
Prevalence of Single-Fault Fixes and its Impact on Fault
Localization

Alexandre Perez, Rui Abreu, Marcelo d’Amorim
alexandre.perez@fe.up.pt, rui@computer.org, damorim@cin.ufpe.br

alexandre.perez@fe.up.pt
rui@computer.org
damorim@cin.ufpe.br

Motivation

• Coverage-based software fault localization is effective at pinpointing bugs when only
one fault is being exercised.

• Approaches that diagnose more that one fault have been proposed.
– However, they involve computationally expensive tasks.
– May require system modelling.

• In practice, how often are developers faced with fixing single faults versus
multiple faults at once?

1/26

Motivation

• Coverage-based software fault localization is effective at pinpointing bugs when only
one fault is being exercised.

• Approaches that diagnose more that one fault have been proposed.
– However, they involve computationally expensive tasks.
– May require system modelling.

• In practice, how often are developers faced with fixing single faults versus
multiple faults at once?

1/26

Motivation

• Coverage-based software fault localization is effective at pinpointing bugs when only
one fault is being exercised.

• Approaches that diagnose more that one fault have been proposed.
– However, they involve computationally expensive tasks.
– May require system modelling.

• In practice, how often are developers faced with fixing single faults versus
multiple faults at once?

1/26

Single-fault DiagnosisSpectrum-based Fault Localization
• Given:

– A set 𝒞 = {c1, c2, ..., cM} ofM system components1.
– A set 𝒯 = {t1, t2, ..., tN} of N system tests with binary outcomes stored in the error

vector e.
– A N× M coverage matrix𝒜, where𝒜ij is the involvement of component cj in test ti.

𝒯 c1 c2 · · · cM e
t1 𝒜11 𝒜12 · · · 𝒜1M e1t2 𝒜21 𝒜22 · · · 𝒜2M e2...
tN 𝒜N1 𝒜N2 · · · 𝒜NM eN

1A component can be any source code artifact of arbitrary granularity such as a class, a method, a statement, or a branch.
2/26

Single-fault DiagnosisSpectrum-based Fault Localization
• The next step consists in determining the likelihood of each component being faulty.
• A component frequency aggregator is leveraged:

npq(j) = |{i | 𝒜ij = p∧ ei = q}|
– Number of runs in which cj has been active during execution (p = 1) or not (p = 0), and

in which the runs failed (q = 1) or passed (q = 0).
• Fault likelihood per component is achieved by means of applying different fault

predictors.
• Components are then ranked according to such likelihood scores and reported to the

user.
3/26

Fault PredictorsTarantula

• Designed to assist fault-localization using a visualization.
• Intuition: components that are used often in failed executions, but seldom in passing

executions, are more likely to be faulty.

Tarantula
n11(j)n11(j)+n01(j)n11(j)n11(j)+n01(j)+

n10(j)n10(j)+n00(j)

James A. Jones and Mary Jean Harrold. “Empirical Evaluation of the Tarantula Automatic Fault-localization Technique”. In: 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 2005, pp. 273–282

4/26

Fault PredictorsOchiai

• Calculates the cosine similarity between each component’s activity (𝒜j) and the errorvector (e).

Ochiai
n11(j)pn11(j)+n01(j)+pn11(j)+n10(j)

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “An Evaluation of Similarity Coefficients for Software Fault Localization”. In: 12th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2006), 18-20 December, 2006, University of California, Riverside, USA. 2006, pp. 39–46

5/26

Fault PredictorsD∗
• The likelyhood of a component being faulty is:

1. Proportional to the number of failed tests that cover it;
2. Inversely proportional to the number of passing tests that cover it;
3. Inversely proportional to the number of failed tests that do not cover it.

• D∗ provides a∗ parameter for changing the weight carried by term (1).

D∗
n11(j)∗n01(j)+n10(j)

W. Eric Wong et al. “The DStar Method for Effective Software Fault Localization”. In: IEEE Transactions on Reliability 63.1 (2014), pp. 290–308
6/26

Fault PredictorsO
• Assuming there is only one fault in the system:

– n01(j) should always be zero for the faulty component.
– n11(j) + n01(j) always equals the number of failing tests.
– n10(j) + n00(j) always equals the number of passing tests.
– Only one degree of freedom left, expressed by assigning n00(j) as the predictor’s value.

• Proven to be optimal under the single-fault assumption.
O ⎧⎨⎩−1 if n01(j) > 0

n00(j) otherwise

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. “A model for spectra-based software diagnosis”. In: ACM Trans. Softw. Eng. Methodol. 20.3 (2011), p. 11
7/26

Fault PredictorsOP

• Relaxes the assumptions held by the O predictor.
• Does not immediately assign n01(j) > 0 a low score.

OP

n11(j) − n10(j)n10(j)+n00(j)+1

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. “A model for spectra-based software diagnosis”. In: ACM Trans. Softw. Eng. Methodol. 20.3 (2011), p. 11
8/26

Multiple-fault Diagnosis
• Fault predictors assign a one-dimensional score to each component in the system.
• May abstract away relevant information to properly score multiple-faulted systems.

Example
𝒯 c1 c2 e
t1 1 0 fail
t2 0 1 fail

Both c1 and c2 are faulty but are given a low O score.
9/26

Multiple-fault Diagnosis
• Several approaches were proposed to accurately diagnose multiple faults:

– Model-based Debugging2;
– Spectrum-based Reasoning3; and
– Debugging in Parallel4.

• These approaches are computationally much more expensive and some partial
modelling of the system may be required.

2Wolfgang Mayer and Markus Stumptner. “Model-Based Debugging - State of the Art And Future Challenges”. In: Electr. Notes Theor. Comput. Sci. 174.4
(2007), pp. 61–82

3Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “Spectrum-Based Multiple Fault Localization”. In: 24th IEEE/ACM International Conference on
Automated Software Engineering, ASE. 2009, pp. 88–99

4James A. Jones, Mary Jean Harrold, and James F. Bowring. “Debugging in Parallel”. In: Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA. 2007, pp. 16–26

10/26

Single-Fault Prevalence

How often are developers faced with the task of having todiagnose and fix multiple bugs?

Our hypothesis is that the majority of bugs are detected and fixed
one-at-a-time when failures are detected in the system.

11/26

Single-Fault Prevalence

How often are developers faced with the task of having todiagnose and fix multiple bugs?
Our hypothesis is that the majority of bugs are detected and fixed

one-at-a-time when failures are detected in the system.

11/26

Single Fault PrevalenceMethodology

1. Mine repositories to collect fixing commits.
2. Classify fixing commits according to the number of faults they

fix.

12/26

Mining Fixing Commits

• Reverse chronological analysis of commits in a repository.
• For any given commit I:

– Run tests in I’s source tree.
– If the suite is passing, restore each parent commit P that only modifies existing

components and run I’s suite.
– A runtime error means that there are functionality changes between the two source

code versions.
– A failing test suite reveals that I’s suite has detected errors in P’s source tree.
– 〈P, I〉 is labeled as a faulty/fixing commit pair.

13/26

Classifying Fault CardinalitySpectra Gathering
• Given a pair of faulty/fixing commits, run the fixing commit’s test suite on faulty’s

source tree and gather the hit spectrum.

Example
𝒯 c1 c2 c3 c4 c6 c7 c8 e
t1 1 1 0 0 1 0 0 pass
t2 0 1 1 0 1 1 0 fail
t3 1 0 0 1 0 0 1 pass
t4 0 0 1 0 0 1 0 fail

Δ Δ

14/26

Classifying Fault CardinalityUnchanged Code Removal
• All components not in Δ can be safely exonerated from suspicion.

Example
𝒯 c1 c2 c3 c4 c6 c7 c8 e
t1 1 1 0 0 1 0 0 pass
t2 0 1 1 0 1 1 0 fail
t3 1 0 0 1 0 0 1 pass
t4 0 0 1 0 0 1 0 fail

Δ Δ

Before.

𝒯 c1 c3 e
t1 1 0 pass
t2 0 1 fail
t3 1 0 pass
t4 0 1 fail

After.
15/26

Classifying Fault CardinalityPassing Tests Removal
• Passing tests are discarded as they do not reveal information about faulty

components.

Example
𝒯 c1 c3 e
t1 1 0 pass
t2 0 1 fail
t3 1 0 pass
t4 0 1 fail

Before.

𝒯 c1 c3 e
t2 0 1 fail
t4 0 1 fail

After.
16/26

Classifying Fault CardinalityHitting Set & Classification

• The final, filtered spectrum is subject to minimal hitting set analysis.
• Determine what (set of) components is active on every failing test.
• Cardinality of the hitting set corresponds to the number of faults.

Example
𝒯 c1 c3 e
t2 0 1 fail
t4 0 1 fail

{c3} is the minimal hitting set with
cardinality 1.

17/26

Empirical StudySetup
• We have applied our fault cardinality classification to several software projects.
• Subjects are open-source projects hosted on Github, gathered in the work of Gousios

and Zaidman5.
• The dataset was filtered so that considered projects

– Are written in Java;
– Are built using Apache Maven;
– Contain JUnit test cases.

• In total we studied 279 subjects.
5Georgios Gousios and Andy Zaidman. “A Dataset for Pull-based Development Research”. In: Proceedings of the 11th Working Conference on Mining Software

Repositories. MSR 2014. 2014, pp. 368–371
18/26

Empirical StudyEffort To Diagnose

• To assess diagnostic performance, we resort to using the effort to diagnose metric.
• Also known as wasted effort.
• Since SFL outputs a ranked list of components sorted by predictor score, effort

measures the average number of components to be inspected until the real faulty
component is reached.

• Usually normalized by the total number of components in the system.

Friedrich Steimann, Marcus Frenkel, and Rui Abreu. “Threats to the validity and value of empirical assessments of the accuracy of coverage-based fault
locators”. In: International Symposium on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013. 2013, pp. 314–324

19/26

Fault Cardinality

1 2 3 4 5 6
Fault Cardinality

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Fi
xe

s

20/26

Single Fault Prevalence

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Single-Fault Prevalence (%)

0

5

10

15

20

25

30

35

40

P
ro

je
ct

s

21/26

Effort To Diagnose Single Faults

0.0 0.2 0.4 0.6 0.8 1.0
Effort

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
te

d
Fa

ul
ts

 (%
)

D2

O
OP

Ochiai
Tarantula

22/26

Effort To Diagnose Multiple Faults – Best Case

0.0 0.2 0.4 0.6 0.8 1.0
Effort

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
te

d
Fa

ul
ts

 (%
)

D2

O
OP

Ochiai
Tarantula

23/26

Effort To Diagnose Multiple Faults – Worst Case

0.0 0.2 0.4 0.6 0.8 1.0
Effort

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
te

d
Fa

ul
ts

 (%
)

D2

O
OP

Ochiai
Tarantula

24/26

Conclusions
• Single-fault SFL is an inexpensive approach to fault localization, but does not take

into account the possibility of failures due to multiple bugs.
• However, our hypothesis is that while software can have many dormant bugs, these

are detected (and fixed) individually.
• Our empirical study found that 82.5% of the time, developers are faced with single

faults.
• While the O predictor is theoretically optimal assuming a single faulted system, its

diagnostic performance becomes random in the event of a multiple faults.
– Other predictors are less sensitive to this issue.

25/26

Single-fault DiagnosisSpectrum-based Fault Localization
• Given:

– A set 𝒞 = {c1, c2, ..., cM} ofM system components1.
– A set 𝒯 = {t1, t2, ..., tN} of N system tests with binary outcomes stored in the error

vector e.
– A N× M coverage matrix𝒜, where𝒜ij is the involvement of component cj in test ti.

𝒯 c1 c2 · · · cM e
t1 𝒜11 𝒜12 · · · 𝒜1M e1t2 𝒜21 𝒜22 · · · 𝒜2M e2...
tN 𝒜N1 𝒜N2 · · · 𝒜NM eN

1A component can be any source code artifact of arbitrary granularity such as a class, a method, a statement, or a branch.
2/26

Single-Fault Prevalence

How often are developers faced with the task of having todiagnose and fix multiple bugs?
Our hypothesis is that the majority of bugs are detected and fixed

one-at-a-time when failures are detected in the system.

11/26

Fault Cardinality

1 2 3 4 5 6
Fault Cardinality

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Fi
xe

s

20/26

Conclusions
• Single-fault SFL is an inexpensive approach to fault localization, but does not take

into account the possibility of failures due to multiple bugs.
• However, our hypothesis is that while software can have many dormant bugs, these

are detected (and fixed) individually.
• Our empirical study found that 82.5% of the time, developers are faced with single

faults.
• While the O predictor is theoretically optimal assuming a single faulted system, its

diagnostic performance becomes random in the event of a multiple faults.
– Other predictors are less sensitive to this issue.

25/26

26/26

	Background
	Single-fault Diagnosis
	Multiple-fault Diagnosis

	Problem: How Prevalent Are Single-Faults?
	Methodology
	Mining Fixing Commits
	Classifying Fault Cardinality

	Empirical Study
	Conclusions

