
Iterative User-Driven Fault Localization

Xiangyu Li1, Marcelo d’Amorim2, and Alessandro Orso1

1 Georgia Institute of Technology, USA,
{xiangyu.li,orso}@cc.gatech.edu,

2 Federal University of Pernambuco, Brazil
damorim@cin.ufpe.br

Abstract. Because debugging is a notoriously expensive activity, nu-
merous automated debugging techniques have been proposed in the lit-
erature. In the last ten years, statistical fault localization emerged as
the most popular approach to automated debugging. One problem with
statistical fault localization techniques is that they tend to make strong
assumptions on how developers behave during debugging. These assump-
tions are often unrealistic, which considerably limits the practical appli-
cability and effectiveness of these techniques. To mitigate this issue, we
propose Swift, an iterative user-driven technique designed to support
developers during debugging. Swift (1) leverages statistical fault local-
ization to identify suspicious methods, (2) generates high-level queries
to the developer about the correctness of specific executions of the most
suspicious methods, (3) uses the feedback from the developer to improve
the localization results, and (4) repeats this cycle until the fault has been
localized. Our empirical evaluation of Swift, performed on 26 faults in
5 programs, produced promising results; on average, Swift required less
than 10 user queries to identify the fault. Most importantly, these queries
were only about input/output relationships for specific executions of the
methods, which developers should be able to answer quickly and with-
out having to look at the code. We believe that Swift is a first important
step towards defining fault localization techniques that account for the
presence of humans in the loop and are practically applicable.

1 Introduction
Debugging contributes greatly to software development costs [25]. It is therefore
not surprising that researchers and practitioners alike invested much effort in
defining techniques that can help developers in this task. Statistical fault lo-
calization (SFL) techniques, in particular, became extremely popular in recent
years (e.g., [4,6–8,14,15,18,22,27,28]). These techniques compute suspiciousness
values for various program entities using coverage information of passing and fail-
ing test cases and use theses values to produce a ranked list of program entities
in decreasing order of suspiciousness. While significant progress has been made
in this field, there is evidence that (1) asking developers to examine a possibly
long list of suspicious program entities in order and (2) expecting developers to
recognize faulty lines by simply looking at them are both unrealistic expecta-
tions. In fact, even when provided with SFL tools, developers tend not to use
them and rely on traditional manual debugging approaches instead [21].

There is thus a disconnect between research and practice in the area of soft-
ware debugging and, in particular, fault localization. In standard practice, a

debugging task typically proceeds as follows. Developers observe that a program
execution exhibits some unintended behavior, make hypotheses on what pro-
gram entities caused that behavior, and confirm or reject these hypotheses by
examining the execution at specific points. They then incorporate the additional
knowledge acquired in the process to refine their hypotheses, possibly observing
the faulty execution at different points and continuing this feedback loop until
they identify the fault responsible for the observed unintended behavior. In this
setting, debugging is an art that mainly relies on developers’ knowledge and
their familiarity with the software system being debugged.

Swift

SUT + Test Suite

x
query

answer

Fig. 1: Swift’s interaction with the user
(SUT stands for System Under Test).

To support the above process, while
trying to automate it as much as possi-
ble, we present Swift, an iterative user-
driven technique designed to help devel-
opers during debugging in a natural way.
Figure 1 provides a high-level view of
Swift, which performs SFL with humans
in the loop as follows. First, it leverages
traditional SFL techniques to identify and
rank suspicious methods. Second, it generates queries to the developer about the
correctness of specific executions of the most suspicious method. A query consists
of the inputs to that method and the corresponding outputs, possibly including
relevant program states. The developer answers a query by asserting whether
the outputs are correct for those inputs. Third, Swift uses the response provided
by the developer by incorporating it in the form of a “virtual” test case and
using this additional information to improve localization results. Swift reiterates
these steps until the SFL results become precise enough that the fault can be
localized by the developer.

A key aspect of Swift is the use of high-level abstractions to gather input
from the developer. Unlike traditional SFL, in which developers are simply pro-
vided with a list of statements and must follow the list with no guidance and
no additional context, Swift guides the developers towards the fault through
an iterative process that only requires them to check high-level input output
relationships at the method level.

To assess the effectiveness of Swift, we implemented it in a prototype tool and
performed an empirical study on 5 programs and 26 faults for these programs,
while simulating the developers’ answers using an automated oracle. The results
of our study, albeit preliminary, are promising and provide support for further
research in this direction. On average, for the faults considered, Swift required
less than 10 user queries to identify the fault, which is an initial indication of
the practical applicability and potential usefulness of our approach.

The main contributions of this paper are: (1) A novel technique that over-
comes some of the limitations of existing SFL approaches by leveraging user feed-
back in a natural way, (2) an implementation of our approach for Java programs
that is publicly available at http://www.cc.gatech.edu/˜orso/software/

swift/, together with our experimental infrastructure, and (3) an empirical

2

http://www.cc.gatech.edu/~orso/software/swift/
http://www.cc.gatech.edu/~orso/software/swift/

evaluation that provides initial evidence of the potential usefulness of our ap-
proach and identifies several directions for future work.

2 Running Example
1 public class BoundedStack {
2 Integer[] elems; int numElems;
3
4 BoundedStack(int max) {
5 elems = new Integer[max]; }
6
7 void push(Integer k) {
8 /* check size */
9 elems[numElems++] = k; }

10
11 void pop() { --numElems; }
12
13 Integer peek() {
14 if (size() == 0)
15 return null;
16 else return elems[size()-1];}
17
18 void clear() { numElems = 0; }
19
20 int size() { return numElems; }
21 ...
22 }
23
24 // tests
25 @Test t1() {
26 BoundedStack bs =
27 new BoundedStack(3);
28 bs.push(5); bs.push(6);
29 bs.pop();
30 assertEquals(5, bs.peek());}
31
32 @Test t2() {
33 BoundedStack bs =
34 new BoundedStack(3);
35 bs.push(7); bs.push(8);
36 bs.clear();
37 bs.pop();
38 assertEquals(null, bs.peek());

Fig. 2: Faulty BoundedStack [24].

Figure 2 shows class BoundedStack and
its test suite with two test cases, t1 and
t2. In this example, test t2 fails with
an ArrayIndexOutOfBoundsException

when calling bs.peek(). That happens
because of a fault at line 11. The method
pop() is expected to have no effect when
the stack is empty, but it incorrectly sub-
tracts numElems even when numElems ==

0, resulting in a negative stack size. A
check on the size of the stack would fix
the problem in this case.

For this example, SFL would rank
line 18 as the most suspicious because the
line is executed in the failing test case,
but not in the passing test case. All other
statements, except the one at line 15 have
the same suspiciousness values. Thus, in
this case, fault localization alone does not
help the developer to diagnose the fault.

3 Approach

Figure 3 shows the workflow of Swift,
which takes as input the system under test
(SUT) and a test suite for the SUT with at least one failing test case.

In Step 1, Swift executes the provided test suite and collects runtime data
about each test, including (1) coverage and pass/fail information, for perform-
ing fault localization, and (2) dynamic call information, for suitably incorpo-
rating developers’ feedback. In Step 2, Swift leverages existing fault localization
techniques to compute the suspiciousness of program entities based on the col-
lected runtime information. Initially, only the executions of the existing test
cases are considered. As developers interact with Swift while debugging, their
knowledge regarding the examined parts of the executions is incorporated as
additional runtime data, providing extra information for fault localization. In
Step 3, Swift guides the developer to examine the parts of a failing test exe-
cution where highly suspicious program entities are being executed, by means
of debugging queries. In this setup, the developer is expected to check cor-
rectness of the method execution based on the provided input and output,
with possibly partial state information, and give the answer back to Swift.

3

1. Test
Execution

2. Fault
Localization

4. Feedback
Incorporation

3. Query
Generation

Execution
Profiles

SUT
+

Test Suite

Rank List

Debugging
Query

Fig. 3: Workflow overview

Step 4 incorporates the developer’s an-
swer to the debugging query by modifying
and augmenting the runtime data. The
interactive debugging process then loops
back to Step 2. Swift refines fault localiza-
tion results with the additional knowledge
from the developer and generates another
debugging query using the refined suspi-
ciousness values. This process continues
until either the fault is found or the de-
veloper gives up and stops Swift.

3.1 Technical Details.

We now discuss the steps of Swift in de-
tail. For each step, we first describe the
step and then illustrate it on the example faulty program from Section 2.

Test Execution. In this initial step, Swift executes the test suite for the SUT
and collects an execution tree for each test. Figure 4 shows the execution tree
that corresponds to test case t2 in the BoundedStack example of Figure 2.
In the figure, each box represents a method invocation node. The labels of the
nodes show the method name on the first line and the direct statement coverage
information on the second line. The set of numbers inside the brackets indicates
the covered statements, corresponding to the line numbers in Figure 2.

t2
[33|34|35|36|37|38]

init
[5]

push
[9]

push
[9]

clear
[18]

pop
[11]

peek
[14|16]

size
[20]

size
[20]

size
[20]

Fig. 4: Execution tree corresponding to test
t2 (see Figure 2).

Fault Localization. Any fault lo-
calization technique that uses cover-
age information to rank program en-
tities according to their fault suspi-
ciousness can be used in our approach.
Swift currently uses Ochiai, as it has
been shown to perform well in prac-
tice [3, 20]. In its first iteration, Swift
uses the input test suite to perform
traditional fault localization. In later iterations, it also includes virtual tests.
These additional tests model developer answers to queries in the form of syn-
thetic execution trees and have the effect of fine tuning the fault suspiciousness
values based on developer’s input.

Consider the BoundedStack example. Assume that Swift generated a query
involving method invocation bs.push(7) from Figure 2 (line 35) and that the
developer has examined the corresponding execution tree and determined that
it is correct. This interaction produced the virtual test vt. Table 1 shows fault
localization results for this scenario. Row numbers to the left of the table in-
dicate line numbers from Figure 2. Columns t1, t2, and vt show coverage for
each statement in the corresponding test case. Tests t1 and t2 belong to the

4

Table 1: Example of
coverage and suspicious-
ness information for the
BoundedStack example.

3 7 3

t1 t2 vt susp.
5 1 1 0 0.7
9 1 1 1 0.6
11 1 1 0 0.7
14 1 1 0 0.7
15 0 0 0 0.0
16 1 1 0 0.7
18 0 1 0 1.0
20 1 1 1 0.6

original test suite whereas test vt is the virtual
test corresponding to the execution tree rooted at
the bs.push(7) invocation. It reflects the developer’s
feedback that this method invocation produces a cor-
rect result. The symbol “3” above the name of the test
indicates that the test is passing whereas “7” indicates
a failure. Column susp. shows the suspiciousness of a
statement as computed by the Ochiai formula. Lines 9
and 20 have lower suspiciousness because of the addi-
tional test vt.

Query Generation. Swift asks developers for feed-
back through debugging queries, which basically con-
sist of the input and output of a method invocation.
Developers are expected to assess the correctness of
the computation for that invocation. The rationale for this choice is that we
expect the semantics of methods to be relatively well understood by developers
who are familiar with the program being debugged.

Swift determines which method invocation to select for generating a debug-
ging query from the fault localization results computed in Step 2. Swift picks,
from the failing executions, a method invocation that directly covers the most
suspicious statement. In case multiple statements are ranked at the top, one is
chosen randomly. And if there are multiple failing executions that cover the most
suspicious statement, Swift picks the invocation from the test that executes the
smallest number of instances of the suspicious statement. The rationale for this
heuristic is that the number of queries is a reasonable proxy for human effort,
which Swift tries to minimize. Intuitively, the heuristic we presented above en-
ables one to diagnose highly-suspicious statements more quickly, as it eagerly
chooses cases that require fewer number of queries for the user to answer.

Feedback Incorporation. Developers’ answers to debugging queries provide
Swift with additional knowledge about the correctness of partial program exe-
cutions. This section discusses how Swift uses this information to update the
execution trees and thus incorporate developers’ feedback. Figure 5 shows the
pseudo-code of the algorithm for this part of our technique.

The algorithm takes as input the user feedback, represented by class
Feedback (lines 1–5). Type Invocation represents a method invocation node in
the execution tree. Field invocation references the method invocation selected
for this debugging query. Field fromProfile refers to the root of the incorrect
execution profile from which invocation is selected. Finally, field isCorrect

indicates developer’s answer to the correctness of the invocation. Lines 7 to 8
correspond to the two sets of execution trees whose correctness is known. They
are maintained by Swift throughout the debugging process and used by the fault
localization component for suspiciousness computation.

For a particular debugging query, if the developer determines that the cor-
responding method execution is correct, Swift can conclude that this method

5

1 class Feedback {
2 Invocation invocation;
3 Invocation fromProfile;
4 bool isCorrect;
5 }
6
7 List<Invocation> correctProfiles = ...
8 List<Invocation> incorrectProfiles = ...
9

10 incorporateUserFeedback(Feedback feedback) {
11 if (feedback.isCorrect) {
12 feedback.invocation.removeFromParent();
13 correctProfiles.add(feedback.invocation);
14 for (Statement s
15 : feedback.invocation.getCoverage()) {
16 if (!feedback.fromProfile.covers(s)) {
17 for (Invocation incorrectProfile
18 : incorrectProfiles) {
19 incorrectProfile.removeCoverage(s); }}}
20 } else {
21 for (Invocation incorrectProfile
22 : incorrectProfiles) {
23 for (Statement s
24 : incorrectProfile.getCoverage()) {
25 if (!feedback.invocation.covers(s)) {
26 incorrectProfile.removeCoverage(s); }}}}}

Fig. 5: Algorithm for incorporating user feedback into execution profiles.

invocation instance is not responsible for the failure (under the simplifying as-
sumption that the developer is correct). In these situations, Swift removes the
execution tree rooted at this method invocation node from its parent and marks
this execution tree as a correct execution. Swift then checks whether the modified
fromProfile no longer covers some statements it originally covered. Because
these statements cannot be the cause of the failure at hand, they are excluded
from consideration. Lines 12 to 19 show the pseudo-code for this case. Note that
it is not necessarily true that the method invocation that is determined as cor-
rect does not exercise the faulty statement. The issue of coincidental correctness,
which is considered to negatively affect the precision of fault localization tech-
niques [4,26], could also happen for method invocations. However, we conjecture
that this issue is less likely to occur for these shorter executions.

We show an example of how positive feedback is incorporated using the
BoundedStack program. For illustration purpose, we assume that, at the ini-
tial state, the first debugging query generated is about the method invocation
bs.push(7) on line 35 in failing test t2. The developer determines that this
method invocation is correct. Figure 6a shows the execution profiles before and
after this feedback is incorporated. The structure and the coverage information
of the execution tree for test t1 is irrelevant and thus omitted.

A negative answer to a query corresponds to the case of a developer indicat-
ing that the method invocation in the query should have produced a different
result. Swift incorporates a negative answer by reducing the set of statements
potentially faulty. Specifically, Swift limits the suspicious set of statements to
those that are executed by the method invocation in this debugging query by
removing the coverage of all the other statements from the execution profiles
(lines 21 to 26 in the pseudo-code).

6

Incorrect profiles Correct profiles

Incorrect profiles Correct profiles

BeforeIncorporation

AfterIncorporation
(a) Positive feedback.

(b) Negative feedback.

Fig. 6: Incorporating feedback.

Continuing the previous ex-
ample on the BoundedStack pro-
gram, we assume that the sec-
ond debugging query generated
is about the method invocation
bs.pop() on line 37. This is the
actual faulty method invocation,
and the developer would deter-
mine that it is incorrect. Figure 6b
shows the execution profiles after
this negative feedback is incorpo-
rated.

3.2 Complete Debugging
Session

This section applies Swift to our
faulty program BoundedStack to
illustrate a complete debugging
session, including how Swift gen-
erates each debug query and in-
corporates developer feedback to
update the fault localization re-
sults.

The tables in Figure 8 show,
for each iteration of Swift’s debugging-query loop, the coverage matrix used for
fault localization computation and the suspiciousness of each statement. Row
numbers to the left of the tables correspond to the lines of code in Figure 2.
Columns tx show the coverage of each statement in the corresponding test case.
As before, tests t1 and t2 are in the original test suite in the code, whereas t3 and
t4 are additional “virtual tests” created from the answers to debugging queries.
Column s in each table shows the suspiciousness of the statements as computed
by the Ochiai formula. Table cells with a blue background contain values that are
changed with respect to the previous iteration. Due to space limit, the execution
trees from which the coverage matrices are derived are not shown.

Q1: BoundedStack.clear()#0 in t2
Input: Output:
this: { this: {
elems: {7, 8, null} elems: {7, 8, null}
numElems: 2 numElems: 0
} }

Fig. 7: Debugging query Q1.

The initial fault localization compu-
tation ranks line 18 at the top because it
is executed only in the failing test case
t2, while the actual fault (i.e.,line 11) is
ranked lower since it is executed in both
passing and failing tests. Swift generates
the first debugging query Q1, asking the
developer to examine the method invocation bs.clear() called on line 36. Fig-
ure 7 shows the details of the debugging query. Based on the information pro-
vided, the developer determines that this method invocation actually executed
correctly. Swift removes the sub-tree that represents this method invocation from

7

3 7 3 7 3 3 7 3 3 3 7 3 3
t1 t2 s t1 t2 t3 s t1 t2 t3 t4 s t1 t2 t3 t4 s

5 1 1 0.7 1 1 0 0.7 1 1 0 0 0.7 1 0 0 0 0.0
9 1 1 0.7 1 1 0 0.7 1 1 0 1 0.6 1 0 0 1 0.0
11 1 1 0.7

Q1−−→
1 1 0 0.7

Q2−−→
1 1 0 0 0.7

Q3−−→
1 1 0 0 0.7

14 1 1 0.7 1 1 0 0.7 1 1 0 0 0.7 1 0 0 0 0.0
15 0 0 0.0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0.0
16 1 1 0.7 1 1 0 0.7 1 1 0 0 0.7 1 0 0 0 0.0
18 0 1 1.0 0 0 1 0.0 0 0 1 0 0.0 0 0 1 0 0.0
20 1 1 0.7 1 1 0 0.7 1 1 0 1 0.6 1 0 0 1 0.0

Fig. 8: Complete debugging session.

the execution tree of the failing test case t2 and marks the sub-tree as a correct
execution. The effect of this operation on the fault localization computation is
shown in the second table from the left in Figure 8. Since line 18 is executed
only once in the invocation of clear(), its coverage flag in t2 is removed. A “vir-
tual test” t3, which corresponds to the new correct execution of the clear()

invocation, is also added to the coverage matrix. The suspiciousness of line 18 is
changed to 0, as it is no longer covered by failing executions.

After the answer to the debugging query Q1 is incorporated, lines 5, 9, 11, 14,
16 and 20 are ranked at the top and have the same suspiciousness value. Swift
randomly picks one of them to generate the next debugging query. Assume that
Swift picks line 9 and selects the method invocation bs.push(8) called on line 35
to generate debugging query Q2. The developer determines that the execution
of this method invocation is also correct. Swift modifies the execution profiles in
the same way as before. Another passing “virtual test” t4 that covers lines 9 and
20 is added to the coverage matrix and, as a result, the suspiciousness values of
these 2 lines are reduced.

Q3: BoundedStack.pop()#0 in t2
Input: Output:
this: { this: {
elems: {7, 8, null} elems: {7, 8, null}
numElems: 0 numElems: -1
} }

Fig. 9: Debugging query Q3.

For the third debugging query, Q3,
assume that Swift picks line 11, which
is the actual fault. Method invocation
bs.pop() on line 37 is selected. Figure 9
shows the details of the query. The devel-
oper determines that this method invoca-
tion is incorrect by spotting numElems == -1 in its output data. In a realistic
debugging session, the developer would have found the fault at this point and
concluded the debugging activity, as the faulty program state is infected in the
current method invocation by a statement in its method body. For the purpose
of illustration, we assume that the developer answers this debugging query in-
stead and continues. Swift incorporates the feedback by removing the coverage
flag of all the statements, except for the ones covered by the incorrect pop()

invocation, from the failing executions. Consequently, after this debugging query
is considered, the coverage of t2 contains only line 11, which is also ranked at
the top by Swift’s fault localization component.

4 Empirical Evaluation

In our evaluation, we investigate the following two main research questions:

8

R1 – Can Swift locate the fault with a small number of debugging queries?
R2 – How does user feedback affect fault ranking?

The rest of this section describes the subject programs and faults we used
(Section 4.1), explains the experimental setup we used (Section 4.2), and dis-
cusses experimental results to answer these questions (Section 4.3).

4.1 Subjects and Faults Table 2: Characterization of subjects and faults.

Subject Repo. Fault ID P-F #Cls. #Meths. kLOC

jtopas [2]
FAULT 2 123-3 25 251 7
FAULT 6 125-1 25 251 7

commons-math [2]

C AK 1 1162-1 236 1723 43
EDI AK 1 1162-1 236 1723 43
F AK 1 1162-1 236 1723 43
M AK 1 1162-1 236 1723 43
VS AK 1 1162-1 236 1723 43
CDI AK 1 2048-2 477 3899 83
MU AK 1 2048-2 477 3899 83
MU AK 4 2049-1 477 3899 83
URSU AK 1 2048-2 477 3899 83

xml-security [2]
CN2 AK 2 89-2 198 1278 40
C2E AK 1 92-2 198 1275 41

jsoup [1]

1 3 4 b3 225-1 75 611 8
1 4 2 b2 295-1 89 698 9
1 5 2 b2 236-4 86 682 9
1 5 2 b5 243-1 86 682 9
1 6 1 b1 290-2 198 979 13
1 6 3 b3 323-1 206 1032 14

commons-lang [16]

b6 2125-3 169 2281 57
b9 2057-8 170 2224 54
b10 2055-8 170 2224 54
b16 1913-1 160 2142 53
b24 1698-1 143 2022 50
b26 1677-1 139 2000 50
b39 1566-1 123 1835 45

To empirically assess the
effectiveness of Swift,
we implemented the
technique in a prototype
tool that works on Java
programs. We evaluated
the effectiveness of Swift
on a benchmark with 26
faults distributed across 5
open-source applications
from three repositories:
SIR [2], Defects4J [16],
and SAEG [1]. Each
subject program contains
multiple faulty versions.
We selected versions
that contain single non-
concurrent faults that
can be revealed by at
least one failing test case
in the original test suite. Furthermore, to better identify the benefits of Swift
in the debugging process, we excluded cases where the initial fault localization
results ranked the faulty statement alone at the top. The cases where the fault
is initially ranked at the top together with a large number of other statements
are included in the experiment because in this situation the fault is still difficult
to identify and Swift can reduce the suspiciousness of non-faulty statements.
Table 2 characterizes the faults we considered. Column “Repo.” shows the
repository from which we obtained the subject. Column “Fault ID” shows the
identifier of a given fault, as documented in their source repository. Column
“P-F” shows the number of passing (P) and failing (F) tests for that fault. The
last three columns show the number of classes, methods, and lines of code in
the faulty version.

4.2 Experimental Setup

For each of the faults that we considered in the experiment, we applied Swift
and recorded the number of debugging queries needed to locate the fault. We

9

consider the fault to be located if the currently selected method invocation is
the one that directly infected the state. To track how fault localization results
change during the debugging process, we record the debugging query, its answer,
and the updated ranking at each iteration step of Swift’s main loop.

In this study, we used an automated oracle, instead of a human developer,
to answer queries. For each of the faults in our experiment, we obtained the
fixed version of the program and confirmed that all the tests pass. We also made
sure that all code changes between the two versions involved faulty statements.
Therefore, any difference in their execution must be caused by the fault. The
automated oracle answers debugging queries by executing the fixed program to
get the expected output of the invocation in the query, and compare it with the
observed output.

One limitation of our current implementation of the automated oracle is
that it does not handle infected program states in external resources (e.g.,̃files,
and network communications). The subject programs we used do not have cases
where the faulty state is manifested only in external resources.

There are cases in which the oracle is unable to find the corresponding method
invocation that has the same input in the execution of the fixed program. This
happens when the input of the method invocation in the debugging query has
already been infected by the fault, and thus does not exist in the execution of the
fixed version. In these cases, the oracle reports to Swift that it cannot answer the
query, which is considered inconclusive and does not result in the generation of
a virtual test. However, to be conservative in assessing the effectiveness of Swift,
we still count these queries (i.e.,we add the query to the set of queries needed
to locate the fault). It is important to note that, in our benchmark, these cases
happen infrequently.

4.3 Results

Table 3 summarizes our results. Column “#Queries” shows the number of
queries that Swift requires to locate the fault. Columns “Stmt Initial Rank”
and “Stmt Final Rank” show the statement-level ranking of the fault before and
after running Swift. Column “Methods Initial Rank” shows the method-level
ranking of the fault in the initial state. We report rankings in the format “best-
case rank/worst-case rank”, as the faulty program entities can share the same
suspiciousness values as other program entities. Note that we omitted the final
method-level ranking. This is because the faulty methods are always ranked at
the top after running Swift. It is also important to note that, in the final state
of the debugging process, the statements ranked as high as (or higher than) the
actual faulty statement are all in the same method that contains the fault. Col-
umn “Invocations Initial Rank” shows the number of method invocations to be
examined before reaching the first faulty method invocation when the answers
to debugging queries are not incorporated. We also refer to these numbers as
the initial method-invocation ranking. These numbers are also shown in “best
case/worst case” format, depending on the position of the fault in the ranking
among the statements that have the same suspiciousness value.

10

Table 3: Summary of results.

Subject Fault ID #Queries
Stmt. Stmt. Methods Invocations

Initial Rank Final Rank Initial Rank Initial Rank

jtopas
FAULT 2 1 1/11 1/10 1/2 1/4
FAULT 6 52 69/71 1/2 20/21 1231/1238

commons-math

C AK 1 1 3/5 1/1 2/3 2/3
EDI AK 1 7 7/37 4/15 3/7 5/15
F AK 1 2 11/38 4/8 4/4 5/5
M AK 1 14 94/105 1/3 23/24 15,541/15,542
VS AK 1 4 2/16 2/9 1/4 1/8
CDI AK 1 1 12/26 11/25 2/2 2/2
MU AK 1 11 27/29 3/5 2/2 11/11
MU AK 4 11 12/36 1/6 3/6 6,065/16,971
URSU AK 1 1 28/37 4/13 10/10 16/16

xml-security
CN2 AK 2 1 2/9 1/2 1/1 3/5
C2E AK 1 26 300/456 36/67 35/49 211/348

jsoup

1 3 4 b3 5 232/248 1/1 46/52 789/795
1 4 2 b2 8 45/49 3/7 10/10 20/20
1 5 2 b2 10 51/60 2/8 16/18 27/29
1 5 2 b5 1 4/20 2/4 3/6 15/25
1 6 1 b1 19 54/59 1/6 14/14 33/33
1 6 3 b3 4 167/176 7/14 111/112 353/359

commons-lang

b6 3 120/121 1/2 34/34 126/126
b9 15 46/73 2/24 14/17 26/34
b10 7 61/63 1/3 15/15 73/73
b16 3 24/53 4/15 1/5 1/20
b24 39 1/65 1/1 1/3 1/71
b26 4 112/114 1/3 17/17 20/20
b39 5 4/53 2/11 2/2 15/15

Overall Effectiveness. For 23 out of the 26 faulty program versions that
we considered, the fault is found with less than 20 debugging queries (column
“#Queries”). The average number of queries across all versions is about 10.
Overall, these results indicate that a relatively small number of queries suffice
to guide developers to the places where the fault infects the program state.

Note that, for this study, there are no obvious baselines to directly compare
Swift against, beside a vanilla statistical fault localization approach. As the re-
sults show, inspecting code according to the output of statistical fault localization
alone would be challenging (see column “Stmt. Initial Rank”). For xml-security’s
fault C2E AK 1, for example, a statistical fault localization approach would re-
quire the developer to inspect 300 statements in the best case and 456 statements
in the worst case. In contrast, Swift only needs 26 queries to isolate the faulty
method invocation (see column “#Queries”).

We note that the faulty statement is not always ranked among the most
suspicious statements, even after the faulty method invocation has been isolated.
This could happen if (1) executing the faulty code does not always infect the
state and 2) other statements in the same method are executed more often than
the number of times the state is infected. In this case, the faulty statement is
covered by a relatively higher number of correct execution profiles, which reduces
its suspiciousness score. Note, however, that this is not central to Swift as the
technique focuses on isolating the faulty method invocation, not on optimizing
the ranking of statements.

11

Progress of Fault Rankings. We elaborate on the effects of incorporating
answers of debugging queries in Swift.

Figure 10 shows the progress of fault localization ranking as Swift incorpo-
rates answers on 2 representative faulty subject versions. We considered worst-
case statement-level ranking in the plots. The x-axis denotes the number of
queries answered over time and the y-axis denotes the ranking of the fault.

0 2 4 6 8

0
10

30
50 ●

● ●

●

●
●

● ●

jsoup−1_4_2_b2

0 5 10 15 20 25

0
20

0
40

0
60

0

●●●●
●●●

●
●●●●●●●

●●●●●●●●●

●●

xml−security−C2E_AK_1

Fig. 10: Progress of stmt.-level suspiciousness.

The plot of joup 1 4 2 b2 rep-
resents the case of the majority of
the faults from the experiment (22
out of 26 cases). In this case, the
ranking of the faulty statement
monotonically decreases (i.e., the
faulty statement becomes more
suspicious) from 49 down to 7 as 8 debugging queries are answered. In contrast,
the fault ranking of xml-security C2E AK 1 first increases, when incorporat-
ing the first 12 answers, and decreases afterwards. The reason for this type of
progress pattern is that the execution of the faulty statement does not always
infect the state. The first 12 queries are all classified as correct, for instance;
although some of these queries indeed cover the faulty statement, they do not
infect the state. For this reason, in the beginning of the debugging process, the
faulty statement appears relatively more often associated with correct execution
profiles, leading to an initial increase in the ranking.

Considering all the faults we analyzed in this experiment,
xml-security C2E AK 1 and commons-lang b24 are the only ones where
the fault ranking increases by a significant amount at some stage during the
debugging process. We found that, for these cases, the number of queries needed
to locate the fault was also larger compared to the other versions. Intuitively,
these scenarios can be further explained by considering that the basic assump-
tion of statistical fault localization is that the execution of faulty code is more
correlated with failing than passing runs. However, if faulty statements infect
the state infrequently when executed, this assumption becomes invalid. Swift
handles these situations by calibrating suspiciousness scores of highly suspicious
but non-faulty program entities.

Effect of Feedback Incorporation. In addition to looking at how Swift im-
proves fault localization rankings, we also assessed how effective the updates
to the ranking list are for guiding the search of the faulty method invocation
(column “Invocations Initial Rank”). To that end, for each faulty version, we
measured the number of queries that would be generated if Swift did not up-
date the fault localization results using the answers to debugging queries. In
this setup, Swift would start from the beginning of the initial ranking list of
statements and would present all method invocations that covered the most sus-
picious statement to the developer. It would then go to the next statement of the
ranking list when all method invocations of the current statement are answered.

By comparing this number with the number of queries needed to locate the
faulty method invocation (column “#Queries”), we can observe a significant

12

reduction in the number of methods to examine when query answers are consid-
ered. Furthermore, in 4 of the 26 faults, the number of method invocations to
examine without feedback incorporation is larger than 500, making the task of
examining all of them prohibitive. This result highlights the important role that
feedback incorporation can play in the iterative debugging process.

4.4 Discussion

Although we used the ranking of statistical fault localization in our evaluation,
this ranking is only used internally in Swift. The technique uses high-level ab-
stractions to communicate results to users, who do not have to deal with the
low-level abstractions used within the tool.

It is important to recall that to facilitate automation of our experiments we
stop the debugging session when Swift is able to generate a query associated to a
method invocation that injects the fault (see Section 4.2). In practice, however,
users can stop (and later continue) using Swift at any point in time. This could
be triggered, for instance, by the desire to check a debugging hypothesis from a
suspicious fault manifestation.

The important problem of deciding how to present queries to users is outside
the scope of this paper, which mainly focuses on the feasibility of the general
approach. In future work, we will explore this aspect in depth and investigate
different approaches, such as highlighting/obfuscating (ir)relevant fields, using
program slicing, and using suitable visualization techniques. In a continuous soft-
ware development environment, the users’ effort of answering debugging queries
can be further reduced by caching previous answers.

Our preliminary empirical evaluation shows that Swift is promising, as it
provides initial evidence that Swift can locate faults by generating a relatively
small number of user queries (Section 4.3). The evaluation also shows that our
results do not seem to be coincidental, as the systematic incorporation of answers
to queries improves the overall diagnosis (Sections 4.3 and 4.3).

4.5 Threats to Validity

The main threats to validity are as follows. External Validity: The selection
of subjects and faults we used may not generalize to other cases. To mitigate
this threat, we used subjects from a variety of sources and selected according
to a documented criteria, described in detail in Section 4.1. Another threat is
that using automated oracles to simulate real users might have produced results
that are not representative of a typical developer’s performance. However, for
an initial study that is meant to assess the feasibility of our new approach, we
believe that this approximation is justified. Internal Validity: Errors in our
implementation could affect the validity of our results. To mitigate this threat,
we thoroughly checked our implementation and our experimental results, looking
for discrepancies that would signal potential errors.

5 Related Work

There is an enormous body of related work on statistical fault localization and
debugging in general (e.g., [3, 7, 13, 14, 18, 28]). In the interest of space, and

13

because our work builds on and extends traditional fault localization, we do not
discuss this work here and focus instead on techniques that share our specific
goals and general approach.

Ko and Myers proposed Whyline [17], an interactive debugger that allows
developers to ask high-level questions about how values in the state came to be.
Similar in spirit to dynamic backward slicing, developers can use Whyline to
localize faults by iteratively asking “why” questions involving parts of the state
that seem suspicious. In our approach, the tool asks questions to the developer
instead, and does so by focusing on suspicious parts of the computation.

Several existing techniques use developer feedback to improve fault localiza-
tion. Algorithmic Debugging (AD) [23] is a debugging technique that is popular
in the functional programming community. It asks questions to testers based on
the structure of the execution tree induced from one failing test and systemati-
cally prunes the tree based on the answers to get to a point where the fault can
be isolated. In contrast to Swift , AD does not take coverage profiles of multiple
test runs into account to guide the debugging process. The work presented in [5]
and [10] incorporates developer answers about the correctness of statements to
refine a ranked list of suspicious statements. Swift differs from these techniques
in that it asks questions about concrete input-output pairs during execution and
does not rely on developers’ ability to assess the correctness of individual pro-
gram statements. The techniques in [12] and [11] suggest breakpoints using fault
localization techniques and refine the suggestions based on developers’ feedback
on the correctness of program states. At each breakpoint, they ask the devel-
opers to examine the program states using a debugger and determine whether
the state has been infected, and then increase or decrease the suspiciousness of
related statements by a fixed ratio based on the feedback. In contrast, Swift gen-
erates user queries at the level of abstraction of methods in the program, whose
semantics is more likely to be understood by developers than that of program
states considered in isolation.

At a high-level, Swift employs a form of supervised learning to solve a pro-
gram analysis problem. Recently, user supervision has been explored to solve
undecidable problems in program analysis. Dillig et al. [9] and Mangal et al. [19]
independently explored the feedback given by domain specialists to improve
precision and recall in static analyses. In their context, user feedback indicates
whether or not a warning is correct, and feedback is restricted to the output of
the analysis. Swift, conversely requests user feedback on partial executions and
is a dynamic (rather than static) analysis that supports debugging (rather than
bug finding).

6 Conclusions

We presented Swift, a technique that aims to mitigate the existing disconnect
between research and practice in the area of software debugging, and in particular
in fault localization. Swift operates in an iterative and user-driven fashion. At
each iteration, developers are provided with queries about the correctness of a

14

specific method execution; Swift then processes the answers to these question and
suitably increases or decreases the suspiciousness of the program entities involved
in the computation. This process allows Swift to improve the localization results
and guide the developer increasingly closer to the fault at hand.

We implemented Swift in a prototype that is publicly available, together
with our experimental infrastructure. We used our implementation to perform
an empirical evaluation of Swift on 5 programs and 26 faults for these programs.
Our results show that Swift can in most cases converge to the fault relatively
quickly (i.e.,using only a small number of queries–less than 10, on average).

Our first goal for future work is to investigate ways to encode and visualize
the queries to the developers so that they are as easy to consume and answer as
possible. We will then perform a user study to assess how our approach performs
in a real-world scenario, in which actual developers are answering the queries
produced by Swift and performing debugging tasks.

Acknowledgments. Mayur Naik was engaged in early discussions about this work.
Higor Amario de Souza shared jsoup code. This work was partially supported by CNPq
grants 457756/2014-4 and 203981/2014-6, by NSF grants CCF-1161767, CCF-1161821,
and CCF-1320783, by funding from Google, IBM Research, and Microsoft Research.

References

1. SAEG - Software Analysis and Experimentation Group (at Universidade de
São Paulo (USP), Brazil). https://github.com/saeg/experiments/tree/
master/jaguar-2015.

2. SIR Repository. http://sir.unl.edu/portal/index.php.

3. R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund. An evaluation of similarity coef-
ficients for software fault localization. In Proceedings of the 12th Pacific Rim In-
ternational Symposium on Dependable Computing, PRDC ’06, pages 39–46, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

4. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In POPL, pages 97–105, 2003.

5. A. Bandyopadhyay and S. Ghosh. Tester feedback driven fault localization. In
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, ICST ’12, pages 41–50, Washington, DC, USA, 2012.
IEEE Computer Society.

6. S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In ICSE,
pages 121–130, 2011.

7. H. Cleve and A. Zeller. Locating causes of program failures. In ICSE, pages
342–351, 2005.

8. B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and M. Rinard.
Inference and enforcement of data structure consistency specifications. In ISSTA,
pages 233–244, 2006.

9. I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using abductive
inference. In PLDI, pages 181–192, 2012.

10. L. Gong, D. Lo, L. Jiang, and H. Zhang. Interactive fault localization leveraging
simple user feedback. In Software Maintenance (ICSM), 2012 28th IEEE Interna-
tional Conference on, pages 67–76, Sept 2012.

15

https://github.com/saeg/experiments/tree/master/jaguar-2015
https://github.com/saeg/experiments/tree/master/jaguar-2015
http://sir.unl.edu/portal/index.php

11. D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun. Interactive fault localization
using test information. Journal of Computer Science and Technology, 24(5):962–
974, 2009.

12. D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. Vida: Visual interactive debug-
ging. In 2009 IEEE 31st International Conference on Software Engineering, pages
583–586, May 2009.

13. J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in parallel. In Proceedings
of the 2007 International Symposium on Software Testing and Analysis, ISSTA ’07,
pages 16–26, New York, NY, USA, 2007. ACM.

14. J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In ICSE, pages 467–477, 2002.

15. M. Jose and R. Majumdar. Cause clue clauses: Error localization using maximum
satisfiability. In PLDI, pages 437–446, 2011.

16. R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults to
enable controlled testing studies for Java programs. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 437–440, San
Jose, CA, USA, July 23–25 2014.

17. A. J. Ko and B. A. Myers. Designing the whyline: A debugging interface for asking
questions about program behavior. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, pages 151–158, New York, NY,
USA, 2004. ACM.

18. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical
bug isolation. In PLDI, pages 15–26, 2005.

19. R. Mangal, X. Zhang, A. V. Nori, and M. Naik. A user-guided approach to program
analysis. In ESEC/FSE, pages 462–473, 2015.

20. L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1–11:32, Aug. 2011.

21. C. Parnin and A. Orso. Are automated debugging techniques actually helping
programmers? In ISSTA, pages 199–209, 2011.

22. M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
ASE, pages 30–39, 2003.

23. E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA,
USA, 1983.

24. P. D. Stotts, M. Lindsey, and A. Antley. An informal formal method for systematic
junit test case generation. In Proceedings of the Second XP Universe and First
Agile Universe Conference on Extreme Programming and Agile Methods - XP/Agile
Universe 2002, pages 131–143, 2002.

25. I. Vessey. Expertise in debugging computer programs: An analysis of the content of
verbal protocols. IEEE Transactions on Systems Man and Cybernetics, 16(5):621–
637, Sept. 1986.

26. X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming coincidental correct-
ness: Coverage refinement with context patterns to improve fault localization. In
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 45–55, Washington, DC, USA, 2009. IEEE Computer Society.

27. X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate
switching. In ICSE, pages 272–281, 2006.

28. A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical debugging:
Simultaneous identification of multiple bugs. In ICML, pages 1105–1112, 2006.

16

