analysis. Hence, it is more precise than our approach; yet, much
more expensive. Another expensive method, based on symbolic execution, has been de-
scribed by Xie and Aiken [Xie and Aiken 2006]. The authors, in this case, also assign
new symbols to the possible results of conditionals, in a way similar to what e-SSA rep-
resentation does. However, a direct comparision between their strategy and ours is not
possible, because their tool is not publicaly available, and the original paper does not pro-
vide enough details to reproduce it. There exist; however, publicaly available tools that
perform tainted variable analysis. One of them is MARCO [Pistoia et al. 2005], a Java
bytecode analyser. Another is Pixy [Jovanovic et al. 2006a], a PHP analyser. MARCO
relies on program slicing [Weiser 1981] to find the set of tainted variables, whereas Pixy
uses a monotone framework that associates to each variable, at each program point, a
boolean state that defines if the variable is tainted or clean. Neither tool takes the results
of conditional tests into consideration; hence, both are path insensitive – a problem that
our intermediate representation permits us to circumvent.

6. Conclusion
This paper has presented a new static analysis technique to identify security vulnerabilities
related to tainted variable attacks. Our analysis is efficient, because it is equivalent to
a graph reachability problem, which we have been able to code as a non-iterative data
flow algorithm. We have implemented our analysis on top of phc, an open source PHP
compiler, and have used it to find actual bugs in well known web applications. Although
we have tested our algorithm in this particular setting, it is general enough to handle
tainted variable attacks in different programming languages and in different application
domains. As future work, we would like to improve the scalability of phc’s alias analysis
to handle larger PHP files. The best way to accomplish this is using more efficient context-
sensitive techniques, such as PCC’s [Bond et al. 2010], for instance.
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