
Event-Based Runtime
Verification of Java Programs

Marcelo d'Amorim, University of Illinois
Klaus Havelund, Kestrel Technology

Workshop On Dynamic Analysis 2005

Runtime Verification (RV)● Lightweight method of verification that
introduces monitors in the program to observe
its dynamic behavior specified in some
formalism. Ex. LTL, ptLTL, MTL, ERE, etc.● RV embodies many possibly orthogonal
aspects: online/post-morten, sync./async.,
state-based/event-based, etc.● Scalability ↑, Usefulness ↓, Overhead ↓

HAWK● Language extension of the finite-trace meta
logic Eagle [Barringer et al., 2004] together with
its compiler, where:● Events appear as atoms in formulae● Data values (actual parameters, return values,

calling threads) can extend the environment where
formulae are evaluated● Instrumentation is automated

Motivation & Goals● Declarative property specification● Automate instrumentation of Eagle for Java●Event-Based x State-based RV

Related Work● Java MAC [M. Kim et al., 2001]● Jass Trace Assertions [D. Bartetzko et al. 2001]● Temporal Rover [D. Drusinsky, 2000]● MOP [Chen et al., 2004]● AOP [G. Kiczales et al., 1997]

Modal Logics and HAWK● Also inspired by Modal Logics of Transition
Systems (CCS, π-calculus, etc.)

F ::= … | ~F | <Atom>F
| “Eagle Formula extended with F”

[Atom]F == ~<Atom>~F

HAWK: Eagle + Events + Java

Auxiliary State

Instrumented
Java Program

Eagle Monitor

1) update2) notify

3) Evaluate formulae
in the current state

Spec

HAWK Example 1

observer BufferObserver {
classPath = C:/downloads/src
targetPath = C:/downloads/src
terminationMethod = bufferexample.Barrier.end()

var Buffer b ;
var Object o ;
var Object k ;
mon B = Always (

[b?.put(o?)]
Eventually (

<b.get() returns k?> (o == k))) .
}

HAWK Example 2

observer FileSystemObserver {...
var Thread t ;
var FileSystem fs ;
var int l ;
mon F1 =
Always ([t?:fs?.acquireLock(l?) returns]
@ (Until([*:fs.acquireLock(l) returns]false,

<t:fs.releaseLock(l)>true))
) .
mon F2 =
Always ([t?:fs?.releaseLock(l?)]
(Since([*:fs.releaseLock(l)]false ,

<t:fs.acquireLock(l) returns>true))
) .

}

Summary● HAWK simplifies, via language integration
and instrumentation, the creation of monitors
for the Eagle logic, which includes: LTL with
past, ERE, MTL, and many others.

Further Work & Question● Further work● Capture other events● Add actions?● Program visualization● Vector clocks● We used AspectJ as our instrumentation tool.● Could HAWK be used to introduce temporal
cutpoints in the program?

Thanks!

