
An Empirical Evaluation of Automated Black-Box

Testing Techniques for Crashing GUIs

Cristiano Bertolini Glaucia Peres Marcelo d’Amorim Alexandre Mota

Center of Informatics, Federal University of Pernambuco

P.O. Box 7851, 50732-970, Recife-PE, Brazil

E-mail: {cbertolini,gbp,damorim,acm}@cin.ufpe.br

Abstract

This paper reports an empirical evaluation of four black-

box testing techniques for crashing programs through their

GUI interface: SH, AF, DH, and BxT. The techniques vary

in their level of automation and the results they offer. The

experiments we conducted quantify execution time and the

capability of finding a crash for each technique on 8 dif-

ferent cellular phone configurations with historical (real)

errors. The results show that AF and BxT offered better

precision (i.e., the fraction of runs that end in a crash out

of the total number of runs) than SH and DH (AF and BxT

found crashes in all 8 configurations), and BxT crashes the

application the fastest more often (5 out of 8 cases). The

experiments reveal that the selection of the random seed to

AF and BxT results in a high variance of execution time

(i.e., the time the technique takes to either crash the appli-

cation or timeout in 40h): the mean (across 8 phone config-

urations) of the standard deviation of execution times (for

10 runs per each phone configuration) is 7.79h for AF and

5.21h for BxT. Despite this fact, AF and BxT could crash the

application consistently: the mean of the precision (fraction

of the 10 runs that results in a crash) is 74% for AF and 69%

for BxT.

1. Introduction

Despite the technological advances in languages and

tools to support system’s development, programmers still

deliver software with lots of errors. Several techniques have

been proposed to this end – to improve software reliability.

Testing is one of them. In fact, software testing is the domi-

nant approach in industry to assure software quality. Testing

is not cheap though. Santhanam and Hailpern [13] reported

that from 50% to 75% of the total cost of a project involves

testing and debugging.

Black-box box testing is the activity of testing without

knowledge of the program organization [5]. It consists of

exercising the interface of a component (typically the entire

system) to find errors. Any part of the system providing a

public interface is amenable to black-box testing. White-

box testing, in contrast, requires knowledge of the program

structure. For example, with white-box testing an engineer

may construct a test with the specific goal to exercise a pro-

gram path. Black-box and white-box testing are recognized

as complementary techniques [12]. However, it is important

to note that the testing team is not able to apply white-box

testing when the application owner prohibits the delivery of

source code, say for confidentiality reasons.

One important interface of an interactive system is the

graphical user-interface (GUI). A GUI test consists of (i) a

sequence of GUI commands and (ii) a test oracle to check

whether the execution of this sequence produces the ex-

pected result [11]. In our context, the oracle is conceptually

a boolean function that checks whether the application can

still make progress through the GUI.

This paper focuses on black-box testing of GUIs. More

specifically, this paper proposes and evaluates several tech-

niques to automate the generation of GUI tests. We inves-

tigate techniques whose goal is crashing the system with

the automated generation and execution of GUI tests. Au-

tomated test generation is important for two main reasons:

(a) manual tests can become obsolete with the evolution of

an application, and (b) the quality of manual tests depends

on the level of completeness of requirements. We are par-

ticularly interested on addressing the second problem. For

example, manually-written (system) tests (derived from re-

quirements) may succeed in covering common user interac-

tions but fail to cover corner case scenarios that can lead to

a crash [4, 10].

Automation of black-box testing can be challenging:

unguided search may be ineffective for too large state

spaces [8]. For GUI testing, in particular, the size of the

state space reachable (from the GUI) is typically intractable

[6,15]. To alleviate the state space explosion problem many

model-checking techniques need to access the state to per-

form space reductions [7, 9, 14]. Unfortunately, such opti-

mizations are not possible for black-box testing in general.

Our context is that of applications providing limited or

no access to its internal state. This paper describes four

black-box testing techniques for finding program crashes

on GUIs. All techniques attempt to explore the state space

of the application (i.e., to stress the application with auto-

mated interactions) with the goal of finding a state that fails

the test oracle. The techniques we propose provide distinct

tradeoffs between their capability of finding crashes and the

level of automation they offer. The main focus of this paper

is on the evaluation of these techniques on Motorola cellular

phones. The list below highlights the main contributions:

• The proposal of four techniques for GUI testing.

• An empirical evaluation of the techniques using Mo-

torola cellular phones.

We provide next a brief overview about the techniques

and the experimental results we obtained. Section 2 dis-

cusses the techniques in more detail and Section 3 the ex-

perimental evaluation.

1.1. Summary of the techniques

We next summarize the techniques we propose for crash-

ing applications from the GUI: (i) Scenario Hunting (SH),

(ii) Atoms Framework (AF), (iii) Driven Hopper (DH), and

(iv) Behavior eXplorer Tool (BxT). It is important to note

that we do not distinguish between “test” and “test se-

quence” as the notion of correctness we use is universal:

the program should not crash. As such, the oracle is not

part of one test artifact.

SH takes a manually-written test suite as input, generates

a fixed number of random permutations of tests in this suite,

and finally executes each test and monitors for a crash. SH

is perhaps the simpler technique we discuss. Its merit relies

mostly on the user experience for selecting tests in the input

suite. It serves as a baseline to compare more automated

techniques.

AF also takes as input a manually-written test suite. AF

differs from SH in two important ways: (i) the granularity

of the tests it uses from the input suite, and (ii) how it builds

input data. As for test granularity, one AF test corresponds

to a small fragment of a SH test. For that reason we use

the term atom in reference to one AF test. As for data

generation, AF enables a test to share data: one test can

consume data another test produces. In contrast, one SH

test can only consume data it generates.

Illustrative example. Figure 1 shows a fragment of one

test (sequence) that SH uses in the evaluation we conducted

on cellular phones (see Section 3). This test is written in

log(“Capture an audio message.”);

navigationTk.launchApp(PhoneApplication.get(“VOICE RECORDS”));

multimediaTk.captureVoiceNoteFromVoiceRecord(30);

multimediaFile voiceRecord =

multimediaTk.storeMultimediaFileAs(MultimediaItem.get(“STORE ONLY”));

log(“Listen to an audio message.”);

navigationTk.goTo(PhoneApplication.get(“VOICE NOTES”));

multimediaGoTo.get(“ALL VOICE NOTES”));

multimediaTk.scrollToAndSelectMultimediaFile(voiceRecord);

log(“Delete an audio message.”);

phoneTk.returnToPreviousScreen();

multimediaTk.deleteFile(voiceRecord,true);

Figure 1. A test sequence for multimedia.

Java and runs on a regular PC connected to a phone. This

sequence consists of using one phone to (i) capture an au-

dio message, (ii) play back that message, and (iii) delete

that same message. To enable AF the engineer needs to

divide this test in smaller self-contained fragments. For this

example, the engineer uses the log instruction to identify

these fragments; three atoms in this case. Note that one AF

test (atom) may require parameters in result of this method

extraction. For example, the second atom (for listening the

audio message) will require a multimediaFile object. This is

key to AF as it enables one atom to exercise different inputs.

Section 2.2 details AF, including how it combine atoms to

build larger sequences. SH and AF build on the user experi-

ence to find crashes. The following techniques, in contrast,

require less user-input.

DH drives the application to a particular screen and

keeps pressing random keys (some of which can change the

current screen) for some (configured) time until it finds an

error or crashes the application. DH requires tests to drive

the phone to an initial screen. Such tests use the instruction

goto() from Figure 1 for this setup.

BxT attempts to make a more systematic selection of in-

puts than DH: it recognizes which controls are available at

a screen and selects inputs according to these controls. For

instance, BxT can send scroll down and up events when it

recognizes a scroll bar control in the current screen. In a

screen that contains only two buttons, say “OK” and “Can-

cel”, DH may press several keys before it hits the ones for

“OK” and “Cancel”. BxT, differently, makes a random se-

lection between one of these two options. Note, however,

that BxT has more stringent observability and controllabil-

ity requirements [5,12] than DH: it requires a library provid-

ing support for recognizing screen components and sending

specific events to them.

1.2. Summary of results

We evaluate the techniques on cellular phones with his-

torical (real) errors. We run each technique for 10 times

with different seeds over each configuration. Our empirical

Algorithm 1: genList pseudo code

genList(Set〈Test〉 suite, int numRept, int seed): List〈Test〉1

begin genList2

List〈Test〉result = [];3

for i = 1..numRept do result = result.add(shuffle(suite, seed));4

return result;5

end6

results demonstrate that AF and BxT together outperformed

SH and DH with respect to time and also to the number of

crashes reported.

We use the term precision to denote the fraction of runs

that ends in a crash out of the total number of runs. The pre-

cision for AF and BxT was 74% and 69% respectively. This

result indicates that a more automated technique (BxT) per-

formed nearly the same w.r.t. precision as one using user-

provided test suites as input (AF). Section 3 details this ex-

periment and others we conducted to better understand how

each technique performs.

2. Techniques

This section describes four testing techniques this paper

proposes for crashing applications through their GUIs.

Note on oracle. To simplify discussion, we assume crashes

are unexpected situations which the system can not continue

its normal execution. That allows the algorithms to repre-

sent the oracle with the external function isCrash(). We do

not discuss this function here. Note that this paper does not

propose test oracles. The user needs to provide the oracle

appropriate for detecting crashes.

Note on user-provided test suite. SH, AF, and DH build

on existing manually written tests. But DH tests simply per-

form a jump to one GUI screen.

Note on GUI library. DH and BxT build on operations

(provided by some library) that enables some read and write

access to the GUI components. Sections 2.3 and 2.4 high-

light the operations DH and BxT use to clarify how they

can be used in different contexts. It is important to men-

tion that some systems provide rich support for testing, i.e.,

specific interfaces for reading (i.e., observing behavior) and

writing to the state (i.e., controlling the application). For

example, the cellular phone platforms Symbian [3] and Lin-

ux/Java [2] provide infrastructure to the tester implement

monitors that can inspect the memory for safety problems

such as buffer overflows and memory leaks.

2.1 SH

Algorithm 1 generates a random list of tests from a set of

user-provided tests. Each iteration of the loop at line 4 gen-

erates one permutation of the input set of tests. Effectively,

Algorithm 2: SH pseudo code

main(Set〈Test〉 suite, int numRept, int seed, int timeout): bool1

begin main2

List〈Test〉 testList = genList(suite, numRept, seed);3

foreach test in testList do4

test.run();5

if isCrash() then return true;6

if isTimeout(timeout) then return false;7

endfch8

return false;9

end10

Algorithm 3: AF pseudo code

main(Set〈Test〉 suite, int numRept, int seed1, int seed2, int timeout):1

bool

begin main2

Map〈String, List〈Object〉〉 dataMap = loadDataMap();3

Set〈Atoms〉 atomSet = ∅;4

foreach test in suite do atomSet = atomSet ∪ test.atoms();5

List〈Test〉 testList = genList(atomSet, numRept, seed1);6

foreach test in testList do7

dataMap = test.run(dataMap, seed2);8

if isCrash() then return true;9

if isTimeout(timeout) then return false;10

endfch11

return false;12

end13

it provides as result a list that includes numRept permuta-

tions of suite. Section 3.4.2 elaborates on a variation of this

algorithm.

Algorithm 2 shows the pseudo code for SH. Function

main assigns the result of the call to genList to variable

testList. Each iteration of the loop at line 7 executes one test

from this list, checks for a crash, and checks for timeout.

Execution either terminates reporting a crash (line 6), or

reporting a timeout (line 7). Also, SH can run without a

crash or timeout that means all tests were executed and no

crash was found (line 9).

Note on suite selection. The selection of the input test suite

(suite) is decisive for the final result. Conceptually, the

number of tests in the suite affects positively the chances

one important part of the application is exercised (i.e., con-

tains the defect) and negatively the exhaustion to which this

part is exercised (i.e., may fail to activate the defect).

2.2. AF

Algorithm 3 shows the pseudo code for AF. The map

dataMap that function main declares provides data input for

the execution of tests. This map associates a list of objects

to each input category (the map key). One atom is a para-

metric test that consists of a user-defined fragment from a

user-defined test. The execution of one atom (test) may read

Algorithm 4: DH pseudo code

main(List〈Test〉 screens, int seed, int timeout1, int timeout2): bool;1

begin main2

while !isTimeout(timeout2) do3

Test screen = listOfScreens.pickOne(seed);4

screen.run(); /*goto random screen*/5

pressRandomKeys(seed, timeout1); ⇐6

if isCrash() then return true;7

endw8

end9

from or update the data map.

AF stores in variable atomSet a set of atoms derived from

the tests in suite. The variable testList stores the list of

atoms resulted from the call to genList. Similar to SH each

iteration of the loop at line 7 executes one test from testList,

checks for a crash, and checks for timeout. However, dif-

ferent from AF a test takes as input the data map dataMap

and the seed seed2 and produces a new data map, possibly

extending the input map with new inputs. The seed allows a

test run to randomly choose one input from a list of objects

for a specific category.

In summary, AF differs from SH in two important ways:

(i) test granularity (atoms are fragments of SH tests), and

(ii) data generation (the execution of one test provides

inputs to parametric tests).

2.3 DH

Algorithm 4 shows the pseudo code for DH. The algo-

rithm repeats the following sequence of steps until it either

timeouts or finds a crash: (i) selects one screen, (ii) drives

the application to that screen, (iii) sends random events (key

presses) to the GUI for a while, and (iv) checks for a crash.

The loop at line 3 repeats this sequence of steps.

The inputs to DH are a sequence of manually written

tests – screens, a random seed that the event generator

uses – seed, a bound on execution time for sending ran-

dom events (key presses) in one iteration – timeout1, and a

bound on total execution time – timeout2.

Note that DH does not generate inputs (i.e., GUI events)

according to the components active on the current screen.

It simply generates control events randomly within one im-

portant region of the application. Also important to note is

that the algorithm uses a library to send events to the GUI.

For DH it sends general key pressed events – which per-

form well for the domain of cellular applications (see Sec-

tion 3.3). Line 6 highlights the use of one library function

for sending key pressed events to the application. One needs

to provide such a function to enable DH.

Algorithm 5: BxT pseudo code

main(int seed, int numRept, int timeout): bool;1

begin main2

Set〈Test〉 screenSet = ∅;3

if driven() then4

/*random set of goto-screen tests*/

screenSet = {tc1, tc2, ..., tcn};5

else6

screenSet = {initialScreen()};7

endif8

while !isTimeout(timeout) do9

screenSet.pickOne(seed).run();10

for i=1 to numRept do11

Event ev = enabledEvents().pickOne(seed); ⇐12

/*sends message to the GUI*/

ev.genInputs(seed).run(); ⇐13

if isCrash() then return true;14

endfor15

endw16

return false;17

end18

2.4. BxT

Algorithm 5 shows the pseudo code for BxT. The main

difference from DH is the way it generates events. Con-

ceptually, the algorithm contains two main parts. The first

decides which screen to focus. The second part stresses

the application from a selected screen. This part performs

the following steps for a fixed number of times or until it

crashes the application: (i) identifies enabled events on the

current screen (i.e., the events that active components can

process), (ii) selects randomly one of such events, (iii) gen-

erates data for this event and sends the event to the GUI,

and (iv) checks for a crash. The code fragment in the line

range 12-14 corresponds to this sequence.

The inputs to BxT are a seed used for generating se-

quence (i.e., choosing the event) and data (i.e., generating

input to the event) – seed, an integer denoting the number

of iterations on the second part of the algorithm – numRept,

and a bound on the total time for testing – timeout.

Line 10 makes a random choice of which screen in the

set screenSet execution should stress. Note that the code

fragment in the line range 4-8 initializes this variable. The

external boolean function driven() indicates whether or not

execution should perform jumps across different screens (in

a similar fashion to DH). We call driven BxT, or simply D-

BxT, this variation of BxT. For D-BxT, execution initializes

the variable screenSet with a fixed set of screens. (This is

how we used D-BxT in our experiments. For clarity, we

showed the initialization of screenSet within the algorithm.)

Lines 12 and 13 highlight the uses of a library to identify

which events are enabled and to send the event to the GUI.

Config. SH AF DH BxT D-BxT

- CID time CID time CID time CID time CID time

A - 40.0 6 6.5 1 21.2 6 14.6 6 33.8

B - 40.0 4 33.6 - 40.0 - 40.0 6 6.2

C - 40.0 4 36.5 - 40.0 - 40.0 12 14.8

D 2 4.3 7 5.0 8 3.3 7 1.2 8 4.4

E 3 3.9 1 3.6 3 7.0 5 0.5 5 2.7

F - 40.0 1 4.0 6 5.7 - 40.0 11 4.0

G 4 3.1 6 11.2 6 22.7 6 8.0 1 1.7

H 5 2.3 5 2.8 5 21.7 4 12 10 7.9

avg. 50% 21.7 100% 12.9 75% 20.2 62.5% 19.5 100% 9.4

Table 1. Time (in hours) and Fault revealed by SH, AF, DH and D-BxT per phone configuration.

3. Evaluation

This section provides details on the empirical evalua-

tion of the techniques using Motorola cellular phones. We

conducted 3 sets of experiments. One for comparing the

four techniques w.r.t. their capability to crash phones with

known bugs (Section 3.3). For this experiment we use SH

and DH as baselines. The experimental results indicate that

AF and D-BxT outperform SH and DH. Section 3.4 dis-

cusses the impact of randomization (for data and sequence

generation) on AF and Section 3.5 discusses the impact

of randomization on BxT. Section 3.6 discusses whether a

more uniform exploration of the screens correlates with the

time to find a bug on D-BxT.

3.1. Characterization of subjects

We characterize each subject with (i) the phone model

(i.e., a list of external and internal phone features to identify

a set of similar phones functions), (ii) the hardware version,

(iii) the software version (i.e., the build for the operating

system and its applications), and (iv) the flex bit (FB) ver-

sion. The flex bit configuration allows the user to dynam-

ically configure the phone prior. Example of such config-

urations includes enabling the phone to send and receive

bluetooth signals, and setting the phone to debug mode.

Config. Model Hard. Soft. FB

A M1 H3 S1 F1

B M1 H4 S2 F2

C M1 H4 S3 F3

D M2 H2 S4 F4

E M2 H1 S5 F5

F M3 H5 S6 F6

G M3 H6 S7 F7

H M2 H2 S8 F8

Table 2. Characterization of experimental

subjects.

Table 2 shows the subjects we used in our experiments.

Column “Config.” introduces a unique identifier to distin-

guish each combination of model, hardware, software and

flex bit. The other columns show each of these attributes.

The identifiers we use in this table correspond to real iden-

tifiers, but they are masked for confidentiality reasons. Note

that some configurations share the same model or hardware,

but the software and flex bit vary. The selection of these

configurations was driven by the availability of equipment

where past errors have been detected.

3.2. Failures

The oracle does not operate on the GUI. It is a gen-

eral Motorola proprietary program that monitors the phone

memory for bad states.

The oracle detects 12 distinct kinds of crashes across all

experiments. In the following, we distinguish them using

crash identifiers (CIDs) from 1 to 12. Each identifier de-

notes a different undesirable scenario of the application that

the oracle is able to capture. For example, CID=1 is a gen-

eral report to denote that the system makes no progress but

the oracle is unable to ascertain the reason, CID=2 means

that an issue with the hardware interface (e.g., it is not possi-

ble to allocate memory) prevents the application from mak-

ing progress, CID=6 denotes a programming error like di-

vide by zero, etc. Important to note is that the oracle re-

ports only the crash event; it does not inform the reason for

the crash (as debuggers do). In result, it may happen that

distinct techniques report different manifestations (CIDs) of

the same defect.

3.3. Comparison of techniques

This section describes the experiment we conducted to

compare the techniques.

Setup. The goal of this experiment is to compare the ef-

fectiveness of AF, BxT and D-BxT with that of SH and

DH for crashing cellular phones with historical defects. We

used 8 different phone configurations for which SH found

4 crashes and DH found 6 crashes. Neither SH nor DH

crashed 2 of the eight configurations. For each configura-

tion we ran once each technique until execution runs out of

time (timeout=40h) or finds a crash. The execution of SH

and DH confirmed the crashes documented in the bug report

database. For AF, BxT and D-BxT, we fixed the random

seed across different configuration runs.

The atoms that AF uses derives from the tests SH used –

we did not include any atoms original from a different set

of tests. This helps us to compare SH and AF. BxT and

D-BxT explores the state space similarly to DH – exercise

a random sequence of events on the GUI for 30s from one

arbitrary GUI screen. To achieve this we align the setting

of the paramaters timeout1 in Algorithm 4 and stepSize in

Algorithm 5. This similarity helps us to compare DH, BxT

and D-BxT.

Results. Table 1 shows a summary of the results obtained in

the experiments. Column “Config.” shows the identifier for

one subject configuration, column “CID” shows the iden-

tifier of the crash, and column “time” shows the execution

time for each experiment. Recall that one experiment either

timeouts or finds a crash. Line “avg.” reports the aver-

ages of each column. For column CID, it shows the fraction

of experiments that revealed a crash. For column time, it

shows the arithmetic mean of the elapsed time.

We list below our key observations:

• Only AF and D-BxT can find a crash for all eight ex-

periments with a timeout of 40h. As such, note that

only AF and D-BxT can find the crashes reported in

experiments B and C.

• D-BxT can find a crash faster more often than the other

techniques. Note (from the highlighted cells) that D-

-BxT outperforms the other techniques in 4 out of 8

cases.

• SH can find a crash in only 50% of the cases. But when

it finds, it outperforms AF, except in Config. E where

the difference is of only 0.3h (that is, 18min).

• For each experiment where DH finds a crash, one of

the other three techniques can find it and find it faster.

In particular, AF + D-BxT find all errors that DH finds

and faster, except in Config. D and E.

• The variation of time that each technique reports is

very high. For example, between D-BxT and AF the

difference in time for crash for experiment A is +27.3h

(i.e., D-BxT takes 27.3h more to find the crash), -27.4h

for experiment B, -21.7h for C, -9.5h for G, and +5.1h

for experiment H.

• The variation of the CID reported is also high. Note

that no experiment reports the same CID for all tech-

niques. For example, in experiment H, SH, AF, and

DH report CID=5, while BxT reports CID=4 and D-

BxT reports CID=10.

3.4. Impact of Randomization on AF

This section discusses two experiments we conducted

to evaluate the impact of randomization on AF. The first

experiment measures the impact of the random data on

the effectiveness of AF. For this, we vary the value of

parameter seed2 used in line 8 of Algorithm 3. The second

experiment evaluates the impact of a random selection of

the list of atoms when compared to the list computed from

SH tests used in the experiments Section 3.3 reports.

Note on distribution representation. We use box-

plot notation to illustrate a data distribution. The lower and

upper hinges of one box indicate respectively the upper

bounds of the first and third quartiles of the distribution,

the line across the box defines the second quartile (i.e.,

median value). The lines below and above the box limit

the first and fourth quartiles. Small circles outside the

hinges correspond to outliers. The symbol x̄ denotes the

mean value, the symbol σ denotes the standard devia-

tion – an average for the dispersion of data points from

the mean value, and the symbol x̂ denotes the median value.

3.4.1 Random data

This section describes the experiment we conducted to

evaluate the impact that the use of different random data

has in the effectiveness of AF.

Setup. In this experiment, we run AF for 10 times, on

each configuration, varying the value of the parameter

seed2 used in Algorithm 3. We use the same sequence in

all executions of a configuration (i.e., we fix the values of

seed1). Figure 2 shows the distributions of execution time

(in hours) for this experiment.

Results. Table 3 shows detailed data for the 10 runs of AF

over each configuration from A to H. The value “-” for col-

umn “CID” indicates a missed crash (resp., value “40.0” for

column “time” indicates a timeout). For example, for con-

figuration A, AF misses the crash on experiment 4. We list

below our key observations:

• Time. The dispersion of the data points in AF is high

for almost all configurations. The mean standard devi-

ation of execution times for all configurations is 7.79h.

Config. A Config. B Config. C Config. D Config. E Config. F Config. G Config. H

CID time CID time CID time CID time CID time CID time CID time CID time

1 6 6.5 4 33.6 4 36.5 7 5.1 1 3.6 1 4.0 6 11.2 5 2.7

2 6 14.6 - 40.0 - 40.0 7 5.5 5 3.6 - 40.0 6 15.1 5 3.4

3 6 13.9 6 37.8 - 40.0 7 5.3 6 1.9 - 40.0 4 18.3 5 3.3

4 - 40.0 - 40.0 - 40.0 7 5.7 5 3.9 - 40.0 4 16.6 5 3.1

5 4 33.9 6 4.5 12 4.0 7 5.9 6 1.2 - 40.0 - 40.0 5 2.9

6 9 19.0 4 27.2 - 40.0 7 5.1 5 3.7 12 37.8 4 34.7 9 2.9

7 4 30.5 - 40.0 - 40.0 7 7.4 5 1.0 - 40.0 4 17.6 5 2.5

8 6 16.7 6 12.7 - 40.0 7 5.3 9 1.5 - 40.0 4 1.5 5 3.0

9 4 32.4 6 35.3 - 40.0 7 4.9 9 1.1 - 40.0 9 15.2 5 3.2

10 6 13.4 6 2.9 - 40.0 7 4.3 5 3.9 - 40.0 6 1.6 5 1.1

avg. 90% 22.1 70% 27.4 20% 36.1 100% 5.5 100% 2.5 20% 36.2 90% 17.2 100% 2.8

Table 3. Impact of using random seeds in AF.

Conf.H: σ = 00.39, x̄ = 02.94, x̂ = 02.98

Conf.B: σ = 15.00, x̄ = 27.40, x̂ = 34.45
Conf.C: σ = 11.32, x̄ = 36.05, x̂ = 40.00
Conf.D: σ = 00.90, x̄ = 05.59, x̂ = 05.30

Conf.E: σ = 01.30, x̄ = 02.54, x̂ = 02.75
Conf.F: σ = 11.33, x̄ = 36.18, x̂ = 40.00
Conf.G: σ = 12.31, x̄ = 17.22, x̂ = 15.99

Conf.A: σ = 09.76, x̄ = 20.08, x̂ = 16.73

0
1

0
2

0
3

0
4

0

T
im

e
 (

H
o

u
rs

)

 A B C D E F G H

Figure 2. AF time distributions for random

data.

That means that AF execution time is very sensitive to

the selection of the seed.

• Kind of crash. Only configuration D finds the same

kind of crash in all executions. All others configu-

rations find more than 2 types of crash (for instance,

Config. E finds 4 different types).

• Precision. Although some executions do not find a

crash, AF can find crashes consistently. The mean of

the precison was 74%.

3.4.2 Random sequence

This section describes the experiment we conducted to

evaluate the impact of randomizing the list of atoms used

Algorithm 6: genList with Allpairs

genList(Set〈Test〉 suite, int nAtoms, long seed): List〈Test〉1

begin genList2

Map〈Category, Set〈Atom〉〉 partition = partition(suite);3

Map〈Category, Set〈Atom〉〉 selected = ∅;4

foreach entry in partition do5

Set〈Atom〉 atoms = entry.value();6

Set〈Atom〉 tmp = ∅;7

for i = 1..nAtoms do tmp = tmp ∪ atoms.pickOne(seed);8

selected.put(entry.key(), tmp);9

endfch10

/*concatenates all sequences of atoms. each

sequence includes one atom on each category*/

return allpairs(selected);11

end12

as input to AF.

Setup. We run AF for 10 times on phone configurations E

and H. These configurations have the lowest average execu-

tion times (see Table 3). We used the same random seed for

data and sequence generation in all runs.

Algorithm 6 redefines function genList that AF uses.

This version associates each atom to one domain category.

The categories we define are as follow: applaunch (atoms

that only go to an application), browser (access the Inter-

net), mms (deal with multimedia messages), multimedia

(deal with multimedia files and camera), phonebook (deal

with calendar, events and contacts), and sms (deal with text

messages). Function partition in line 3 takes as input a user-

defined test suite and returns a map that associates a set in-

cluding all atoms of a category with the category it belongs.

The code fragment in the line range 5-10 selects nAtoms

on each category and assigns the resulting map to variable

selected. We apply pairwise coverage [12] to generate

sequences of atoms with the property that each atom of

each category is paired to another atom of another category

in at least one case. For this, we use the Allpairs [1]

tool. Finally, it gives as output sequences of atoms (each

sequence includes one atom of each category), and then

Config. E Config. H

CID time CID time

1 - 5.5 5 1.6

2 5 2.4 - 5.0

3 5 5.3 - 5.4

4 - 10.4 5 1.3

5 - 6.2 - 6.7

6 - 4.9 5 1.1

7 5 3.1 - 4.3

8 5 6.7 - 5.5

9 - 5.4 - 5.4

10 - 5.5 5 2.2

avg. 40% 5.5 40% 3.8

Table 4. Runs of AF with different execution

lists for configurations E and H

concatenates these sequences to build one longer sequence

AF executes.

Results. Table 4 shows detailed data for the 10 runs of AF

over configurations E and H. Our key observations for this

experiment are as follows:

• Time. The average time Config. E (resp., Config H)

took to find a crash – 5.5h (resp., 3.8h) was higher than

the one for Experiment II – 2.5h (resp., 2.8h), see Ta-

ble 3. However, if we only consider the runs that found

a crash in Config. H, AF performed faster in this exper-

iment. Its slowest time was 2.2h, while Experiment II

reported 3.4h.

• Precision. For both configurations, AF found a crash

in only 4 out of 10 runs, while AF found a crash for

100% of the cases when using atoms derived from SH

tests.

This experiment indicates that the interaction between

categories (functionalities of the system) may not be as im-

portant as the selection of critical atoms.

3.5. Impact of Randomization on BxT

This section discusses two experiments to evaluate the

effect of randomization on BxT. The first experiment evalu-

ates D-BxT compared to BxT. The second experiment eval-

uates the effect of using different random seeds as input to

BxT.

3.5.1 Random data and sequence in BxT

This section shows the impact that the use of different

random seeds has in the effectiveness of BxT.

Conf.E: σ = 00.06, x̄ = 00.50, x̂ = 00.49

Conf.D: σ = 01.10, x̄ = 01.29, x̂ = 01.31

Conf.A: σ = 13.10, x̄ = 18.31, x̂ = 14.02
Conf.B: σ = 04.02, x̄ = 38.09, x̂ = 40.00 Conf.F: σ = 00.00, x̄ = 40.00, x̂ = 40.00

Conf.G: σ = 00.83, x̄ = 10.18, x̂ = 10.49
Conf.H: σ = 05.61, x̄ = 06.05, x̂ = 03.63

Conf.C: σ = 16.92, x̄ = 27.87, x̂ = 37.06

0
1

0
2

0
3

0
4

0

T
im

e
 (

H
o

u
rs

)

 A B C D E F G H

Figure 3. BXT time distributions for random

data and sequence.

Setup. We ran BxT 10 times for each configuration with

different random seeds. The use of different seeds impacts

the generation of different sequences of events and data.

With this experiment we want to observe the variance of the

technique for distinct seed selections. Figure 3 shows the

distribution time (in hours) and Table 5 shows the detailed

data for all configurations.

Results. We list next key observations:

• Precision. Although BxT misses the crash in some ex-

ecutions, it can find crashes consistently. The mean of

the precision was high (69%).

• Variance. The standard deviation in BxT is high for

configurations A, C and H but low for the other con-

figuration. It is likely that, for those cases, the fault

density is low relative to other configurations and the

selection plays an important role.

3.5.2 Comparison of BxT and D-BxT

This section compares BxT and D-BxT.

Setup. This experiment configures BxT with a timeout

of 40h, and parameter numRept set to 1000. BxT runs

1000 events in each iteration, taking approximately 10min.

D-BxT explores one screen for some time (less than 10

minutes) and jumps to another screen until it reaches the

40h timeout. The experiment configures D-BxT with the

Config. A Config. B Config. C Config. D Config. E Config. F Config. G Config. H

CID time CID time CID time CID time CID time CID time CID time CID time

1 6 14.6 - 40.0 - 40.0 7 1.2 5 0.5 - 40.0 6 8.0 4 12.0

2 1 1.4 - 40.0 - 40.0 7 1.4 5 0.5 - 40.0 6 10.0 4 15.4

3 - 40.0 4 39.9 1 7.1 7 1.3 5 0.5 - 40.0 6 10.6 5 1.2

4 11 12.9 - 40.0 12 32.4 7 1.3 5 0.4 - 40.0 6 10.5 5 4.5

5 6 7.8 - 40.0 1 35.2 7 1.3 5 0.5 - 40.0 6 10.7 10 0.8

6 11 11.9 - 40.0 - 40.0 7 1.1 5 0.6 - 40.0 6 9.9 4 5.8

7 11 14.0 - 40.0 12 2.5 7 1.4 5 0.5 - 40.0 6 10.5 6 2.7

8 - 40.0 4 30.0 - 40.0 7 1.4 5 0.6 - 40.0 4 10.9 5 2.7

9 1 27.7 - 40.0 - 40.0 7 1.2 5 0.6 - 40.0 6 10.7 10 1.5

10 11 14.1 - 40.0 12 1.6 7 1.4 5 0.6 - 40.0 6 10.1 5 14.0

avg. 80% 18.4 20% 38.1 50% 27.9 100% 1.3 100% 0.5 0% 40.0 100% 10.2 100% 6.1

Table 5. Impact of using random seeds in BxT.

parameter numRept set to 50, which results in each iteration

taking approximately 30s.

Results. Table 1 summarizes the comparison. We observe

the execution time difference from BxT to D-BxT consid-

ering all configuration runs, and the time difference consid-

ering only those runs that both BxT and D-BxT crash the

application. We list below our key observations:

• Time. On average, D-BxT is slower than BxT when

they both find a crash. D-BxT ran 22.6 hours more

than BxT.

• Precision. In contrast to D-BxT and AF, BxT could not

crash the application in 3 out of 8 configurations. That

indicates that the screen jump was effective to improve

the exploration. Conceptually, the jumps correspond

to a higher weight to the width compared to the depth

of the exploration graph.

3.6. Dispersion of screens in D-BxT

We conducted one experiment to evaluate whether more

uniform exploration with D-BxT (i.e., exploration that vis-

its screens with similar frequencies) correlates with time for

finding a bug. The insight is that one does not want to ex-

plore for too-long regions without bugs.

We run each of the 8 phone configurations for 5 times

with different seeds and measure two variables of interest:

(i) dispersion of screens, and (ii) time for a bug. For disper-

sion, we count how many times each screen is visited (in a

single exploration) and calculate the standard deviation of

these counters. Figure 4 shows the scatter plot with points

relating these two variables of interest. The linear regres-

sion line shows tendency. The correlation coefficient for

this data set is 0.6 (ranges from 0 to 1) with a p-value (prob-

ability of rejecting the null-hypothesis) of 0.00007614. As

expected the correlation between these two variables is rel-

atively high.

0 5 10 15 20 25 30

0
5
0

1
0
0

1
5
0

Time to find a crash

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
s
c
re

e
n
 c

o
v
e
ra

g
e

Figure 4. Correlation between dispertion of
screeen counters and capability to find er-

rors.

3.7. Threats to validity

This section describes threats to internal and external

validity of our experiments. Internal validity determines

whether the techniques have a cause-and-effect relationship

in the experimental observations. External validity deter-

mines whether or not one can generalize the experimental

observations to other scenarios.

One threat to internal validity is internal randomness.

In principle, it is possible that the system does not answer

promptly to the commands that the automated test issues.

This depends on the operating system’s scheduling deci-

sions. This effect could impact our observations. One threat

to external validity is portability of techniques. We im-

plemented all techniques with the goal of testing cellular

phones. In principle, there is no reason to believe that they

are not applicable to other kinds of application.

4. Discussion

Experimental results show that no technique subsumes

the other with respect to both capability of crash and time

for a crash. The techniques are therefore complementary

with respect to these metrics. For instance, despite the fact

that all techniques can find a crash when SH finds, SH can

crash configuration H the fastest. In addition, it is very im-

portant to note that having different crash reports is very

important as sometimes these crashes correspond to differ-

ent faults.

5 Related and Future Work

Brooks and Memon [6] propose a technique to generate

test cases based on usage information, in the form of usage

profiles. These profiles describe event sequences captured

from the user’s experience, i.e., event sequences captured

while the user interacts with the GUI. Although the idea of

using profiles is appealing, it is not yet practical in the do-

main we evaluate our techniques (cellular communication).

This work is complementary to ours.

Yuan and Memon [15] propose a technique for test case

generation of GUI applications based on the analysis of

feedback obtained observing the state of GUI widgets from

sample executions. The goal is to include only related

events in a test and therefore reduce the search space. More

precisely, relate events that read (resp. write) to a part of the

state that the other writes (resp. reads). Identifying these

data dependencies helps significantly to reduce the search

space that a test driver needs to explore. We plan to build

on these ideas as future work.

Memon at al. [11] design many different generic oracles

for GUI that one can use to assert her expectations of a test

output. Their paper shows the importance of oracle defini-

tions to estimate the effectiveness of the testing process. We

are currently using one specific kind of oracle for detecting

crashes and plan to use other kinds of oracles in the near

future. More specifically, oracles to detect memory leakage

and battery consumption.

6. Conclusions

This paper describes black-box testing techniques with

the goal of crashing GUI. We evaluate these techniques on

Motorola cellular phones with real (historical) errors.

Our empirical results demonstrate that AF and BxT to-

gether outperformed SH and DH with respect to time and

also to the number of crashes reported. We also observed

that the precision for AF and BxT was 74% and 69% re-

spectively. This result indicates that a more automated tech-

nique (BxT) performed nearly the same w.r.t. precision as

one using user-provided test suites as input (AF). Experi-

mental results show that no technique subsumes the other

with respect to both time and number of crashes found. In

addition, different crash reports have shown to be important

for identifying different bugs. This suggests that a testing

team should run all algorithms when possible.

Acknowledgments. This work is in collaboration with the

Stress Lab team at Motorola Brazil Test Center and is par-

tially supported by the CNPq grants 142905/2006-2 and

550466/2005-3.

References

[1] James Bach - Satisfice, Inc webpage. http://www.

satisfice.com/tools/pairs.zip.

[2] Linux Java webpage. http://www.motorola.com/

motomagx/.

[3] Symbian webpage. http://www.symbian.org.

[4] L. Apfelbaum and J. Doyle. Model based testing. In Soft-

ware Quality Week Conference, pages 296–300, 1997.

[5] B. Beizer. Software Testing Techniques. International Thom-

son Computer Press, 1990.

[6] P. A. Brooks and A. M. Memon. Automated gui testing

guided by usage profiles. In ASE ’07, pages 333–342, New

York, NY, USA, 2007. ACM.

[7] A. Gotlieb. Exploiting symmetries to test programs. In IS-

SRE, Denver, Colorado, November 2003.

[8] M. Harman and J. Wegener. Getting results from search-

based approaches to software engineering. In ICSE, pages

728–729, 2004.

[9] R. Iosif. Exploiting heap symmetries in explicit-state model

checking of software. In ASE, page 254, Washington, DC,

USA, 2001. IEEE Computer Society.

[10] D. Lee and M. Yannakakis. Principles and methods of test-

ing finite state machines - A survey. In Proceeding of The

IEEE, volume 84, pages 1090–1123, Aug. 1996.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan. What test

oracle should I use for effective GUI testing? In ASE, pages

164–173, 2003.

[12] G. J. Myers. Art of Software Testing. John Wiley & Sons,

Inc., 1979.

[13] P. Santhanam and B. Hailpern. Software debugging, testing,

and verification. IBM Systems Journal, 41:4–12, 2002.

[14] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input gen-

eration for Java containers using state matching. In ISSTA,

pages 37–48, 2006.

[15] X. Yuan and A. M. Memon. Using gui run-time state as

feedback to generate test cases. In ICSE, pages 396–405,

Washington, DC, USA, 2007. IEEE Computer Society.

