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Abstract. A formal framework for software development and analysis
is presented, which aims at reducing the gap between formal specifi-
cation and implementation by integrating the two and allowing them
together to form a system. It is called monitoring-oriented programming
(MOP), since runtime monitoring is supported and encouraged as a fun-
damental principle. Monitors are automatically synthesized from formal
specifications and integrated at appropriate places in the program, ac-
cording to user-configurable attributes. Violations and/or validations of
specifications can trigger user-defined code at any points in the program,
in particular recovery code, outputting/sending messages, or raising ex-
ceptions. The major novelty of MOP is its generality w.r.t. logical for-
malisms: it allows users to insert their favorite or domain-specific spec-
ification formalisms via logic plug-in modules. A WWW repository has
been created, allowing MOP users to download and upload logic plug-
ins. An experimental prototype tool, called Java-MOP, is also discussed,
which currently supports most but not all of the desired MOP features.

1 Introduction

We present a tool-supported software development and analysis framework, aim-
ing at increasing the quality of software through monitoring of formal specifi-
cations against running programs. Based on the belief that specification and
implementation should together form a system, the presented framework techni-
cally allows and methodologically encourages designs in which the two interact
with each other. For this reason, we call it monitoring-oriented programming
(MOP). In MOP, runtime violations and validations of specifications result in
adding functionality to a system by executing user-defined code at user-defined
places in the program; executing recovery code, outputting or sending messages,
throwing exceptions, etc., are just special cases. Monitors are automatically syn-
thesized from specifications and integrated appropriately within the system.

Practice has shown that there is no “silver bullet” logic to formally express
any software requirements. One of the major design decisions of MOP was to
keep it independent from any particular specification formalism. Instead, a spec-
ification formalism can be modularly added to the MOP framework, provided
that it is coded as a logic plug-in, that is, a module whose interface respects some



rigorously defined and standardized conventions explained in the paper. A logic
plug-in essentially incorporates a monitor synthesis algorithm, taking formal
specifications to corresponding concrete monitoring code that analyzes program
execution traces. No other restrictions are imposed on the MOP-admissible spec-
ification formalisms, such as to be “executable” or “declarative”; these can range
from highly abstract to very detailed. Once a specification formalism is defined
as a logic plug-in, any MOP user can include it into her MOP framework. To
facilitate the reuse of logic plug-ins, we created a WWW repository where users
can download and upload their favorite, or application-specific, logic plug-ins.

Besides monitor synthesis, another major aspect of MOP is monitor inte-
gration. This is technically very challenging, because some specifications may
need to be checked at various places in a program, some of them hard to detect
statically. Monitor integration is highly dependent upon the target programming
language(s). We have implemented a prototype MOP framework for Java soft-
ware development and analysis, called Java-MOP, which will be also discussed.

In short, one can understand MOP from at least three perspectives:

(1) As a discipline allowing one to improve reliability of a system by monitoring
its requirements against its implementation at runtime. By generating and inte-
grating the monitors automatically rather than manually, MOP provides several
important advantages, including reduced risk of producing wrong monitors due
to misunderstanding of specifications, complete integration of monitors at places
that may change as the application evolves, software products more amenable
to formal verification and validation, and increased separation of concerns.

(2) As an extension of programming languages with logics. One can add logical
statements anywhere in the program, referring to past or future states. These
can be seen at least like any other boolean expressions, so they give the user
a maximum of flexibility in using them: to terminate the program, guide its
execution, recover from a bad state, add functionality, throw exceptions, etc. In
some sense, MOP can be regarded as a framework potentially enabling fault-
tolerant software development methodologies.

(3) As a lightweight formal method. While firmly based on logical formalisms and
mathematical techniques, MOP aims at avoiding verifying an implementation
against its specification before operation, by not letting it go wrong at runtime.

The idea of MOP was first introduced in [6] at the Runtime Verification (RV)
workshop, focusing mainly on the logic independence aspect of it and having min-
imal tool support. The current paper reports significant advances of both ideo-
logical and technical nature, such as: (a) an AOP-based instrumentation package
allowing more flexible monitors to be generated as aspects, based on which our
current prototype can now support JASS annotations and will soon support
JML; (b) several novel configuration attributes besides the in-line and out-line
ones in [6], such as on-line, off-line, and synchronous; (c) a WWW repository of
logic-plug-ins where users can test, download and upload logic plug-ins, contain-
ing already four of them: future time and past time temporal logics, extended
regular expressions and JASS; and a new and much improved implementation of
Java-MOP which can be configured to generate monitoring code using directly



the logic plug-ins in the WWW repository. Since RV has a relatively limited
audience, in this paper we do not assume the reader already familiar to MOP

concepts and terminology. All the necessary notions are introduced as needed.

Related Work. There are many approaches related to MOP that were a great
source of inspiration for us. What makes MOP different is its generality and
modularity with respect to specification languages, allowing it to include other
approaches as special cases. It is a major part of our efforts to capture these
relationships explicitly, by providing specific logic plug-ins.

Design by Contract (DBC) [20] is a software design methodology particularly
well supported in Eiffel [11]. DBC allows specifications to be associated with
programs as assertions and invariants, which are compiled into runtime checks.
There are DBC extensions proposed for several languages, such as JASS [4] and
jContractor [1] for Java. Java 1.4 introduces simple assertions as part of
the language, which are then compiled into runtime checks. DBC approaches
fall under the uniform format of logic plug-ins, so MOP can naturally support
DBC variants as special methodological cases. To strengthen this claim, we have
implemented a logic plug-in for JASS. However, MOP also allows monitors to
be synthesized out-line (See section 2.1 for more details), which is crucial in
assuring high reliability of software and is not provided by any DBC approach.

Java Modeling Language (JML) [18] is a behavioral specification language
for Java. It can be used to specify designs for Java classes and interfaces, and
provides the basis for further analysis, e.g., runtime debugging [7] and static
analysis [12]. JML assertions are presented as special annotations, using a fixed
logical formalism, so JML can be easily incorporated into Java-MOP.

Runtime Verification (RV) is an area [14, 15, 26] dedicated to providing more
rigor in testing. In RV, monitors are automatically synthesized from formal spec-
ifications, and can be deployed off-line for debugging, i.e., they analyze the ex-
ecution trace “post-mortem” by potentially random access to states, or on-line
for dynamically checking properties are not being violated during execution.
Java-MaC [17], JPaX [24], and Temporal Rover [9] are examples of such
RV systems; however, they also have their requirements logics hardwired, and
their generated monitors are synchronous. The MOP paradigm supports both
in-line and out-line, both on-line and off-line, as well as both synchronous and
asynchronous monitoring; these modes will be explained in Section 2. Although
our current Java-MOP prototype does not support all these modes yet, as ar-
gued in Section 4, it is not hard to incorporate them. MOP also allows any
logical specification formalism to be modularly added to the system. It is ex-
pected that all the RV systems that we are aware of will fall under the general
MOP architecture, provided that appropriate logic plug-ins are defined.

Aspect Oriented Programming (AOP) [16] is a software development tech-
nique aiming at separation of concerns [27]. An aspect is a module that charac-
terizes the behavior of cross-cutting concerns. AOP provides a means to define
behavior that cross-cuts different abstractions of a program, avoiding scattering
code that is related to a single concept at different points of the program, thus
aiming for maintenance and extensibility of the code. Similarly to AOP, MOP



requires instrumentation to integrate monitors into the code; however, instru-
mentation is a small piece of MOP, namely a subpart of its monitor integration
capability. MOP’s most challenging part is indeed to synthesize monitors from
user defined logical formulae. In AOP, the behavior of each aspect is left to
be defined by the programmer. Actually, MOP and AOP are intended to solve
different problems. MOP is tuned and optimized to merge specification and im-
plementation via monitoring, while AOP aims at separation of concerns. Our
current MOP prototype uses AspectJ [2] as an instrumentation infrastruc-
ture. However, AspectJ does not provide support for several important MOP

features, such as asynchronous and/or out-line monitoring, as well as strong run-
time support needed to check a property at each change of the state of an object,
which is a must in the context of safety critical software.

2 Overview of MOP

The general idea underlying MOP is that specifications are inserted in programs
via annotations. Actual monitoring code is automatically synthesized from these
annotations and integrated at appropriate places in the program, according to
user-defined configuration attributes of the monitor. Before we present the gen-

... (Java code A) ...
/*@ FTLTL

Predicate red : tlc.state.getColor() == 1;
Predicate green : tlc.state.getColor() == 2;
Predicate yellow : tlc.state.getColor() == 3;
// yellow after green
Formula : [](green -> (! red U yellow));
Violation handler : ... (Java "recovery" code) ...

@*/
... (Java code B) ...

Fig. 1. Java-MOP specification.

eral principles of MOP, we first present a simple example. Figure 1 shows a
Java-MOP annotation, where a traffic light controller is monitored against the
safety property “yellow after green” expressed as a future time linear temporal
logic (FTLTL) formula. Java-MOP takes such an annotated code and gener-
ates the corresponding monitor as plain Java code, which is shown in Figure 2.
More details on the syntax of annotations are given in Section 2.1; [5] presents

... (Java code A) ...
switch(FTLTL_1_state) {
case 1:

FTLTL_1_state = (tlc.state.getColor() == 3) ? 1 :
(tlc.state.getColor() == 2) ? (tlc.state.getColor() == 1) ? -2 : 2 : 1; break;

case 2:
FTLTL_1_state = (tlc.state.getColor() == 3) ? 1 :
(tlc.state.getColor() == 1) ? -2 : 2; break ;

}
if (FTLTL_1_state == -2) { ...(Violation Handler)... }
// Validation Handler is empty
... (Java code B) ...

Fig. 2. Monitor generated for the MOP specification in Figure 1.

temporal logic and its corresponding monitor synthesis algorithm.



One way to regard MOP is as an extension of programming languages with
special statements which can refer to current, past or future states of the pro-
gram. To effectively handle these special statements, a standardized annota-
tion language is needed. Annotations are automatically converted into monitors,
which can have several configurable attributes. The monitors may need meta-
information about the program’s state, such as the name of the current method
or class, so a standardized communication interface between the program and
annotations is also needed. Logics should be easy to incorporate as modules,
called logic plug-ins, so another standardized interface is necessary for these.

2.1 Extending Programming Languages with Logical Annotations

Most works on extending languages with annotations mainly focus on detecting
program errors. MOP is built on the belief that logical annotations can play a
deeper, active role in the execution of a program. For example, Figure 3 shows
how one can use MOP to guarantee authentication before access to protected
resources, by simply adding an appropriate safety policy together with an action.
The safety policy, expressed in negative form using extended regular expressions
(ERE; see [5]), states that “if one accesses a resource, it must be the case that at
some moment in the past the end of the authentication process has been seen”.
This policy is violated iff the ERE formula [^end(a)]* start(m), stating that
the end of the authentication has not occurred before the resource started to be
managed, is validated. If that is the case then, instead of reporting an error, one
simply enforces the authentication. Note that this specification has the attribute
class (explained below), so the generated monitor will check the safety policy
at each state change of the current object.

/*@ ERE {class}
Event a : authenticate() ;
Event m : manageResource() ;
// If the resource is accessed without authentication
Formula : (^ end(a))* start(m)
// enforce the authentication
Validation Handler: authenticate();

@*/

Fig. 3. A class monitor to assure authentication.

It is often the case that it is easier to express a safety policy by what should
not happen. This is one of the reasons for which MOP accepts both a violation
and a validation handler; another reason comes from the fact that there are
situations where one may want to take different actions depending on whether
a policy is violated or validated. Note that violation and validation are not
complementary properties. Hence, by combining specifications expressed using
appropriate underlying logical formalisms and code, and by synthesizing and
integrating automatically corresponding monitoring code, critical properties of a
program can be expressed and implemented rigorously and compactly. Moreover,
the obtained program is more amenable to formal verification and validation,
because significant parts of it are directly generated from its specification.
MOP Annotations. Specifications are introduced as comments in the host
language, having the structure in Figure 4. They begin with an optional name,



/*@ [Annotation Name] <Logic Name> [{attributes}]
... Specification Body ...
[Violation Handler: ... code handling the violation ...]
[Validation Hander: ... code to trigger when validated ...

@*/

Fig. 4. The structure of MOP annotations.

followed by a required name of its underlying logic, e.g., FTLTL or ERE in the
examples in Figures 1 or 3, respectively, followed by optional monitor configura-
tion attributes (which will be discussed shortly), followed by the main body of
the annotation, whose format is logic-specific. In case of FTLTL, e.g., the body
of the specification has two parts: one containing declarations of predicates based
on program states, and the other containing the FTLTL formula built on these.

The last part of the annotation contains user-defined actions, including a vio-
lation handler and a validation handler. Catching the violation is a programmer’s
main concern in most cases, and then common actions are to throw exceptions or
produce error logs; MOP gives one full freedom in how to continue the execution
of the program. One may also want to take an action when the specification is
fulfilled at runtime. For example, a requirement “eventually F”, which is vali-
dated when F first holds, may trigger a certain action. All these suggest a strong
sense of programming with logics in MOP.

Monitor Configuration Attributes. Monitors generated from specifications
can be used in different ways and can be integrated at different places, depend-
ing on specific needs of the application under consideration. For example, some
specifications need to be checked at only one point (e.g., pre- or post-conditions),
while others must be monitored at any point in the program (e.g., class invari-
ants). In some applications, one may want generated monitors to use the same
resources as the rest of the program, in others one may want to run the moni-
tors as different processes. To give the software developers maximum flexibility,
MOP allows one to configure the monitors using attributes in annotations.

The uniqueness attribute, denoted !. The default monitor configuration
behavior is to create a monitor instance for each object of the corresponding
class. However, if a monitor is specified as unique, it will only have one instance
at runtime, regardless of the number of objects of that class.

There are two running mode attributes, stating how the generated monitor-
ing code is executed. One is in-line versus out-line monitoring. Under in-line
monitoring, which is the default, the monitor runs using the same resource space
as the program. The monitor is inserted as one or more pieces of code into the
monitored program. In the out-line mode, the monitoring code is executed as a
different process, potentially on a different machine or CPU. The in-line monitor
can often be more efficient because it does not need inter-process communication
and can take advantage of compiler optimizations. However, an in-line monitor
cannot detect whether the program deadlocks or stops unexpectedly. Out-line
monitoring has the advantage that it allows, but does not enforce, a centralized
computation model, that is, one monitor server can be used to monitor multiple
programs. In order to reduce the runtime overhead of out-line monitoring in
certain applications, one can define communication strategies; for example, the
monitored program can send out the concrete values of the relevant variables



and the out-line monitor evaluates the state predicates, or, alternatively, the
monitored program sends out directly the boolean values of the state predicates.

The other running mode attribute is on-line versus off-line. Under on-line
monitoring, which is the default, specifications are checked against the execution
of the program dynamically and run-time actions are taken as the specifications
are violated or validated. The off-line mode is mostly used for debugging pur-
poses: the program is instrumented to log an appropriate execution trace in a
user-specified file and a program is generated which can analyze the execution
trace. The advantage of off-line monitoring is that the monitor has random ac-
cess to the execution trace. Indeed, there are common logics for which on-line
monitoring is exponential while off-line monitoring is linear [24].

Note that the two running mode attributes are orthogonal to each other. In
particular, an in-line off-line configuration inserts instrumentation code into the
original program for generating and logging the relevant states as the program
executes. Alternatively, an out-line off-line configuration generates an observer
process which receives events from the running program and generates and then
logs the states relevant to the corresponding specification. The latter may be
desirable, for example, when specifications involve many atomic predicates based
on a relatively small number of program variables; in this case, the runtime
overhead may be significantly reduced if the program is instrumented to just
send those variables to the observer and let the latter evaluate the predicates.

In the case of on-line monitoring, a further attribute, synchronization ,
is possible. This attribute states whether the execution of the monitor should
block the execution of the monitored program or not. In in-line monitoring, for
example, a synchronized monitor is executed within the same thread as the sur-
rounding code, while an asynchronous one may create a new execution thread
and thus reduce the runtime overhead on multi-threaded/multi-processor plat-
forms. Synchronization also plays a role in synthesizing code from logic formu-
lae, because, for some logics, asynchronous monitoring is more efficient than
synchronous monitoring. Consider, for example, the formula “next F and next
not F” which is obviously not satisfiable: a synchronous monitor must report a
violation right away, while an asynchronous one can wait one more event, derive
the formula to “F and not F”, and then easily detect the violation by boolean
simplification. Note that synchronous monitoring requires running a satisfiability
test, which for most logics is very expensive (PSPACE-complete or worse).

The effective scope attribute, which can be class, method, block or check-
point, specifies the points at which the monitoring code is merged with the mon-
itored program. As indicated by name, the class attribute specifies an invariant
of a class, so it should be checked whenever the class state changes. The method
one refers to a specific method, which can be further divided into three sub-
categories: pre-method (before the method), post-method (after the method),
and exceptional-method (when the method raises exceptions). The annotation
can also be associated to a block, e.g., as a loop invariant/variant. Similar to the
method annotation, it is divided into three subtypes, namely, pre-block (before
the block), post-block (after the block), and exceptional-block (when the block



throws exceptions). Finally, the checkpoint attribute, which is the default, states
that the monitoring code should be integrated at the exact current place in the
program. Section 2.2 describes in more depth the monitor integration problem.
Retrieving Program Information. Since specification and implementation
live together in MOP, the specification needs information about the program in
order to define and synthesize its runtime behavior. The general principle is to
use the elements of the program to construct the elements of the specification,
such as the atomic predicates which are defined on the state of the program.
Three other pieces of information about the program, besides its state, have
turned out to be practically important in MOP to enhance its expressibility and
functionality, namely, positions, results and historic references. Figure 5 shows an
example of how a JASS specification in Java-MOP can use such information.

/*@ JASS {post-method}
@ ensures x == Old.x ;
@ ensures Result == a * a ;
Violation Handler:
throw new Exception("Method "+@FNCT_NAME_+" violated property "+ @ANNT_Name);

@*/
int square(int a) { ... (Java Code) ... }

Fig. 5. Specification retrieving program information.

The position information is extracted via special variable names, such as
@METHOD_NAME_ for the name of the method that contains the current annotation.
Position information is useful to generate effective messages to users. Many other
special position variables are available, including ones for class and file names,
line numbers, etc. The use of predefined variables allows certain specifications
to be independent of their position and of changes of names of methods, classes,
etc. The result and historic references are useful to state certain properties, such
as pre- and post-conditions of methods. The specification in Figure 5 states that
after each execution of the square method, the value of the class field x stays
unchanged and the result of the method is indeed the square of its input.

2.2 Extensible Logical Framework

To allow specifications using potentially different underlying formalisms, sup-
port for attaching new logical frameworks to an MOP environment is needed.
The layered MOP architecture in Figure 6 is currently adopted. It is especially
tuned to facilitate extending the MOP framework with new logical formalisms
added to the system as new components, which we simply call logic plug-ins.
More specifically, a logic plugin is usually composed of two modules in the ar-
chitecture, namely a logic engine and a language shell. By standardizing the
protocols between layers, new modules can be easily and independently added,
and modules on a lower layer can be reused by those on the adjacent upper layer.

The first layer provides a friendly user interface, via which one can define,
process, and debug MOP annotations. The second layer contains annotation pro-
cessors, each specialized on a specific target programming language. It consists
essentially of a program scanner, which isolates annotations to be processed by
specialized modules and report errors if these do not follow the expected struc-
ture. Annotation processors extract the specifications and dispatch them to the
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corresponding logic plug-ins. Then they collect the generated monitoring code
and integrate it within the monitored program according to the configuration
attributes. The two upper levels are not expected to change or update frequently.

The two lower levels contain the logic plug-ins, which may be added, re-
moved, or updated on a frequent basis. To employ a new specification language,
the user needs to develop a new logic plug-in, or obtain one from others or
the provided WWW repository (see Section 3), and add it to her MOP frame-
work. Then, annotations using the new formalism can be processed in a “push
button” manner. Monitors generated for a specific programming language and
specification formalism are generated on the third layer, by modules called lan-
guage shells, acting as intermediaries between annotation processors and logic
engines. In some simple cases, such as DBC or JML, the shell can directly gen-
erate monitors without the need of a logic engine. Modules on the bottom layer
are the logic engines, forming a core and distinguished feature of MOP. These
are generic translators from logic formulae into efficient monitors. Their output
uses abstract pseudocode, which is further translated into specific target code by
language shells. Therefore, logic engines can be reused across different languages.
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Monitored
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: Software Artifacts : System Modules

Formal

Code

Annotations
MoP
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Fig. 7. Program transformation flow in MOP.

The protocols between adjacent layers are based exclusively on ASCII text,
to achieve maximum flexibility, extensibility, and to ease debugging and test-
ing. Basically, components in this architecture are implemented as individual
programs receiving ASCII text from the standard input and outputting ASCII
text to the standard output. Hence, the modules can be implemented by differ-
ent roles using different languages, and can run on different platforms. Figure 7
shows how an MOP supporting tool transforms an annotated program.



Interface of Logic Plug-ins. An important interface is the one between the
upper two layers and the lower ones, allowing MOP supporting tools to interact
with the logic plug-ins. The input of a logic plug-in is clearly a formal specifica-
tion, but the format of its output is less obvious. We next discuss five dimensions
that the output of any logic plug-in must consider in order to be attachable to
an MOP supporting tool, regardless of its internal monitor synthesis technique.
Several concrete logic plug-ins that have already been experimentally evaluated
using our Java-MOP prototype are discussed in [5].

(1) Declarations. Variables storing the state of the monitor. These will be
automatically inserted at appropriate places in the program, depending upon the
target programming language and the configuration attributes of the monitor.

(2) Initialization. This phase prepares the variables for starting the mon-
itoring and is executed only once, the first time the monitoring breakpoint is
encountered during the execution of the program.

(3) Monitoring body. This is the main part of the monitor, executed when-
ever the monitor breakpoint is reached.

(4) Success condition. This gives the condition stating that the monitoring
requirement has been fulfilled, so that there is no reason to monitor it anymore.
For example, for a formula “eventually F” in future time temporal logic, this
condition becomes true when F holds the first time.

(5) Failure condition. This gives the condition that states when the trace
violates the requirements. When this condition becomes true, user-provided re-
covery code will be executed. “Recovery” should be taken with a grain of salt
here, because such code can not only throw an exception or put the system in a
safe state, but also attach (any) new functionality to the program.

Logic Plug-ins Development. Designing and implementing a monitoring logic
plug-in is a highly nontrivial task, requiring a careful analysis of trade-offs among
various existing possibilities, or even developing entirely new algorithms. Two
or more logic plug-ins can be possible for a given logic, each with different ad-
vantages and disadvantages. One typical situation is for a logic to admit a logic
plug-in in which all the states of the monitor are explicitly generated, such as
an automaton, and one in which only one current state of the monitor is stored,
but a means to generate the next state on-the-fly is provided. A major benefit
of the modular MOP architecture is that users are encouraged to develop such
logic plug-ins once and for all, and then to post them in WWW repositories.
We have devised monitor synthesis algorithms for future time, past time, metric
and epistemic temporal logics, extended regular expressions and JASS (Section
3); and we are currently developing logic plug-ins for other logics, including real-
time logic (RTL) [23] and Eagle [3]. A logic plug-in contains two sub-modules,
a logic engine and a programming language shell. The former generates moni-
toring pseudocode from the input specification, and then the later turns that
pseudocode into target programming language code. This way, a mathemati-
cally skilled developer of the specific logic engine does not need to know the
target programming language, and the logic engine can be reused for different
programming languages. The language shells are usually straightforward.



Monitor Integration. Once a monitoring code is generated, an MOP sup-
porting tool needs to integrate it into the original program according to the con-
figuration attributes. Specifically, under the in-line mode the monitoring code
is placed at proper positions within the monitored program, while under the
out-line mode the MOP tool firstly constructs a stand-alone monitor program
and then generates corresponding communication code which is placed at proper
positions into the monitored program. For the off-line case, code that logs the
relevant execution trace is inserted at specific places in the program and a stand-
alone analysis program is also generated, but its role is to detect errors in the
log rather than to influence the execution of the program at runtime.

The effective scope attribute says where the monitoring, communication or
logging code needs to be placed. The method-related monitor is placed at the
beginning of the method or at the end of it, and the monitor associated to the
block is handled similarly, but with a smaller scope. The checkpoint monitor is
easy to integrate by replacing the annotation with the generated code.

Class-scoped monitors, i.e., those generated from annotations with the config-
uration attribute class, are the most difficult to integrate; Java-MOP currently
supports only a partial integration of these monitors. One approach towards a
complete solution would be to insert the monitoring code at all places where
relevant events can take place, e.g., before or after method calls, or after vari-
able assignments. However, this simplistic approach can add an unacceptable
runtime overhead and may raise some additional technical difficulties because of
aliasing. JASS provides a tempting trade-off to reduce the complexity of this
problem, by requiring that the specification holds only in those states that can
be acknowledged by the client of a library, e.g., before or after the invocation to a
method. We are currently adopting this trade-off in our Java-MOP prototype,
which may admittedly allow safety leaks in critical systems.

Monitor integration gives MOP a flavor of AOP, and indeed, our current
prototype uses AspectJ to realize the instrumentation. However, MOP’s major
purpose is to extend programming languages with logics as a means to combine
formal specification and implementation, rather than to explicitly address cross-
cutting concerns. The essential and most challenging parts in the development of
a framework supporting MOP are to set up the general logic-extensible infras-
tructure and to develop the individual logic plug-ins. AOP techniques are only
employed to facilitate the final monitoring code integration. Besides, MOP sup-
ports local specifications, such as block properties and/or checkpoint, which are
not considered in AOP. Moreover, MOP is concerned with the runtime behavior
of the program rather than with its static structure. As previously mentioned,
our current prototype can not support rigorous class invariants monitoring, be-
cause the required runtime support is beyond the current abilities of AOP.

3 Java-MOP

We next present Java-MOP, an MOP prototype framework. It consists of an
integrated collection of specialized programs, allowing one to easily, naturally



and automatically process annotations in Java programs, via a user-friendly
interface. It is also available for download from the MOP website [21].
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Fig. 8. The Architecture of Java-MOP.

Overview. Java-MOP is essentially a distributed client-server application,
whose architecture is shown in Figure 8 and whose implementation is discussed
in more depth in [5]. Users of Java-MOP only need to download and install the
client, which is implemented entirely in Java and is platform independent. One
can also download and start the server locally and then reconfigure the client to
request monitor synthesis services locally, but this is not necessary.

The client provides both a textual and a graphical user interface. The tex-
tual one consists of a simple command taking one or more names of annotated
Java files as input and generating corresponding files in which monitors are
synthesized and integrated appropriately. The textual interface is typically used
for batch processing, which is recommended when lots of monitors need to be
generated and/or when they involve complex logical formulae which need a long
time to be processed.

A friendly GUI interface is also implemented and available for download,
based on the Eclipse platform [10]. The Java-MOP tool provides an editor
plug-in for Eclipse, called Annotated Java Editor, which can be used to process
MOP annotations in a interactive way.

Logic plug-ins. We have developed several logic plug-ins so far, which are cur-
rently supported by Java-MOP. The discussion here is rather informal, but [5]
gives formal definitions and monitor synthesis algorithms. The interested reader
is encouraged to try all the examples in this paper, as well as many others, at our
WWW plug-in repository [21], where one can generate and visualize monitors
via an HTML client.

Design by Contract - JASS. Since the various DBC approaches are based
on the idea of compiling special annotations into runtime checks, MOP can
smoothly include these approaches, provided that appropriate logic plug-ins
are developed. To test and evaluate this hypothesis, we have implemented a
Java logic plug-in for JASS. The original syntax of JASS annotations has
been slightly modified to fit the uniform, logic-independent syntactic conven-
tions in Java-MOP. JASS supports the following types of assertions: method
pre-conditions and post-conditions, loop variants and invariants, and class in-
variants. Pre-conditions must be satisfied by the caller but the callee is in charge
of checking it. Post-conditions need to be satisfied at the exit of a method. Loop
variants, used to check termination of loops, are integer expressions that must



decrease at every iteration and whose evaluation should never reach 0. Loop
invariants are checked at the boundaries of a loop, and class invariants are prop-
erties over the fields of an object and are checked on the boundaries of methods.
JASS’ logic is relatively simple, so its monitor generation is straightforward.

Temporal Logics. Temporal logics have proved to be indispensable expressive
formalisms in the field of formal specification and verification of systems [22, 8].
Many practical safety properties can be naturally expressed in temporal logics,
so these logics are also useful as specification formalisms in our MOP framework.
We implemented plug-ins for both future and past time temporal logics. In future

// Declaration
int $state = 1;

// Monitoring body
switch($state) {
case 1: $state = (tlc.state.getColor() == 3) ? 1 :

(tlc.state.getColor() == 2) ? (tlc.state.getColor() == 1) ? -2 : 2 : 1; break;
case 2: $state = (tlc.state.getColor() == 3) ? 1 :

(tlc.state.getColor() == 1) ? -2 : 2; break;
}

// Failure condition
$state == -2

G(g -> (!(r) U y))

init

 y or ! g

3 ! r

6
 True

 y 

 ! r

 True

5
 ! g and ! r

 y 

 ! r
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 ! g and ! r

Fig. 9. Generated monitor for Figure 1 and its graphical visualization.

time linear temporal logic (FTLTL), one can state properties about the future
execution of a system. Consider the example in Figure 1, which formally states
in FTLTL a safety property of a traffic light controller: “if the green light is on
then the red light should not be turned on until the yellow has been turned on”.
Figure 2 already showed the final monitoring code monitor generated from this
specification. Figure 9 shows the output of the FTLTL logic plug-in, before it
is merged within the original code by the annotation processor, as well as the
automaton generated by the HTML client to the FTLTL logic plug-in. Note
that the additional variables in the generated code have generic names, starting
with the $ symbol; the annotation processor will replace these by appropriate
fresh names, to avoid conflicts with other variable names already occurring in the
program. Dually, in past time linear temporal logic (PTLTL), one can specify
properties referring to the past states. PTLTL has been shown to have the same
expressiveness as FTLTL [13]. However, it is exponentially more succinct than
FTLTL [19] and often more convenient to specify safety policies.

Extended Regular Expressions. Software engineers and programmers under-
stand easily regular patterns, as shown by the interest in and the success of
scripting languages like Perl. We believe that regular expressions provide an
elegant and powerful specification language also for monitoring requirements,
because an execution trace of a program is a string of states. Extended regular
expressions (ERE) add complementation to regular expressions, allowing one
to specify patterns that must not occur. Complementation gives one the power
to express patterns on traces non-elementarily more compactly. However, com-
plementation leads to a non-elementary exponential explosion in the number of



states of the corresponding automaton, so naive ERE monitoring algorithms
may be impractical. Preliminary efforts in [25] show how to generate simply
exponential monitoring algorithms for ERE. A logic engine for ERE and a cor-
responding logic plug-in incorporating these algorithms has been implemented.
Online logic plug-in repository. Due to the standardized interface of MOP

components, once a logic plug-in is developed, which in most cases is expected
to be a highly nontrivial and time-consuming task, potentially any other MOP

user can use it. To facilitate the reuse of logic plug-ins and to encourage users
to propose, design, implement, and share them, we set up an online WWW
repository of logic plug-ins [21]. The MOP user can try a logic plug-in online,
via a provided HTML client, before she decides to download and install it. This
repository is also implemented so that it can serve as a remote logic plug-in
server, as discussed in Section 3. Thus, it is possible for the user to install few
or no logic plug-ins on her machine, but to retrieve them by need from the
repository. This facilitates the usage of the MOP framework, because the user
does not need to search, download, compile and install all wanted plug-ins on
her own server.

4 Conclusion and Future Work

We presented monitoring-oriented programming (MOP) as a general software
development and analysis framework, aiming at increasing the quality of software
by merging formal specifications into programs via monitors synthesized and
integrated automatically. Specification formalisms can be easily added to and
removed from an MOP supporting system, due to logic plug-ins. A WWW
repository of logic plug-ins allows MOP users to download or upload them, thus
avoiding the admittedly heavy task of developing their own logic plug-ins. The
logic-independence and the broad spectrum of generated monitor integration
capabilities allow MOP to paradigmatically capture other related techniques as
special important cases. We also introduced Java-MOP, a prototype system
supporting most of the desired features of MOP.

There is much future work to be done, part of it already started. We intend to
extend our prototype to support all the running modes soon, to incorporate other
related approaches, such as JML, and especially to evaluate the MOP paradigm
on students and in practical large size applications. Advanced techniques to
dynamically “observe” the execution of a program in as much depth as needed are
imperiously needed; the current AOP capabilities that we are using are rather
static and limited. We believe that MOP may also lead to novel programming
techniques, and more work will be dedicated to methodologies for developing
MOP-based high quality software.
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25. K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expres-

sions. In Workshop on Runtime Verification (RV’03), ENTCS, 2003. vol. 89.
26. O. Sokolsky and M. Viswanathan. Workshop on Runtime Verification (RV’03),

volume 89 of ENTCS. Elsevier, 2003. Computer Aided Verification (CAV’03).
27. P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N Degrees of Separation:

multi-dimensional separation of concerns. In ICSE’99, pages 107–119, 1999.


