Tainted Flow Analysis on e-SSA-form Programs

Andrei Rimsa', Marcelo d’Amorim?, Fernando Magno Quintdo Pereira'
L UFMG - 6627 Anténio Carlos Av, 31.270-010, Belo Horizonte, Brazil
2 UFPE - Av. Prof. Luis Freire, 50.740-540, Recife, Brazil
rimsa@live.com, damorim@cin.ufpe.br, fpereira@dcc.ufmg.br

Abstract. Tainted flow attacks originate from program inputs mali-
ciously crafted to exploit software vulnerabilities. These attacks are com-
mon in server-side scripting languages, such as PHP. In 1997, Orbaek and
Palsberg formalized the problem of detecting these exploits as an instance
of type-checking, and gave an O(V?) algorithm to solve it, where V is the
number of program variables. A similar algorithm was, ten years later,
implemented on the Pixy tool. In this paper we give an O(V?) solution to
the same problem. Our solution uses Bodik et al.’s extended Static Sin-
gle Assignment (e-SSA) program representation. The e-SSA form can be
efficiently computed and it enables us to solve the problem via a sparse
data-flow analysis. Using the same infrastructure, we compared a state-
of-the-art data-flow solution with our technique. Both approaches have
detected 36 vulnerabilities in well known PHP programs. Our results
show that our approach tends to outperform the data-flow algorithm for
bigger inputs. We have reported the bugs that we found, and an imple-
mentation of our algorithm is now publicly available.

1 Introduction

Web applications are pervasive in the Internet. They are broadly used and often
manipulate sensitive information. It comes to no surprise that web applications
are common targets of cyber attacks [24]. A cyber attack typically initiates with
a remote attacker carefully forging inputs to corrupt a running system. A study
performed by CVE? with statistics for the year 2006 shows that cross-site script-
ing accounts for 18.5% of the web vulnerabilities, while PHP includes and SQL
injection account, respectively, for 13.1% and 13.6%. All three vulnerabilities are
commonly found in web applications. To put the significance of these threats in
perspective, the annual SANS’s report* estimates that a particular type of at-
tack — malicious SQL injection — has happened approximately 19 million times
in July of 2009. Therefore, the static detection of potential vulnerabilities in web
applications is an important problem.

Many web vulnerabilities are described as Tainted Flow Attacks. Examples
include: SQL injection, cross-site scripting, malicious file inclusion, unwanted
command executions, eval injections, and file system attacks [24,29, 31]. This

3 http://cve.mitre.org/docs/vuln-trends/index.html
4 http://www.sans.org/top-cyber-security-risks/origin.php

pattern consists of a remote individual exploring potential leaks in the system via
its public interface. In this context, the interface is the web and the vulnerability
is the lack of “sanity” checks on user-provided data before using it on sensitive
operations. To detect this kind of attack one needs to answer the following
question: does the target program contain a path on which data flows from some
input to a sensitive place without going through a sanitizer function? A sanitizer
is a function that either “cleans” malicious data or warns about the potential
threat. We call the previous question the Tainted Flow Problem.

The tainted flow problem was formalized by @Orback and Palsberg in 1997 as
an instance of type-checking [16]. They wrote a type system to the A-calculus,
and proved that if a program type-checks, then it is free of tainted flow vul-
nerabilities. Ten years later, Jovanovic et al. provided an implementation of an
algorithm that solves the tainted flow problem for PHP 4.0 on the Pixy tool.
This algorithm was a data-flow version of @rbak and Palsberg’s type system. It
has an average O(V?) running-time complexity, yet the Pixy’s implementation
suffers from worst case O(V*) complexity. @rbaek and Palsberg’s solution, when
seen as a data-flow problem, admits a worst case O(V?3) solution [16, p.30].

This paper improves on the complexity of these previous results. The algo-
rithm that we propose is, in the worst case, quadratic on the number of variables
in the source program, both in terms of time and space. The low asymptotic com-
plexity is justified by the use of a program representation called Extended Static
Single Assignment (e-SSA) form, introduced by Bodik et al. [5], which can be
computed in linear time on the program size. This intermediate representation
makes it possible to solve the tainted flow problem as a sparse analysis, which
associates constraints directly to program variables, instead of associating them
to variables at every program point. This paper brings forward the following
contributions:

— An efficient algorithm to solve the tainted flow problem. A distinguishing
feature of this algorithm is the use of the e-SSA representation to generate
constraints. See Section 4.4.

— An implementation of the algorithm on top of phc [3,4], an open source
PHP compiler ®. Our implementation of e-SSA is now part of the compiler’s
official distribution.

— An evaluation of the proposed approach on public PHP applications, in-
cluding benchmarks used in previous works [13, 14, 31], and the consequent
exposure of previously unknown vulnerabilities. See Section 5.

Our analysis can be generalized to other procedural languages. We chose PHP
for two reasons. First, it is popular for developing server-side web applications.
For example, PHP programs can be found in over 21 million Internet domains®.
Second, PHP has been the focus of previous research on static detection of

tainted flow vulnerabilities, and benchmarks are easily available.

® http://www.phpcompiler.org/
S http://php.net/usage.php

2 Examples of Tainted Flow Attacks

A tainted flow attack is characterized by a subpath from a source to a sink func-
tion that does not include calls to sanitizing functions. A source function reads
information from an input channel (e.g., from an HTML form) and passes it to
the program. Sinks are functions that peform sensitive operations, such as writ-
ing information into the program’s output channel (e.g., to a dynamically gener-
ated webpage). Sanitizers are functions that protect the program. For instance,
proving that untrusted information is safe, removing malicious contents from
tainted data, or firing exceptions when necessary. The literature describes many
kinds of tainted flow attacks. Some noticeable examples are cross-site scripting
(XSS) [9,24], SQL injection [29,31], malicious evaluations 7, local/remote file
inclusions &, and unwanted command execution °. In this section, we explain
two of these vulnerabilities in more detail; however, in the rest of the paper we
chose to focus on cross site scripting attacks only. Important to note that our
framework is capable of handling other types of attacks. In particular, we have
showed elsewhere [21] that it can be used to search for SQL injections.

2.1 Cross-Site Scripting

A cross-site scripting attack can occur when a user is able to dump HTML
text into a dynamically-generated page. An attacker uses this vulnerability to
inject JavaScript code into the page, usually trying to steal cookie information
to acquire session privileges. The program below illustrates this situation. In this
case, the user provides the input “<script>does.something.evil;</script>”
to the variable name from the code fragment below.

<?7php $name = $_GET[’name’]; echo $name; 7>

Note that a potentially malicious JavaScript could be used instead of
does.something.evil. A workaround for this threat is to strip HTML-related
data from the user input. In this case, from the JavaScript passed as input. The
function htmlentities, shown below, does the trick by encoding special char-
acters into their respective HTML entities. For example, this function translates
the symbol “<” to “<”.

<?php $name = htmlentities($_GET[’name’]); echo $name; 7>

Cross-site scripting attacks fit into the tainted flow problem framework. A pos-
sible input configuration, in this case, would be:

Sources : $_GET, $_POST, ...
Sinks : echo, print, printf
Sanitizers : htmlentities, htmlspecialchars, strip_tags

" http://cwe.mitre.org/data/definitions/95.html
8 http://projects.webappsec.org/Remote-File-Inclusion
9 http://secunia.com/advisories/26201/

2.2 SQL Injection Attacks

The SQL injection attack is another common type of security flaw. In this attack
an adversary uses the parameters of SQL queries to manipulate a database. The
effect can go from reporting incorrect results to the user to modifying database
contents. The program below contains a vulnerability of this kind.
<7php
$userid = $_GET[’userid’];
$passwd = $_GET[’passwd’];

$result = mysql_query("SELECT userid FROM users WHERE
userid=$userid AND passwd=’$passwd’");
>

Note that this program does not sanitize its inputs. A malicious user could obtain
access to the application by providing the text “1 OR 1 = 1 --" in the userid
field. The double hyphen starts a comment in MySQL. The following query is
obtained with the input variables replaced: SELECT userid FROM users WHERE
userid=1 OR 1 = 1 -- AND passwd=’ANY PASSWORD’. The execution of this
query outputs one row and therefore bypass the authentication procedure.

A workaround for this threat is to sanitize the variable userid to ensure
that it only contains numerical characters; a task that we perform either cast-
ing it to integer or checking its value with functions like is_numeric. One can
sanitize variable $passwd using the addslashes function, which inserts slashes
(escape characters) before a predefined set of characters, including single quotes.
A typical configuration of SQL injection is given below:

Sources : $_GET, $_PO0OST, ...
Sinks : mysql_query, pg_query, *_query
Sanitizers : addslashes, mysql_real_escape_string, *_escape_string

3 Formal Definition and Previous Solution

Nano-PHP. We use the assembly-like Nano-PHP language to define the tainted
flow problem. A label [€ L refers to a program location and is associated to one
instruction. A Nano-PHP program is a sequence of labels, l1ls . ..l¢p. Figure 1
shows the six instructions of the language. We use the symbol ® to denote any
operation that uses a sequence of variables to define another variable.

Name Instruction Example

Assignment from source r=o0 $a = $_POST[’content’]

Assignment to sink e=y echo ($v)

Simple assignment x=Q(x1,...,Tn) $a = $t1 * $t2

Branch brali,...,ln general control flow

Filter x1 = filter $a = htmlentities($t1)

Validator validate x,l, 1+ if (!'is_numeric($1))
abort();

Fig.1: The Nano-PHP syntax.

[S-SOURCE] (X,F,x =0;5) = (X\[z — tainted], F, S)

Y F v =clean
[S-SINK] (X, F,e=1v;5) = (X,F,S)

YEU(x1, .y Tn) =0
[S-SIMPLE] (X, F,x =Q(z1,...,z0);S) = (X\[z — v], F,S)

{l;} C dom(F) F(;)) =5 1<i<n
[S-BRANCH] (X, Fvraly,...ln;8) = (2, F,S)
[S-FILTER] (X, F,xz = filter; S) — (X\[z — clean], F, S)
Y+ z = clean {lc} C dom(F) F(.) =5
[S-VALIDC] (X, F,validate(x,l.,1¢);S) = (X, F,)
X+ z = tainted {l:} C dom(F) Fl,) =5
[S-VALIDT] (X, F,validate(x,l.,1¢);S) = (X, F,)

Fig. 2: Operational semantics of Nano-PHP.

Semantics. We define the semantics of Nano-PHP programs with an abstract
machine. The state M of this machine is characterized with a tuple (X, F, I),
informally defined as follows:

Store X' : Var — Abs e.g., {x1 — clean, ..., x, — tainted}
Code Heap F: L — [Ins] eg, {li—=i1. . igy -ouy ln—ip}
Instruction Sequence I : [Ins] e.g., i5ig...in

The symbol Var denotes the domain of program variables. The symbol Abs
denotes the domain of abstract states {L,clean, tainted}. The store X binds
each variable name, say * € Var, to an abstract value v € Abs. The code
heap F' is a map from a program label to a sequence of instructions. Each
sequence corresponds to one basic block from the Nano-PHP program. Only
labels associated to entry basic block instructions appear in F'. The list I denotes
the next instructions for execution. We say that the abstract machine can take
a step if from a state M it can make a transition to state M’. More formally, we
write M — M'. We say that the machine is stuck at M if it cannot make any
transition from M.

Figure 2 illustrates the transition rules describing the semantics of Nano-
PHP programs. Rule S-SOURCE states that an assignment from source binds
the left-hand side variable to the tainted abstract state. Rule S-SINK is the only
one that can cause the machine to get stuck: the variable on the right hand side

(i 1 clean |tainted
1 1 clean | tainted
clean | clean | clean | tainted
tainted |tainted |tainted| tainted

Table 1: Definition of least upper bound over pairs of abstract values.

must be bound to clean in order to execute a safe assignment to sink. Rule S-
SIMPLE says that, given an assignment © = ®(z1, z2, .. ., T,), the abstract state
of z is defined by folding the join operation (as described on Table 1) onto the
list of variables in the right hand side, e.g.: 1 U xs... U x,. Rule S-BRANCH
defines a non-deterministic branch choice: the machine chooses one target in a
range of possible labels and branches execution to the instruction at this label.

Nano-PHP organizes the sanitizer function in two groups: filters and val-
idators. Filters correspond to functions that take a value, typically of string
type, and return another value without malicious fragments from the input. For
simplicity we do not show the input parameter in the syntax of Nano-PHP.
Rule S-FILTER shows that an assignment from a filter binds the variable on
the left side to the clean state. We can use this syntax to define assignments
from constants (e.g., v = 1). Validators are instructions that combine branch-
ing with a boolean function that checks the state for tainting. The instruction
validate(x,l.,[;) has two possible outcomes. If x is bound to the clean state,
the machine branches execution to F'(l.). If is bound to the tainted state,
execution branches to F'(I;). Again, we omit the boolean function itself from
the syntax for simplicity. Rules S-VALIDC and S-VALIDT define these cases. We
assume that in any Nano-PHP program every variable must be defined before
being used; therefore, we rule out the possibility of passing x to a validator when
YhEx=1.

Important consideration. Before we move on to describe the traditional data flow
solution to the tainted flow problem, a note about functions is in order. In this
paper we describe an intraprocedural analysis. Thus, we conservatively consider
that input parameters and the return values of called functions are all definitions
from source. A context insensitive, interprocedural version of the algorithms
in this paper can be produced by creating assignments from actual to formal
parameters. We opted for not doing it due to an engineering shortcoming: our
limited knowledge of phc has hindered us thus far from crossing the boundaries
of functions.

The problem. We define the tainted flow problem as follows.

Definition 1. THE TAINTED FLOW PROBLEM
Instance: a Nano-PHP program P.
Problem: determine if the machine can get stuck executing P.

| ! \ [|

T =0 [I,1+] = JOIN(1) \ [z > tainted]
o=z [l,l4] = JOIN(I)
x=Q@1,...,za)|[l,l4] = JOIN(I) \ [z — JOIN (l)(z1) U ... U JOIN (I)(xn)]
bra b1, ...l L] =JOIN(0),1<i<n
x = filter [[,1+] = JOIN(I) \ [z — clean]
validate z,lc, [+ [t,lc] = JOIN(I) \ [z — clean]
[l,l.] = JOIN(I)

Table 2: Data-Flow equations to solve the Tainted Flow Problem.

Data Flow Analysis. Given a Nano-PHP program, we can solve the tainted flow
problem using a forward-must data flow analysis. Our analysis binds information
to program points, which are the regions between pairs of consecutive Nano-PHP
labels. We define a lattice (Abs, <) by augmenting the set Abs with the following
ordering 1 < clean < tainted. Table 1 shows the least upper bound for subsets
of Abs including pairs of elements from Abs. The map lattice (Var — Abs, <’)
is obtained with the typical lifting of the lattice associated to Abs. Recall that
the set Var is finite. We represent data-flow information with the function [_] :
L — L — Var — Abs. This function associates to each program point (I,1’) a
map storing the abstract values of each program variable. We use the notation
[11,12] to denote information at (I1,l3). It abbreviates the function application
([-]11)l2. Note that [] is also a lattice.

Table 2 defines the transfer functions (Var — Abs) — (Var — Abs) associ-
ated to each instruction. The initial state of the analysis associates undefined to
all program variables at every point, i.e., [] = Al; . My . Av . L. Welet PRED(I)
be the set of program points immediately before label [, and define the auxiliary
function JOIN as follows:

JOIN(I) =| |[t:,1] s € PRED(l)

Given two functions [k',k] and [I',I], we define || {[¥,k],[V,{]} as
Mo L ([K E]o)U([, I]v), with U given by Table 1. The combined transfer function
tr: [] — [-] is defined as usual with the composition of all individual transfer
functions. Function #r admits fix-points as the lattice is finite and all individual
transfer functions are monotone.

The join operation denotes accumulation of information across control flow
edges. In this case, information flows from the predecessor edges of a node. Note
that we define operation JOIN over a map lattice. Informally, the semantics of
this operation is to apply U over elements on the image of the functions according
to the definition on Table 1. For example {x — clean,y — clean} U {x —
tainted,y — L} = {x > clean U tainted,y — clean Ul L}.

l:x=filter <~—— pyv=o
X0 Viainea

Xcteand] Viainiea !
<?php
$v = DB.get($ GET['child']); l,:validate (v, I,) [:v =@ (v)
sx = nn,
if (DB.isMember ($v)) {

while (DB.hasParent ($v)) {
echo ($x) ;
$x = $ POST['$v'];
Sv DB.getParent ($v) ;
}
echo ($v) ;
}

>

X intea] Vetean

{x, v,

taintedy ¥clean

v,

I
PXiainiees Vetean)

Lie=v lre=x I;x=0

Fig.3: A simple PHP program (left), and its equivalent Nano-PHP version
(right), augmented with the result of data-flow analysis.

Llustrative Example. Figure 3 illustrates the result of a data-flow analysis. We
let DB to denote a global database, and we assume that DB.get might produce
tainted data. The function DB. isMember works as a validator. We have replaced
a call to DB.hasParent by the simple branch at lg, as this operation does not
create new data. Similarly, we have replaced the call to DB.getParent by v =
®(v). We use lg, a label jumping to itself, to mark the end of the program. We
show the maps produced by the data-flow analysis on the edges of the Nano-
PHP program. In this program the data-flow analysis obtains a fix-point in two
iterations. The example contains a tainted flow vulnerability, given by the path
ly — l5 — lg — l3. At I we read variable x, e.g., $x = $_POST[’$v’], and at I3
we feed it to a sink function, e.g., echo($x). Note that variable v cannot be used
in a tainted flow attack, because it is sanitized by the function DB.isMember.

Complezity. We can solve this data-flow analysis using the chaotic iteration
model. If the CFG of the input program has I instructions and V variables
then we can perform O(I x V) iterations. Each union is O(V), and we may
have O(I) unions per iteration. Thus, our data-flow analysis has complexity
O(V?% x I?). However, it is possible to speedup the algorithm executing the
transfer functions in a topological order of the program’s dominator tree [2]. In
particular, Palsberg [17] gives an O(V3) type-inference algorithm that solves the
tainted flow problem. In practice, this data-flow analysis is O(V x I) [2, p.209).

4 The Proposed Solution

In this section we describe our solution to the tainted flow problem. Our approach
is divided into the three parts below. We give time complexity in terms of the
number of variables (V') in the source program.

1. Convert the input program to the Extended Static Single Assignment (e-
SSA) form. The construction of the dominator tree is O(Va(V)), where o
is the inverse Auckerman function, normally regarded as constant, and the
insertion of ¢-functions is O(V?2), yet linear in practice [2, p.408].

2. Traverse the e-SSA-form program collecting use-chains: O(V).

3. Use the algorithm in Figure 8 to find tainted flow vulnerabilities: O(V'2), but
O(V) in practice.

4.1 E-SSA form is the Linchpin of Fast Tainted Flow Analysis

We use the Extended Static Single Assignment (e-SSA) representation to simplify
our tainted flow analysis. The e-SSA program representation is a superset of the
well known Static Single Assignment (SSA) form [10]. This representation has
been used by Bodik et al. [5] to eliminate array bound checks. Its main advantage,
in our case, is the possibility of acquiring useful information from the outcome of
conditional tests, and then binding this information directly to variables, instead
of pairs of variables and program points. We convert a Nano-PHP program to
e-SSA form using the algorithm below:

1. For each instruction i = validate xz,l.,[;:

(a) replace ¢ by a new instruction validate x,x,l., x¢,l;, where x. and x;
are fresh variables;

(b) rename every use of x dominated by [, to z.. A label I dominates a use
of variable x at label [, if, and only if, every path from the program’s
entry point to [, goes across [.

(¢) rename every use of z dominated by l; to zy;

2. Convert the resulting program into SSA form. For a fast algorithm, see Appel

and Palsberg [2, p.410].

In order to represent Nano-PHP program in e-SSA form, we modify the
syntax of this language in two ways. First, we add ¢-functions to the language.
These special instructions are an abstraction first introduced by Cytron et al. [10]
to represent SSA-form programs. ¢-functions are used at control-flow join points,
and they receive as parameter one variable name associated to each control-flow
predecessor. A ¢-function such as x, = (z1,...,2,), placed at label [has the
effect of assigning z;,1 < ¢ < m to z,, depending on which predecessor of [
was last visited before execution reaches [. The use of a variable in SSA-form
programs is associated to only one definition. Thus, to convert a program into
the SSA form, we rename each definition of a variable v to a different name,
and join definitions of v that reach a common program point by ¢-functions.
These new ¢-functions produce fresh definitions of v; thus, the process continues
until the program stabilizes. There exist almost linear time algorithms to convert
programs to SSA-form [15]. E-SSA-form programs are also SSA-form programs;
thus, they have the property that each variable has only one definition.

Second, we modify the syntax of the validator instruction, which become
validator (z, 2., le, 24, l;) *°. Conceptually, the validator splits the live range of

10 Bodik et al. use special instructions called m-functions to create x. and x; [5]

variable x in two parts, depending on whether or not its abstract value is tainted.
Note that when converting a program into e-SSA form, we rename every use of
z in labels dominated by [, to x., and rename every use of x in labels dominated
by l; to x;. The new instruction has the following semantics:

Y+ x = clean {lc} C dom(F) F(l.) =25
[S-EssaC] (X, F,validate(x, ¢, le, 24,1:);5) = (X [z — clean], F, S)

Yk x = tainted {l;} C dom(F) F(ly) =5
[S-EssAT] (X, F,validate(x, Z¢, lc, 24, 1:);.S) — (X [x+ — tainted], F, S")

Rule S-EssaC says that a validator, upon receiving a clean variable x, guar-
antees that the variable will be clean henceforth. Given that every use of x domi-
nated by [/, has been renamed to x. beforehand, we simply continue the program
execution in an environment where z. is bound to clean. Rule S-ESSAT does the
opposite: if a validator fails on a variable x, we know that x is tainted; hence, we
continue the program execution in an environment where x; is bound to tainted.

The e-SSA representation allows us to acquire static information from the
outcome of conditionals. Hence, we can associate unique constraints to variables,
as Figure 4 illustrates. The original program in Figure 3 contains two variables, x
and v. We know that these variables are clean in some program points, but not in
all. The e-SSA representation allows us to identify these program points precisely.
The modified program has five variables created after v: {vg, vs, vg, Vac, V2 }, plus
three variables created after x: {x1,24,29}. Let’s consider the first group of
variables. Given that vy is produced by source assignment, we know that it is
tainted. Variable vy, must be necessarily clean, as it is produced by the validation
of vg. On the other hand, vo; must be necessarily tainted, for the opposite reason.

lpx;=filter «————— [:v,=0

Ly x9 = ¢ (x}, Xx,)

L: validate (v Vi, Lo Vo 1
5 Vo, Vaor L Vi L) Vo= (Vo Vs)

<« 12 v; =® (vy)

A

I bra I I bra I [,
o=, [y o=, lyix;=o0

Fig.4: The example of Figure 3 converted into e-SSA form.


~~~~~~ b, e

Fig.5: The reachability graph built after the program in Figure 4.

Variable vs, which results from the application of an operation — assignment —
on a clean variable, is also clean. Finally, vg, which may be assigned either a
clean or a tainted value, is tainted, as this is the most conservative choice to
detect security vulnerabilities.

4.2 Tainted Analysis as Graph Reachability

Given a Nano-PHP program P, we represent it as a graph G, in which each
node n, € G denotes a variable v € P. We build the reachability graph directly
from the e-SSA-form Nano-PHP program. Each particular type of instruction
produces a specific configuration of nodes in the reachability graph, as Table 3
shows. Roughly, there is an edge linking n, to n, if information flows from
variable u to v. Notice that, were it not for filters and validators, our reacha-
bility graph would represent the def-use chains of the Nano-PHP program. The
program from Figure 4 gives origin to the reachability graph in Figure 5.

Definition 2 rephrases the tainted flow problem as an instance of graph reach-
ability. The traversal of the reachability graph is related to the notion of program
slicing [30]. Any node u that reaches a node v is part of the program slice that
defines the behavior of v.

Definition 2. THE TAINTED FLOW PROBLEM AS GRAPH REACHABILITY
Instance: a graph G that describes a Nano-PHP program P.
Problem: determine if G contains a path from a source to a sink that does
not cross any sanitizer.

4.3 Addressing Aliasing with HSSA

Aliasing is a phenomenon typical of imperative languages, in which two names
reference the same memory location. Aliasing complicates static analyses because
it requires the analyzer to understand that updates in the state of a variable may
also apply to other variables. To see the implications of aliasing on tainted flow
analysis, let’s consider the PHP program in Figure 6 (Left). Assuming that
$_GET is a source and echo is a sink, then the program is logically bug free.



Instruction Example Nodes
D S
v=o0 $v = $_POST[‘id’]
o
o= eChO($V)
$t1
Sa
o3
v=08(wv1,...,v2) $a = $t1 * $t2
<>—>$a
v = filter $a = stripslashes($tl)
Svl
>$V
$v2
v=¢(v1,...,02) $v = phi($vi, $v2)
$i—>O—>$i2
V !
sit
validate (v,ve,le, ve, lt) if (is_num($i))

Table 3: Mapping program instructions to nodes in the reachability graph.

$i = $ GET['var'] Loy &=iy <——lyiy=o0 [SiGET['var']J [Iisicleanj

$J =& $i Ly validate (jj, joo Ly jon 13)

if (!clean($3)) { ‘ Lt filter ? l
$j = filter($i); @—5i0 $j2t  $j2¢
) 12 Ji= & Uoo J3)

echo (§1) ; ls+=1y (firter Jo—$33—$34

Fig.6: An example of how aliasing complicates the tainted flow analysis. In the
right side we show the reachability graph built for the e-SSA form program.

That is, the name $i, which is used in a sink, has been sanitized as name $j,
because both names, $i and $j represent the same variable. The ordinary e-SSA
representation will not catch this subtlety, as Figure 6 shows. There is a clear
path from $i0 to the sink that does not go across any sanitizer.

In order to deal with aliasing we use an augmented flavor of the e-SSA rep-
resentation, that we derive from a representation called Hashed Static Single



L validate (i {aolah L Gowiad 1) (f $91— > ‘

ly: {js iy} = filter $i0 $j2t $j2c $i2c

L ji= & Gao J3) A i
= bl i) $j3——$34
! () o \
$i4—-@

Iy e=i, $i3

Fig. 7: (Left) input program in e-SSA form augmented with the results of alias
analyses. (Right) final reachability graph.

Assignment (HSSA) form [7]. This last program representation is used inter-
nally by phc [3, Sec 6.5], our baseline compiler. For each assignment v = E in
a SSA-form program, the equivalent HSSA-form program contains an assign-
ment (v,ai,...,a,) = E, where aq,...a, are the aliases of v at the assignment
location. Following this strategy, our augmented representation generates new
names for each variable created by a sanitizer. The literature contains a plethora
of methods to conservatively estimate the set of aliases of a variable. We use the
flow sensitive, interprocedural analysis [18] that we obtain from phc. Moving on
with our example, Figure 7 shows the program and the reachability graph after
augmenting the e-SSA form program in Figure 6 with the results of alias analy-
sis. In the new reachability graph there is no path from a source to a sink that
does not go across a sanitizer. Thus, we report that the program is bug-free.

4.4 A Solution Quadratic in Time and Space

The function markTainted Vars, given in Figure 8 finds bugs in e-SSA-form Nano-
PHP programs. We use SML/NJ’s syntax plus Erlang-style guards in pattern
matching, as in the auxiliary function hasTaintedChild. This function simulates
a traversal of the reachability graph that we described in Section 4.2, but it does
not really build the graph. Instead, it relies on the use-chains of the variables to
guide the traversal. The use-chain of a variable z is a function USE that maps
x to every instruction where this variable is used.

Function markTaintedVars receives three parameters: a set {i,41,...,4,} of
instructions to process, an environment X' that maps variables to either clean
or tainted, and a set of visited instructions, which we keep to avoid visiting the
same instruction twice. MarkTainted Vars processes each instruction forwardly,
i.e, an instruction that defines a variable x is buggy if any of the instructions that
use x is buggy. We assume that every variable used in a sink function is buggy.
We use the auxiliary function hasTaintedChild to check if any of the instructions
in the use chain of a variable x defines a variable that has been set as tainted in



fun hasTaintedChild - {...,(e =x),...} = true
| hasTaintedChild X {...,(z =®(...)),...} A Y Fx=clean = true
| hasTaintedChild X {...,(x =¢(...)),...} N XFz=clean = true
| hasTaintedChild X {...,(validate(.,-, -, x,-)),...} A Xk =clean = true
| hasTaintedChild - _ = false

fun markTaintedVars 0 ¥ _ = X
| markTaintedVars {i,i1,...,in} X V =
let
val V! = {i} UV
fun doUseChainSearch v =
let
val N = USE(v) \ V'
val X' = markTaintedVars ({i1,...,in} UN) X V'
in
if hasTaintedChild X' USE(v)
then X'[v s tainted]

else ¥’

end

in

case 7 of

o =z — markTaintedVars {i1,...,in} X[z +> tainted] V'
r = o — doUseChainSearch x
z=®(...) = doUseChainSearch x
z = ¢(...) = doUseChainSearch x
validate x, X, lc, Tt, It = doUseChainSearch x:

end

Fig.8: The algorithm that finds bugs in Nano-PHP programs.

the environment. Notice that neither markTainted Vars or hasTaintedChild deals
with switches or filter instructions. These instructions will never define or use
tainted variables, and will never be found by any of these functions.

Complezity. The function markTainted Vars is quadratic in time and space. Be-
cause markTainted Vars keeps the use-chains of every variable, this function uses
O(V x I) space, where V is the number of variables in the input program, and
I is the number of instructions in this program. The function is recursively
called at most once per each program instruction. When the function is called,
it might do a linear search on the use-chain of a variable, inside the function
doUseChainSearch. Therefore, this function has time complexity O(I?).

5 Experiments

We have implemented the data-flow analysis discussed in Section 3 and our e-
SSA based analysis from Section 4 on top of the phc open source compiler [3,



4]. This compiler, started in 2005 by Edsko de Vries and John Gilbert, is imple-
mented in C4++, and currently uses our implementation of e-SSA as an internal
representation. Our implementation of data-flow analysis uses a standard work-
ing list algorithm, and runs on a quasi-topological ordering of the CFG of the
input program [2, pag.360].

Benchmarks: We have run our analysis on 20,900 files publicly available
in 30 PHP content management systems (CMS). Most of these applications
appear in previous works [13, 14, 31]. The names of these applications are given
in Figure 9. In this section we show results for 13,297 files out of the 20,900 inputs
(63.6%). The omissions are due to the fact that phc, being a static compiler, is
not able to analyze some features of PHP, such as dynamic file inclusion or
dynamic code evaluation. None of these failures are due to our implementations,
i.e, they happen before we have the chance to run the tainted flow analyses. A
detailed account of each phc failure is provided by Rimsa [21].

Set up: Currently our tool reads a configuration file that determines which
functions (user defined or from libraries) are sinks, sources and sanitizers. For
these experiments we use a configuration file that identifies cross-site script-
ing attacks, which we describe in Section 2.1. Notice that by properly pointing
sources, sinks and sanitizers our analysis can be easily modified to handle other
vulnerabilities, such as SQL injections (Section 2.2).

Efficiency: We compare the time to run the data-flow analysis (Section 3)
and the time to run our sparse analysis (Section 4). We run the data-flow anal-
ysis on the original program, before the conversion to SSA (and e-SSA) form. In
order to produce e-SSA form programs, we start from a non-SSA form program,
and augment it with special instructions, i.e, 7 and ¢-functions [5, 10]. Figure 9
shows that the e-SSA based approach is faster than the data-flow approach as
the size of the input functions grow. Each bar is the average sum of the times to
process each function of the benchmark, over 10 runs. On the average, our sparse
analysis is 28% faster than the traditional data-flow approach. We measure the
time to analyze each function individually, and we do not consider functions
containing less than 100 assembly instructions, for in this case time measure-
ments are too imprecise. Our benchmarks have provided us with 1,122 function
above this threshold. The largest function that we have analyzed contains 1,141
instructions. We speculate that once we cross the boundaries of functions, and
analyze whole PHP applications, which might contain thousands of functions,
and millions of lines of code, our analysis will be much more efficient than the
data-flow approach.

Precision: Both our e-SSA based analysis and the data-flow analysis have
succeeded on the same inputs, reporting 63 warning messages across 25 distinct
PHP files. Table 4 details these numbers for the subjects that contain confirmed
vulnerabilities. Manual inspection of each of these warnings revealed actual vul-
nerabilities in 36 of these reports, i.e., a 45% false positive ratio. The false pos-
itives are due to the lack of whole program analysis, which force us to assume
that every function parameter is tainted. We used this list of bugs to perform
cross-site scripting attacks in 9 distinct PHP files. To the best of our knowledge,



1400

== Build e-SSA
1200 | ——= Run analysis -
mmmm Dataflow analysis
1000 |- -
800 |- 4
600 | -
400 | I || I ‘ -
200 | H - |I | 1l _
addil ERHRH A
0 TP EE R EENEE N ENE mia I
Eci8552C02265282§28cz2E828sg£238¢2°¢
EmoE:::.ﬁle_:(’.:)ugEuquUSDmgzggggzuEuq:
o * gNgUSsoigxopop>x§8 288G Quls
o c n:mn.mDEoou__a;- E 0@ I—b E S
% S cr8oc—~2c3q a5 LU C o
2 gam= 83 w g E
= E
i o g = =
2 o
]

Fig.9: Average execution time (ms) per benchmark for data-flow and e-SSA-
based analyses. Bars are sorted by the time to run the data-flow based analysis.

files warnings
benchmark | version total processed
F [LOC TF T [LOC 7T affected| TP | FP
MODx 1.0.3 [472 231 308 228 3 1 1
Exponent CMS| 0.97 |3456 42 2833 32 3 28 | 11
DCP Portal |7.0 beta| 535 97 392 61 7 5
Pligg 1.0.4 | 380 146 179 154 3 1
RunCMS 2.1 737 134 361 86 2 1 6
avg. - - - - 3.60 [7.20] 5.8

Table 4: Precision results. F is the number of files, and LOC/F is the number
of lines of PHP code per file. Affected is the number of files containing tainted
flow vulnerabilities. TP are true positives, and FP are false positives.

none of these vulnerabilities have been previously reported. We have submitted
all these vulnerabilities to the bugtraq at http://www.securityfocus.com/.
For a detailed account of each bug, see Rimsa [21, 22].

5.1 An example of a real-world bug

In order to illustrate our analysis, we will show an actual bug that our imple-
mentation found in the content management system MODx CMS version 1.0.3.
We have reported this bug to the developers ', who acknowledge the presence

" http://www.securityfocus.com/bid/41454



of the bug. In this example we use the PHP program in Figure 10, which was
publicly available on 2010-5-4.

One of the steps of the installation process lets the user choose a database
collation from a small suite of options. Users specify this database via three
parameters: host, uid and pwd. Users also specify their choice for a col-
lation system via a string, which the PHP program stores in the variable
database_collation. The PHP file queries a database, using this vari-
able as a key. However, in case the parameters host, uid or pwd do not
determine a valid database, the module receives a collation option from a
variable originated from a post request, i.e., a form. This string, stored in
database_collation, is printed in the output without sanitization, as we see
in Line 17 of Figure 10. Therefore, in order to print a malicious script in the
user’s webpage, we can choose an invalid host for the database, and write
the script code directly in the form that feeds database_collation. For in-
stance, we can steal cookies from the user’s browsing environment with the string
“</option></select><script>window.alert(document.cookie) ;</script>”.
Our analysis finds this vulnerability, as we illustrate in Figure 11. The reacha-
bility graph that we build for the example program contains a path from the
variable database_collation, which is initialized from a source, to the function
echo, which we qualify as a sink.

<?php

$host = $_POST[ 'host'];

$uid = $_POST[ 'uid'];

$pwd = $_POST[ 'pwd'];

$database_collation = $_POST[ 'database_collation'];

Soutput = '<select id="database_collation" name="database collation">

<option value="'.$database collation.'" selected >'
.$database_collation. '</option></select>"';

6 |if ($conn = @ mysgl_connect($host, $uid, $pwd)) {

// get collation

[ N R

7 $getCol = mysqgl_query("SHOW COLLATION");

8 if (@mysgl_num rows($getCol) > 0) {

9 $output = '<select id="database_collationse_collation"
name="database_collation">";

10 while ($row = mysqgl_ fetch_row($getCol)) {

11 $selected = ( $row[0]==$database_collation ? ' selected' : '' );

12 $output .= '<option value="'.$row[0].'"'.$selected.'>'.$row[0].

'</option>"';

13 }

14 $output .= '</select>';

15 }

16 |}

17 | echo $output;
2>

Fig. 10: An installation file used in MODx CMS version 1.0.3. This file contains
a XSS vulnerability, which we have highlighted in boldface.



I5: output; = ®(database_collation,) «<————I,: database_collation, = o $_POST['..."]

I3 bra 1y, ly—>1,: outputy = () —>1y: bra 1, I;

1, select;, = ®(database_collation ) $database_collation4
1,4 output, = ®() <— - output, = Q(select ;) Soutput5
1,: outputy, = @loutputs, ouiput,,) 1, * = output, $outputé—>@

Fig. 11: (Left) the Nano-PHP representation of the program in Figure 11 — we
show only the highlighted lines. (Right) The reachability graph.

6 Related Work

The tainted flow problem is well known in the literature [13,19,28,29,31].
Wasserman and Su [29] have used context-free grammars and string analysis [8]
to prove that functions manipulate strings safely. Another strategy, which uses
symbolic execution to solve the tainted flow problem, was proposed by Xie and
Aiken [31]. While our analysis has conditional validators powered by the e-SSA
representation, these other approaches try to infer new functions as validators.
However, a direct comparison between these previous two works and ours is not
possible, because the tools are not publicly available. We can only speculate
that, by using symbolic execution or string analysis, they are more expensive
than ours, although likely more precise. There exist; however, publicly avail-
able tools that perform tainted flow analysis. One of them is MARCO [19], a
Java bytecode analyzer. Another is Pixy [13], a PHP analyzer. MARCO relies
on program slicing [30] to find the set of tainted variables, whereas Pixy uses
a variation of the data-flow analysis from Section 3. Neither tool takes the re-
sults of conditional tests into consideration; hence, both are path insensitive — a
problem that our intermediate representation permits us to circumvent.

Many compiler analyses are based on the notion of graph reachability. In
this case, the subject graph normally represents part of a program slice [30].
This strategy was made popular by the pioneering works of Choi et al. [6] and
Reps et al. [20]. For a clear explanation of the use of graphs to model data-flow
problems, we recommend the work of Scholz et al. [23]. The tainted flow prob-
lem has been modeled as instances of graph reachability before [11,12,28]. In
particular, relying on a modified notion of thin slicing [26], Tripp et al. [28] have
been able to analyze remarkably large benchmarks. However, to the best of our
knowledge, we present the first algorithm that uses the e-SSA representation to
handle conditional validators inside the graph reachability framework. Condi-
tional validators increase the precision of our analysis, as a given variable might
be treated as clean in some program path, and tainted in others, and the e-SSA
representation makes it possible to model this flow sensitivity sparsely.



The e-SSA intermediate program representation [5] allows us to model a
data-flow problem sparsely. There exist many program representations that have
been designed with this purpose. The most well known member of this family is
the Static Single Assignment (SSA) form [10]. Another program representation
that has been conceived with similar objectives is the Static Single Information
(SSI) form [1,25], which deals with backward data-flow analyses. We opted to
use the e-SSA form because, contrary to SSA form, it allows us to capture
information from conditional tests. The SSI representation also gives us this
type of information; however, it inserts almost seven times more copies into the
source program when compared to the e-SSA form and takes almost 15 times
longer to build [27].

7 Conclusion

This paper presented a novel and efficient approach to statically identify security
vulnerabilities in code that can result in tainted flow attacks. Key to our speedup
was the e-SSA program representation. This enabled us to encode our analysis as
a graph reachability problem using a non-iterative data flow algorithm . We have
implemented our analysis on top of phc, an open source PHP compiler, and have
used it to find real bugs in well known web applications. We reported all the new
bugs that we found to the maintainers of the target applications. Some of these
developers acknowledged and fixed the vulnerabilities. Our implementation of
the e-SSA representation is currently available in the phc compiler, our analysis
code is available at http://www.dcc.ufmg.br/llp/projects/phc-tainted/.

Acknowledgment. Andrei Rimsa is supported by CAPES. We thank Paul Big-
gar for invaluable help with the phc compiler, and Roberto Bigonha plus the
anonymous reviewers for helping to improve the text.

References

1. Ananian, S.: The Static Single Information Form. Master’s thesis, MIT (September
1999)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java. Cambridge
University Press, 2nd edn. (2002)

3. Biggar, P.: Design and Implementation of an Ahead-of-Time Compiler for PHP.
Ph.D. thesis, Trinity College Dublin (2009)

4. Biggar, P., de Vries, E., Gregg, D.: A practical solution for scripting language
compilers. In: SAC. pp. 1916-1923. ACM (2009)

5. Bodik, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI. pp. 321-333. ACM (2000)

6. Choi, J.D., Cytron, R., Ferrante, J.: Automatic construction of sparse data flow
evaluation graphs. In: POPL. pp. 55-66 (1991)

7. Chow, F.C., Chan, S., Liu, S.M., Lo, R., Streich, M.: Effective representation of
aliases and indirect memory operations in SSA form. In: CC. pp. 253-267. Springer
(1996)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

. Christensen, A.S., Mgller, A., Schwartzbach, M.I.: Precise analysis of string ex-

pressions. In: SAS. pp. 1-18. Springer (2003)

. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for

javascript. In: PLDI. pp. 50-62. ACM (2009)

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451-490 (1991)

Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI. pp.
1-12. ACM (2002)

Hammer, C., Krinke, J., Snelting, G.: Information flow control for java based on
path conditions in dependence graphs. In: ISSSE. pp. 1-10. IEEE (2006)
Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In: S&P. pp. 258-263. IEEE (2006)
Jovanovic, N.; Kruegel, C., Kirda, E.: Precise alias analysis for static detection of
web application vulnerabilities. In: PLAS. pp. 27-36. ACM (2006)

Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
TOPLAS 1(1), 121-141 (1979)

Orbaek, P., Palsberg, J.: Trust in the A-calculus. Journal of Functional Program-
ming 7(6), 557-591 (1997)

Palsberg, J.: Efficient inference of object types. Inf. Comput. 123(2), 198-209
(1995)

Pioli, A., Burke, M., Hind, M.: Conditional pointer aliasing and constant propa-
gation. Tech. Rep. 99-102, SUNY at New Paltz (1999)

Pistoia, M., Flynn, R., Koved, L., Sreedhar, V.: Interprocedural analysis for priv-
ileged code placement and tainted variable detection. In: ECOOP. pp. 362-386
(2005)

Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL. pp. 49-61. ACM (1995)

Rimsa, A.: Efficient detection of tainted flow vulnerabilities. Master’s thesis, Fed-
eral University of Minas Gerais (UFMG) (December 2010)

Rimsa, A.A., d’Amorim, M., Pereira, F.M.Q.: Efficient static checker for tainted
variable attacks. In: SBLP. SBC (2010)

Scholz, B., Zhang, C., Cifuentes, C.: User-input dependence analysis via graph
reachability. Tech. rep., Sun Microsystems, Inc. (2008)

Scott, D., Sharp, R.: Specifying and enforcing application-level web security poli-
cies. Trans. on Knowl. and Data Eng. 15, 771-783 (2003)

Singer, J.: Static Program Analysis Based on Virtual Register Renaming. Ph.D.
thesis, University of Cambridge (2006)

Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: PLDI. pp. 112-122. ACM
(2007)

Tavares, A.L.C., Pereira, F.M.Q., Bigonha, M.A.S., Bigonha, R.: Efficient SSI con-
version. In: Brazilian Symposium on Programming Languages (SBLP). pp. 1-14
(2010)

Tripp, O., Pistoia, M., Fink, S., Sridharan, M., Weisman, O.: TAJ: Effective taint
analysis of web applications. In: PLDI. pp. 87-97. ACM (2009)

Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: PLDI. pp. 32-41. ACM (2007)

Weiser, M.: Program slicing. In: ICSE. pp. 439-449. IEEE (1981)

Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: USENIX-SS. USENIX Association (2006)



