
Test Suite Parallelization in Open-Source Projects:
A Study on Its Usage and Impact

Jeanderson Candido Luis Melo Marcelo d’Amorim
Federal University of Pernambuco

Pernambuco, Brazil
{jbc5,lhsm,damorim}@cin.ufpe.br

Abstract—Dealing with high testing costs remains an important
problem in Software Engineering. Test suite parallelization is an
important approach to address this problem. This paper reports
our findings on the usage and impact of test suite parallelization
in open-source projects. It provides recommendations to practi-
tioners and tool developers to speed up test execution.

Considering a set of 468 popular Java projects we analyzed,
we found that 24% of the projects contain costly test suites but
parallelization features still seem underutilized in practice — only
19.1% of costly projects use parallelization. The main reported
reason for adoption resistance was the concern to deal with
concurrency issues. Results suggest that, on average, developers
prefer high predictability than high performance in running tests.

I. INTRODUCTION

Dealing with high testing costs has been an important
problem in software engineering research and industrial practice.
Several approaches have been proposed in the research literature
to address this problem, with the focus mainly on test suite
minimization, prioritization, reduction, and selection [42]. In
industry, the focus has been mainly on distributing the testing
workload. Evidence of this are the Google TAP system [16],
[38] and the Microsoft CloudBuild system [31], which provide
distributed infrastructures to efficiently build massive amounts
of code and run tests. Building in-house server clusters is
also a popular mechanism to distribute testing workloads. For
example, as of August 2013, the test suite of the Groupon PWA
system, which powers the groupon.com website, included over
19K tests. To run all those tests under 10m, Groupon used a
cluster of 4 computers with 24 cores each [22].

At large organizations, the alternative of renting cloud
services [1] or even building proprietary infrastructures for
running tests is a legitimate approach to mitigate the regres-
sion testing problem. However, for projects with modest or
nonexistent budgets and yet relatively heavy testing workloads,
this solution may not be economically viable. For these cases,
the use of commodity hardware is an attractive solution for
running tests. The proliferation of multi-core CPUs and the
increasing popularization of testing frameworks and build
systems, which today provide mature support for parallelization,
enable speedups through increased CPU usage (see Section II).
These two elements — demand for cost-effective test execution
and supply of relatively inexpensive testing infrastructures —
inspired us to investigate test suite parallelization in practice.

This paper reports on an empirical study we conducted to
analyze the usage and impact of low-level parallelization to
speed up testing in open-source projects. This is a relevant
problem given the tremendous popularity of open-source
development and regression testing research [42]. Note that
parallelization is complementary to other approaches to mitigate
testing costs such as (safe) test selection [15], [33] and
continuous integration [34].

The dimensions of analysis we considered in this study are
(i) feasibility, (ii) adoption, (iii) speedup, and (iv) tradeoffs. The
dimension feasibility measures the potential of parallelization
to reduce testing costs. In the limit, parallelization would be
fruitless if all projects had short-running test suites or if the
execution cost was dominated by a single test case in the
suite. The dimension adoption evaluates how often existing
open-source projects use parallelization schemes and how
developers involved in costly projects (not using test suite
parallelization) perceive this technology. It is important to
measure resistance of practitioners to the technology and to
understand their reasons. The dimension speedup evaluates the
observed impact of parallelization in running times. Finally,
the dimension tradeoffs evaluates the relationship between
speedups obtained with parallelization and issues that arise
when running tests in parallel, including test flakiness [6], [23].
We briefly summarize our findings in the following.
Feasibility. To assess how prevalent long-running test suites
are we selected 468 popular Java projects from Github
containing Maven build files [25]. Section IV details our
methodology to select subjects and to isolate our experiments
from environmental noise. Results indicate that nearly 24% of
the projects take at least 1m to run and 8% of the projects take
at least 5m to run. Considering the 110 projects with test suites
taking longer than a minute to run, the average execution time
of a test suite was 9m. Results also show that test cases are
typically short-running, typically taking less than half a second
to run. Furthermore, we found that only in rare cases few test
cases monopolize the overall time to run a test suite.
Adoption. We considered two aspects in measuring technology
adoption. First, we measured usage of parallelism in open-
source projects. Then, we ran a survey with developers to
understand the reasons that could explain resistance to using
the technology. Considering only the projects whose test suites
take longer than a minute to run, we found that only 19.1%
of them use parallelism. We also contacted developers from a

selection of costly projects that did not use parallelization to
understand the reasons for not using parallelization. Dealing
with concurrency-related issues (e.g., the extra work to organize
test suite to avoid concurrency errors) and the availability
of continuous integration services were the most frequently
answered reasons for not considering parallelization.
Speedups. We used two setups to measure speedups. In one
setup we measured speedups obtained on projects that run test
suites in parallel by default. In the other setup, we evaluated
how execution scales with the number of available cores in
the machine. Considering the first setup, results indicate that
the average speedup of parallelization was 3.53x. Although we
found cases with very high speedups (e.g., 28.8x for project
Jcabi), we also found cases where the speedups were not very
significant. Considering the scalability experiment, we noticed,
perhaps as expected, that parallelization obtained with forking
JVMs scales with the number of cores but the speedups are
bounded by long-running test classes.
Tradeoffs. Test flakiness is a central concern when running
tests in parallel. Dependent tests can be affected by different
schedulings of test methods and classes. This dimension of the
study measures the impact of different parallel configurations
on test flakiness and speedup. Overall, results indicate that
configurations that fork JVMs do not achieve speedups as
high as other more-aggressive configurations, but they manifest
much lower flakiness ratios.

Our observations may trigger different actions:
• Incentivize forking. Forked JVMs manifest very low rates

of test flakiness. Developers of projects with long-running
test suites should consider using that feature, which is
available in modern build systems today (e.g., Maven).

• Break test dependencies. Non-forked JVMs can achieve
impressive speedups at the expense of sometimes impres-
sive rates of flakiness. Breaking test dependencies (with
ElectricTest [6], for example) to avoid flakiness is advised
for developers with greater interest in efficiency.

• Refactor tests for load balancing. The configuration with
forked JVMs scales better when the test workload is
balanced across testing classes. Automated refactoring
could help balance the workload in scenarios where
developers are not willing to change test code but have
access to machines with a high number of cores.

• Improve debugging for build systems. While preparing
our experiments, we found scenarios where Maven’s
executions did not reflect corresponding JUnit’s executions.
Those issues can hinder developers from using parallel
testing. Better debugging support for build systems could
help on that.

The artifacts we produced as result of this study are available
from the following web page https://jeandersonbc.github.io/
testsuite-parallelization/.

II. PARALLEL EXECUTION OF TEST SUITES

Figure 1 illustrates different levels where parallelism in
test execution can be obtained. The highest level indicates

parallelism obtained through different machines on the network.
For instance, using virtual machines from a cloud service to

...

h
ig

h
lo

w

...

threads

cpus

machines

...

Fig. 1. Levels of
parallelism.

distribute test execution. The lowest levels
denote parallelism obtained within a single
machine. These levels are complementary:
the lowest levels leverage the computing
power of server nodes whereas the highest
level leverages the aggregate processing
power of a network of machines. This
paper focuses on low-level parallelism,
where computation can be offloaded at
different CPUs within a machine and at
different threads within each CPU. This
form of parallelism is enabled through build
systems (spawning processes in different
CPUs) and testing frameworks (spawning
threads in one given CPU). It is important to note that a variety
of testing frameworks provide today support for parallel test
execution (e.g., JUnit [18], TestNG [37], and NUnit [28])
as to benefit from the available power of popular multi-core
processors. In the following, we elaborate relevant features of
testing frameworks and build systems for parallelization. We
focused on Java, Maven, and JUnit but the discussion can be
generalized to other language and tools.

A. Testing Frameworks

The list below shows the choices to control parallelism
within one Java Virtual Machine (JVM). These options are
offered by the testing framework (e.g., JUnit).

• Sequential (C0). No parallelism is involved.
• Sequential classes; parallel methods (C1). This config-

uration corresponds to running test classes sequentially,
but running test methods from those classes concurrently.

• Parallel classes; sequential methods (C2). This config-
uration corresponds to running test classes concurrently,
but running test methods sequentially.

• Parallel classes; Parallel methods (C3). This configura-
tion runs test classes and methods concurrently.

Notice that an important aspect in deciding which configura-
tion to use (or in designing new test suites) is the possibility of
race conditions on shared data during execution. Data sharing
can occur, for example, through state that is reachable from
statically-declared variables in the program or through variables
declared within the scope of the test class or even through
resources available on the file system and the network [23].
Considering data race avoidance, configuration C1 is preferable
over C2 when it is clear that test methods in a class do
not manipulate shared state, which can be challenging to
determine [6]. Similarly, C2 is preferable over C1 when it
is clear that several test methods in a class perform operations
involving shared data. Configuration C3 does not restrict
scheduling orderings. Consequently, it is more likely to manifest
data races during execution. Note that speedups depend on
several factors, including the test suite size and distribution of
test methods per class.

B. Build Systems

Forking OS processes to run test jobs is the basic mechanism
of build systems to obtain parallelism at the machine space
(see Figure 1). For Java-based build systems, such as Maven
and Ant, this amounts to spawning one JVM, on a given CPU,
to handle a test job and aggregating results when jobs finish.
The list below shows the choices to control parallelism through
the build system (e.g., Maven).

• Forked JVMs with sequential methods (FC0). The
build system spawns multiple JVMs with this config-
uration, assigning a partition of the set of test classes
to each JVM. Test classes and methods run sequentially
within each JVM.

• Forked JVMs with parallel methods (FC1). With this
configuration, the build system forks multiple JVMs, as
FC0 does, but it runs test methods concurrently, as C1
does.

Note from the listing that forking can only be combined
with configuration C1 (see Section II-A) as Maven made the
design choice to only accept one test class at a time per forked
process. Maven offers an option to reuse JVMs that can be
used to attenuate the potentially high cost of spawning new
JVM processes on every test class (if reuse is enabled) and
also to achieve test isolation (if reuse is disabled).
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<forkCount>1C</forkCount>
<reuseForks>true</reuseForks>
<parallel>methods</parallel>
<threadCount>5</threadCount>

</configuration>
</plugin>

Fig. 2. Configuration FC1 on Maven.

Example: Figure 2 shows a fragment of a Maven configu-
ration file, known as pom.xml, highlighting options to run tests
using the parallel execution mode FC1. Maven implements this
feature through its Surefire JUnit test plugin [30]. With this
configuration, Maven forks one JVM per core (forkCount
parameter) and uses five threads (threadCount parameter) to
run test methods (parallel parameter) within each forked
JVM. Maven reuses created JVMs on subsequent forks when
execution of a test class terminates (reuseFork parameter).

III. OBJECTS OF ANALYSIS

We used Github’s search API [14] to identify projects that
satisfy the following criteria: (1) the primary language is Java1,
(2) the project has at least 100 stars, (3) the latest update
was on or after January 1st, 2016, and (4) the readme file
contains the string mvn. We focused on Java for its popularity.
Although there is no clearcut limit on the number of Github
stars [13] to define relevant projects, we observed that one
hundred stars was enough to eliminate trivial subjects. The
third criteria serves to skip projects without recent activity. The

1In case of projects in multiple languages, the Github API considers the
predominant language as the primary language.

1 https://api.github.com/search/repositories?q=language:java
2 +stars:>=100+pushed:>=2016+mvn%20in:readme&sort=stars

Fig. 3. Query to the Github API for projects that (1) use Java, (2) contains
at least 100 stars, (3) has been updated on January 1st, 2016 (or later), (4)
contains the string mvn in the readme file.

fourth criteria is an approximation to find Maven projects. We
focused on Maven for its popularity on Java projects. Important
to highlight that, as of now, the Github’s search API can only
reflect contents from repository statistics (e.g., number of forks,
main programming language); it does not provide a feature
to search for projects containing certain files (e.g., pom.xml)
in the directory structure. Figure 3 illustrates the query to the
Github API as an HTTP request. The result set is sorted in
descending order of stars.

We used the following methodology to select projects for
analysis. After obtaining the list of potential projects from
GitHub, we filtered those containing a pom.xml file in the root
directory. Then, considering this set of Maven projects, we
executed the tests for three times to discard those projects with
issues in the build file and non-deterministic results observed
from sequential executions. As of August 25th 2017, our search
criteria returned a total of 831 subjects. From this set of projects,
48 projects were not Maven or did not have a pom.xml in the
root directory, 237 projects were not considered because of
environment incompatibility (e.g., missing DBMS), 13 projects
were discarded because of “flaky tests” [23]. A “flaky” test is a
test that passes or fails under the same circumstances leading to
non-deterministic results. As some of our experiments consist
of running tests on different threads, we ignored these projects
as it would be impractical to identify whether a test failed
due to a race condition or some other source of flakiness.
From the remaining 533 projects with deterministic results, we
eliminated 65 projects with 10% or more failing tests as to
reduce bias. For the remaining projects with failing tests, we
used the JUnit’s @Ignore annotation to ignore failing tests. Our
final set of subjects contains 468 projects. Figure 4 summarizes
our sample set.

Fig. 4. We fetched 831 popular projects hosted on Github. From this initial
sample, we ignored 48 projects without Maven support, 237 with missing
dependencies, 13 projects with flaky tests, and 65 projects had at least 10%
of failing tests. We considered 468 projects to conduct our study.

To run our experiments, we used a Core i7-4790 (3.60 GHz)
Intel processor machine with eight virtual CPUs (four cores
with two native threads each) and 16GB of memory, running
Ubuntu 14.04 LTS Trusty Tahr (64-bit version). We used Java
8 and Maven 3.3.9 to build projects and run test suites. To
process test results and generate plots we used Python, Bash,
R and Ruby. All source artifacts are publicly available for
replication on our website [4]. This includes supporting scripts
and the full list of projects.

IV. EVALUATION

We pose the following research questions, organized by the
dimensions of analysis we presented in Section I.
• Feasibility

– RQ1. How prevalent are time-consuming test suites?
– RQ2. How is time distributed across test cases?

• Adoption
– RQ3. How popular is test suite parallelization?
– RQ4. What are the main reasons that prevent developers

from using test suite parallelization?
• Speedups

– RQ5. What are the speedups obtained with parallelization
(in projects that actually use it)?

– RQ6. How test execution scales with the number of
available CPUs?

• Tradeoffs
– RQ7. How parallel execution configurations affect testing

costs and flakiness?

A. Feasibility

• RQ1. How prevalent are time-consuming test suites?
To evaluate prevalence of projects with time-consuming test

suites, we considered the 468 projects, appearing in Figure 4.
Figure 5 illustrates the script we used to measure time.

We took the following actions to isolate our environment
from measurement noise. First, we observed that some test tasks
called test-unrelated tasks (e.g., javadoc generation and static
analyses) that could interfere in our time measurements. To
address that potential issue, we inspected Maven execution logs
from a sample including a hundred projects prior to running
the script from Figure 5. The tasks we found were ignored
from execution (lines 1-4). Furthermore, we configured our
workstation to only run essential services as to avoid noise
from unrelated OS events. The machine was dedicated to our
experiments and we accessed it via SSH. In addition, we
configured the isolcpus option from the Linux Kernel [20]
to isolate six virtual CPUs to run our experiments, leaving the
remaining CPUs to run OS processes [9]. The rationale for this
decision is to prevent context-switching between user processes
(running the experiment) and OS-related processes. Finally, to
make sure our measurements were fair, we compared timings
corresponding to the sequential execution of tests using Maven
with that obtained with JUnit’s default JUnitCore runner,
invoked from the command line. Results were very close. The
main loop (lines 6-15) of the script in Figure 5 iterates over
the list of subjects and invokes Maven multiple times (lines
8-11). It first makes all dependencies available locally (line
8), compiles the source and test files (line 9), and then runs
the tests in offline mode as to skip the package update task,
enabled by default (line 11). After that, we used a regular
expression on the output log to find elapsed times (line 12-14).

We ran the test suite for each subject three times, reporting
averaged execution times in three ranges: tests that run within
a minute (short), tests that run in one to five minutes (medium),

1 MAVEN_SKIPS="-Drat.skip=true -Dmaven.javadoc.skip=true \
2 -Djacoco.skip=true -Dcheckstyle.skip=true \
3 -Dfindbugs.skip=true -Dcobertura.skip=true \
4 -Dpmd.skip=true -Dcpd.skip=true"
5

6 for subj in $SUBJECTS; do
7 cd $SUBJECTS_HOME/$subj
8 mvn clean dependency:go-offline
9 mvn test-compile install -DskipTests $MAVEN_SKIPS \

10 &> compile.log
11 mvn test -o -fae $MAVEN_SKIP &> testing.log
12 cat testing.log \
13 | grep --text "\[INFO\] Total time:" \
14 | tail -n 1
15 done

Fig. 5. Bash script to measure time cost of test suites. For each subject, we
fetch all dependencies, compile the source and test files, and execute the tests
in offline mode ignoring non-related tasks. Test-unrelated tasks are omitted.

37
73

358

0

100

200

300

long medium short
Group

Nu
m

be
r o

f p
ro

je
ct

s

(a)

long medium short

0.00

0.25

0.50

0.75

1.00

1

2

3

4

5

0

100

200

Group

Ti
m

e
co

st
 (i

n
m

in
ut

es
)

(b)

Fig. 6. (a) Number of projects in each cost group and (b) Distribution of
running times per cost group.

and tests that run in five or more minutes (long). Figure 6(a)
shows the number of projects in each group. As expected,
long and medium projects do not occur as frequently as short
projects. However, they do occur in relatively high numbers.
Figure 6(b) shows the distribution of execution time of test
suites in each of these groups. Note that the y-ranges are
different. The distribution associated with the short group is
the most unbalanced (right skewed). The test suites in this
group ran in 15 or less seconds for over 75% of the cases.
Considering the groups medium and long, however, we found
many costly executions. Nearly 75% of the projects from the
medium group take 3.5 or more minutes to run and nearly
75% of the projects from the long group take ∼20 minutes to
run. We found cases in the long group were execution takes
more than 50 minutes to complete, as can be observed from
the outliers in the boxplot.

It is important to note that we under-estimated running times
as we missed test modules not enabled for execution in the root
pom.xml. For instance, the project apache.maven-surefire
runs all unit tests in a few seconds. According to our criteria,
this project is classified as short but a closer look reveals that
only smoke tests are executed in this project by default. In this
project, integration and system tests, which take longer to run,
are only accessible via custom parameters, which we do not
handle in our experimental setup. We enabled such parameters
for this specific project and observed that testing time goes
to nearly 30 minutes. For simplicity, we considered only the
tests executed by default. From the 468 testable projects, 400
successfully executed all tests and 68 reported some test failure.

medium

long

0

2

4

6

0

2

4

6

Ti
m

e
co

st
 (i

n
se

cs
)

Fig. 7. Distribution of test case time per project.

From these 68 subjects, only 11 subjects have more than 5%
of failing tests (7.3% on average).

Answering RQ1: We conclude that time-consuming test
suites are relatively frequent in open-source projects. We
found that 24% of the 468 projects we analyzed (i.e.,
nearly 1 in every 4 projects) take at least 1 minute to run
and 8% of them take at least 5 minutes to run.

• RQ2. How is time distributed across test cases?
Section IV-A showed that medium and long-running projects

are not uncommon, accounting to nearly 24% of the 468
projects we analyzed. Research question RQ2 measures the
distribution of test costs in test suites. In the limit, if cost
is dominated by a single test from a large test suite, it is
unlikely that parallelization will be beneficial as a test method
is the smallest working unit in test frameworks. Figure 7 shows
the time distribution of individual test cases per project. We
observed that the average median times (see dashed horizontal
red lines) were small, namely 0.08s for medium projects and
0.16s for long projects, and the standard deviations associated
with each distribution were relatively low. High values of
σ are indicative of CPU monopolization. We found only a
small number of those. The highest value of σ occurred
in uber_chaperone, a project from the long group. This
project contains only 26 tests, 17 of which take less than
0.5s to run, one of which takes nearly 3s to run, two of
which take nearly 11s to run, four of which takes on average
3m to run, and two of which take ∼8m to run. For this
project, 98.4% of the execution cost is dominated by 20%
of the tests; without these two costly tests this project would
have been classified as short-running. We did not find other
projects with such extreme time monopolization profile. Project
facebookarchive_linkbench is also classified as long-
running and has the second highest value of σ. For this project,
however, cost is distributed more smoothly across 98 tests, of
which 8 (8.1%) take more than 1s to run with the rest of the
tests running faster.

Figure 8(a) shows the difference in the distribution of test
suite sizes across groups. This figure indicates that long projects
have a higher median and much higher average number of
test cases. Furthermore, we noted a strong positive correlation
between running time and number of test on projects in the
long group. Considering the medium group, the correlation
between these two variables was weak. Figure 8(b) illustrates

0
50

10
0

15
0

long medium
Groups

Nu
m

be
r o

f t
es

t c
as

es
 (x

10
2)

(a)

long medium

0 50 100 150 0 10 20 30 40 50

1

2

3

4

5

0

100

200

Number of test cases (x102)

Ti
m

e
co

st
 (i

n
m

in
ut

es
)

(b)

Fig. 8. (a) Size of test suites; (b) Size versus running time of test suites.

the regression lines between these the variables test suite cost
and number of test cases. To sum, we observed that for projects
with long-running test suites running time is typically justified
by the number of test cases as opposed to the cost of individual
test cases.

Answering RQ2: Overall, results indicate that projects
with a very small number of tests monopolizing end-to-end
execution time were rare. Time most often is distributed
evenly across test cases.

B. Adoption

• RQ3. How popular is test suite parallelization?
To answer RQ3 we used projects from the medium and long

groups where parallelization can be more helpful. We used a
dynamic and a static approach to find manifestations of paral-
lelism. We discuss results obtained with these complementary
approaches in the following.

1) Dynamic checking: To find dynamic evidence of par-
allelism, we ran the test suites from our set of 110 projects
to output all key-value pairs of Maven parameters. To that
end, we used the option -X to produce debug output and the
option -DskipTests to skip execution of tests. We skipped
execution of tests as we observed from sampling that only
bootstrapping the Maven process suffices to infer which parallel
configuration modes it uses to run the tests. It is also important
to point that we used the default configurations specified in
the project. We inferred parallel configurations by searching
for certain configuration parameters in log files. According to
Maven’s documentation [30], a parallel configuration depends
either on (1) the parameter parallel to define the parallelism
mode within a JVM followed by the parameter threadCount
or (2) the parameter forkCount2 to define the number of
forked JVMs. As such, we captured, for each project, all
related key-value pairs of Maven parameters and mapped
those pairs to one of the possible parallelization modes. For
instance, if a given project contains a module with the parameter
<forkCount>1C</forkCount>, the possible classifications
are FC0 or FC1, depending on the presence and the value
of the parameter parallel. If the parameter parallel

is set to methods the detected mode will be FC1. Large
projects may contain several test suites distributed on different

2This parameter is named forkMode in old versions of Maven Surefire.

Maven modules potentially using different configurations.
For those cases, we collected the Maven output from each
module discarding duplicates as to avoid inflating counts for
configuration modes that appear in several modules of the
same project. For instance, if a project contains two modules
using the same configuration, we counted only one occurrence.
Considering our set of 110 projects, we found that only 13 of
those projects had parallelism enabled by default, with only
configurations C2, C3, and FC0 being used. Configurations C3
and FC0 were the most popular among these cases. Note that
these results under-approximate real usage of parallelism as
we used default parameters in our scripts to spawn the Maven
process. That decision could prevent execution of particular
test modules. Table I shows the 13 projects we identified where
parallelism is enabled by default in Maven.

Column “Subject” indicates the name of the project, column

TABLE I
SUBJECTS WITH PARALLEL TEST

EXECUTION ENABLED BY DEFAULT.

Group Subject # of Modemodules

Medium Californium 2/20 C2
Medium Chaos 1/1 C2
Long Flink 66/74 FC0
Long Log4J2 25/28 FC0
Long Javaslang 3/3 C3
Medium Jcabi 1/1 C3
Long Jet 6/7 FC0
Long Mahout 8/9 FC0
Long MapDB 1/1 C3
Medium OpenNLP 4/4 FC0
Medium Rultor 1/1 C3
Medium Takes 1/1 C3
Long Vavr 3/3 C3

“# of modules” indicates
the fraction of mod-
ules containing tests that
use the configuration
of parallelism mentioned
in column “Mode”. We
note that, considering
these projects, the mod-
ules that do not use the
configuration cited use
the sequential configu-
ration C0. For exam-
ple, three modules (=28-
25) from Log4J2 use
sequential configuration.
It came as a surprise
the observation that no
project used distinct configurations in their modules.

2) Static checking: Given that the dynamic approach cannot
detect parallelism manifested through the default configuration
of projects, we also searched for indications of parallelism in
build files. We parsed all pom.xml files under the project’s
directory and used the same approach as in our previous
analysis to classify configurations. We noticed initially that
our approach was unable to infer the configuration mode
for cases where the decision depends on the input (e.g.,
<parallel>${parallel.type}</parallel>). For these
projects, the tester needs to provide additional parameters in
the command line to enable parallelization (e.g., mvn test

-Dparallel.type=classesAndMethods). To handle those
cases, we considered all possible values for the parameter (in
this case, ${parallel.type}). It is also important to note
that this approach is not immune to false negatives, which can
occur when pom.xml files are encapsulated in jar files or files
downloaded from the network. Consequently, this approach
complements the the dynamic approach. Overall, we found 14
projects manifesting parallelism with this approach. Compared
to the set of projects listed in Table I, we found four new
projects, namely: Google Cloud DataflowJavaSDK (using
configuration C3), Mapstruct (using configuration FC0),

T-SNE-Java (using configuration FC0), and Urbanairship

Datacube (using configuration C3). Curiously, we also found
that project Jcabi, Rultor, and Takes were not detected
using this methodology. That happened because these projects
loaded a pom.xml file from a jar file that we missed. Considering
the static and dynamic methods together, we found a total of 17
distinct projects using parallelism, corresponding to the union
of the two subject sets.

Answering RQ3: Results indicate that test suite paral-
lelization is underused. Overall, only 15.45% of costly
projects (17 out of 110) use parallelism.

• RQ4. What are the main reasons that prevent developers
from using test suite parallelization?
To answer this research question we surveyed developers

involved in a selection of projects from our benchmark with
time-consuming test suites. The goal of the survey is to better
comprehend developer’s attitude towards the use of parallelism
as a mechanism to speedup regression testing. We surveyed
developers from a total of 89 projects. From the initial list of
110 project, we discarded 11 projects that we knew a priori
used parallelization, and 10 projects that we could not find
developer’s emails from commit logs. From this list of projects,
we mined potential participants for our study. More precisely,
we searched for developer’s name and email from the last 20
commits to the corresponding project repository. Using this
approach, we identified a total of 297 eligible participants.
Finally, we sent plain-text e-mails, containing the survey,
to those developers. In total, 38 developers replied but we
discarded three replies with subjective answers. Considering
projects covered by the answers, a total of 36 projects (61.29%
of the total) were represented in those replies. Note that multiple
developers on each project received emails. In one specific case,
one developer worked in multiple projects, and we consider it
as a different answer. We sent the following set of questions
to developers:

1) How long does it take for tests to run in your environment?
Can you briefly define your setup?

2) Do you confirm that your regression test suite does *not*
run in parallel?

3) Select a reason for not using parallelization:
a) I did not know it was possible
b) I was concerned with concurrency issues
c) I use a continuous integration server
d) Some other reason. Please elaborate.

Considering question 1, we confirmed that execution time
was compatible with the results we reported in Section IV-A.
Furthermore, 12 of the participants indicated the use of
Continuous Integration (CI) to run tests, with 4 of these
participants reporting that test suites are modularized and those
modules are tested independently in CI servers through different
parameters. Those participants explained that such practice
helps to reduce time to observe test failures, which is the goal
of speeding up regression testing. A total of 6 participants
answered that they do run tests in their local machines. Note,

however, that CI does not preclude low-level parallelization. For
example, installations of open-source CI tools (e.g., Jenkins [2])
in dedicated servers would benefit from running tests faster
through low-level test suite parallelization.

Considering question 2, the answers we collected indicated,
to our surprise, that six of the 36 projects execute tests in
parallel. This mismatch is justified by cases where neither
of our checks (static or dynamic) could detect presence of
parallelism. A closer look at these projects revealed that one
of them contained a pom.xml file encapsulated in a jar file
(similar case as reported in Section IV-B2), in one of the
projects the participant considered that distributed CI was a
form of parallelism, and in four projects the team preferred
to implement parallelization instead of using existing features
from the testing framework and the build system — in two
projects the team implemented concurrency control with custom
JUnit test runners and in two other projects the team imple-
mented concurrency within test methods. Note that, considering
these four extra cases (ignored two distributed CI cases), the
usage of parallelization increases from 15.45% to 19.1%. We
do not consider this change significant enough to modify our
conclusion about practical adoption of parallelization (RQ3).

Considering question 3, the distribution of answers was as
follows. A total of 8.33% of the 36 developers who answered
the survey did not know that parallelism was available in

7

6

8

12

3

n/a

d

c

b

a

Fig. 9. Summary of
developer’s answers
to survey question 3.

Maven (option “a”), 33.33% of developers
mentioned that they did not use parallelism
concerned with possible concurrency issues
(option “b”), 16.67% of developers men-
tioned that continuous integration suffices
to provide timely feedback while running
only smoke tests (i.e., short-running tests)
locally (option “c”), and 16.67% of devel-
opers who provided an alternative answer
(option “d”) mentioned that using paral-
lelism was not worth the effort of preparing the test suites
to take advantage of available processing power. A total of
19.45% of participants did not answer the last question of the
survey. The pie chart in Figure 9 summarizes the distribution
of answers.

Answering RQ4: Results suggest that dealing with con-
currency issues (i.e., the extra work to organize test suite
to safely explore concurrency) was the principal reason
for developers not investing in parallelism. Other reasons
included availability of continuous integration services
and unfamiliarity with the technology.

C. Speedups

• RQ5. What are the speedups obtained with paralleliza-
tion (in projects that actually use it)?
To answer RQ5, we considered the 13 subjects from our

benchmark that use parallelization by default (see Table I).
We compared running times of test suites with enabled
parallelization, as configured by project developers, and without
parallelization. It is important to note that there are no observed

TABLE II
SPEEDUP (OR SLOWDOWN) OF PARALLEL EXECUTION (Tp) OVER

SEQUENTIAL EXECUTION (Ts). DEFAULT PARALLEL CONFIGURATION OF
MAVEN IS USED. HIGHEST SLOWDOWN/SPEEDUP APPEARS IN GRAY COLOR.

Group Subject Ts Tp Ts/Tp

Medium Californium 1.45m 1.40m 1.04x
Medium Chaos 1.51m 1.47m 1.03x
Medium Flink 11.79m 2.57m 4.59x
Long Log4J2 8.24m 8.21m 1.00x
Medium Javaslang 2.18m 1.82m 1.20x
Medium Jcabi 2.76m 0.30m 9.20x
Long Jet 8.26m 3.67m 2.25x
Long Mahout 27.38m 18.15m 1.51x
Long MapDB 10.06m 8.58m 1.17x
Medium OpenNLP 1.30m 0.55m 2.36x
Medium Rultor 2.30m 0.27m 8.52x
Medium Takes 2.00m 0.19m 10.53x
Long Vavr 3.26m 2.25m 1.45x

Average 3.53x

failures in either execution. Table II summarizes results. Lines
are sorted by project names. Columns “Group” and “Subject”
indicate, respectively, the cost group and the name of the project.
Column “Ts” shows sequential execution time and column “Tp”
shows parallel execution time. Column “Ts/Tp” shows speedup
or slowdown. As usual, a ratio above 1x indicates speedup and
a ratio below 1x indicates slowdown.

Results show that, on average, parallel execution was 3.53
times faster compared to sequential execution. Three cases
worth special attention: Log4J2, Chaos, and Takes. We note
that parallel execution in Log4J2 was ineffective. We found
that Maven invokes several test modules in this project but
the test modules that dominate execution time run sequentially
by default. This was also the case for the highlighted project
Californium. No significant speedup was observed in Chaos,
a project with only three test classes, of which one monopolizes
the bulk of test execution time. This project uses configuration
C2, which runs test classes in parallel but runs test methods,
declared in each class, sequentially. Consequently, speedup
cannot be obtained as the cost of the single expensive test
class cannot be broken down with the selected configuration.
Finally, the speedup observed in project Takes was the highest
amongst all projects. This subject uses configuration C3 and
contains 419 test methods distributed nearly equally among 148
test classes with a small number of test methods. Furthermore,
several methods in those classes are time-consuming. As result,
the CPUs available for testing are kept occupied for the most
part during test execution.

Answering RQ5: Considering the machine setup we used,
the average speedup observed with default configurations
of parallelization was 3.53x.

• RQ6. How test execution scales with the number of
available CPUs?
This experiment evaluates the impact of making a growing

number of CPUs available to the build system for testing. For

this reason, we used a different machine, with more cores,
compared to the one described in Section III. We used a
Xeon E5-2660v2 (2.20GHz) Intel processor machine with 80
virtual CPUs (40 cores with two native threads each) and
256GB of memory, running Ubuntu 14.04 LTS Trusty Tahr
(64-bit version). This experiment spawns a growing number of
JVMs in different CPUs, using parallel configuration FC0. We
selected subject MapDB in this experiment as it represents the

2

4

6

111111 333333 555555 7777 9999 11111111 13131313 15151515 17171717
cores

Ti
m

e
(m

)

Fig. 10. Scalability.

case of a long-running test
suite (see Table II) with test
cases distributed across many
test classes – 194. Recall that
a test class is the smallest unit
that can be used to spawn a
test job on a JVM and that
we have no control over which
test classes will be assigned to which JVM that the build system
forks. Figure 10 shows the reduction in running times as more
CPUs contribute to the execution. We ran this experiment for
a growing number of cores 1, 3, ..., 39. The plot omits results
beyond 17 cores as the tendency for higher values is clear.
We noticed that improvements are marginal after three cores,
which is the basic setup we used in other experiments. This
saturation is justified by the presence of a single test class,
org.mapdb.WALTruncat, containing 15 test cases that take
over two minutes to run.

Answering RQ6: Results suggest that execution FC0 scales
with additional cores but there is a bound on the speedup
that one can get related to how well the test suite is
balanced across test classes.

D. Tradeoffs

This dimension assesses the impact of using distinct parallel
configurations on test flakiness and speedup. Increased paral-
lelism can increase resource contention leading to concurrency
issues such as data races across dependent tests [6], [23].
Flakiness and speedup are contradictory forces that could
influence the decision of practitioners about which parallel
configuration should be used for testing. Note that Section IV-C
evaluated speedup in isolation.
• RQ7. How parallel execution configurations affect testing

costs and flakiness?
To answer this research question, we selected 15 different

subjects, ran their test suites against all configurations described
in Section II, and compared their running times and rate of
test flakiness. We used the sequential execution configuration,
C0, as the comparison baseline in this experiment. To select
subjects, we sorted projects whose test suites run in 1m or more
by decreasing order of execution time and selected the first
fifteen projects that use JUnit 4.7 or later. The rationale for this
criteria is to ensure compatibility with parallel configuration
since older versions of JUnit does not support parallel testing.
We ran each project on each configuration for three times.
Overall, we needed to reran test suites 270 times, 18 times
(3x6 configurations) on each project. Given the low standard

deviations observed in our measurements, we considered three
reruns reasonable for this experiment.

It is worth mentioning that we used custom JUnit runners as
opposed to Maven to run the test suites with different parallel
configurations (see Section II). After carefully checking library
versions for compatibility issues and comparing results with
JUnit’s we observed that several of Maven’s executions exposed
problems. For example, Maven incorrectly counts the number
of test cases executed for some of the cases where test flakiness
are observed. These issues are categorized and documented on
our website [4] and can be reproduced with our scripts. To
address those issues we implemented custom test runners for
configurations C1, C2, and C3 and, for configurations FC0 and
FC1, we implemented a bash script that coordinates the creation
of JVMs and invokes corresponding custom runners. As to
faithfully reflect Maven’s behavior in our scripts, we carefully
analyzed the source code [3] of the Maven Surefire plugin. We
implemented test runners using the ParallelComputer class
from JUnit [19].

We used Maven log files to identify test classes to
run and used the Maven dependency plugin [29] to
build the project’s classpath (with the command mvn

dependency:build-classpath). Once we find the tests
suite to run and the corresponding classpath, we invoke the
test runners mentioned above on them. We configured this
experiment to run at most three JVMs in parallel. Recall that
in our setup (see Section III), we limited our kernel to use only
three cores and reserved one core for OS-related processes.
To ensure that our experiments terminate (recall that deadlock
or livelock could occur) we used the timeout command [24]
configured to dispatch a kill signal if test execution exceeds a
given time limit. Finally, we save each execution log and stack
traces generated from JUnit to collect the execution time, the
number of failing tests, and to diagnose outliers in our results.

Table III summarizes results ordered by subject’s name.
Values are averaged across multiple executions. We did not
report standard deviations as they are very small in all cases.
As to identify the potential causes of flakiness, we inspected the
exceptions reported in execution logs. We found that, in most
of the cases, flakiness was caused by race conditions: approxi-
mately 97.5% of the failures were caused by a null dereference
and 1.6% were caused by concurrent access on unsynchronized
data structures. Cases of likely broken test dependencies
were not as prevalent as race conditions (0.8% of the total):
EOFException (0.2%), FileSystemAlreadyExistsException

(0.2%), and BufferOverflowException (0.4%). Results sug-
gest that anticipating race conditions to schedule test executions
would have higher impact compared to breaking test depen-
dencies using a tool such as ElectricTest [6].

The projects with flakiness in all configurations were AWS

SDK, GoogleCloud, and Moquette. It is worth highlighting
the unfortunate case of Moquette, which manifested more than
20% flaky tests in every configuration. Considering time, it is
noticeable from the averages, perhaps as expected, an increasing
speedup from configuration C1 to C3 and from configuration
FC0 to FC1. It is also worth mentioning that some combinations

TABLE III
SPEEDUP VERSUS FLAKINESS (%FAIL). CONFIGURATION C0 DENOTES THE COMPARISON BASELINE. COLUMNS T AND N INDICATE TIME AND NUMBER OF

TESTS, RESPECTIVELY. OTHER COLUMNS SHOW SPEEDUP AND PERCENTAGE OF FAILING TESTS IN DIFFERENT CONFIGURATIONS, COMPARED TO C0.

Subject C0 C1 C2 C3 FC0 FC1
T N speedup %fail speedup %fail speedup %fail speedup %fail speedup %fail

Activiti 5.9m 2,029 72.1x 96.3% 1.5x 6.9% 75.9x 96.3% 2.9x 6.6% 3.1x 8.0%
AWS SDK Java Core 3.7m 847 2.0x 2.2% 2.5x 2.8% 3.7x 4.0% 1.9x 0.2% 3.5x 3.1%
Bucket4J 3.0m 110 2.5x 0% 1.3x 0.9% 4.2x 1.8% 1.3x 0% 3.7x 0%
Facebook Linkbench 6.1m 98 1.0x 0% 1.6x 1.0% 1.0x 0% 1.7x 0% 1.6x 0%
GoogleCloud Dataflow Java SDK 1.6m 3,345 1.2x 1.7% 2.7x 1.0% 0.8x 5.4% 0.8x 1.7% 0.8x 1.7%
INRIA spoon 2.3m 1,042 1.2x 28.8% 2.7x 77.2% 1.6x 56.6% 1.8x 0% 1.8x 29.0%
Jcabi Github 2.6m 634 2.1x 0% 17.7x 0% 28.8x 0% 2.0x 0% 2.9x 0%
JCTools Core 3.6m 690 4.5x 0% 3.6x 0% 18.0x 0% 2.8x 0% 9.0x 0%
MapDB 8.2m 5,324 1.5x 0% 2.7x 0% 4.8x 0% 1.7x 1.0% 3.4x 1.0%
Moquette 3.7m 169 4.6x 65.6% 3.4x 33.0% 12.3x 78.0% 2.5x 22.5% 9.3x 69.4%
Spring Cloud Function 2.8m 168 6.4x 77.4% 1.3x 0.6% 6.6x 79.2% 1.1x 0% 2.9x 32.7%
Stream Lib 2.1m 149 0.9x 0% 2.2x 0% 2.4x 0.7% 2.7x 0% 3.6x 0%
Stripe Java 4.3m 302 4.8x 6.3% 3.3x 7.3% 21.5x 15.0% 2.7x 0% 8.6x 11.6%
TabulaPDF Java 2.4m 186 7.2x 0.5% 1.1x 0% 7.2x 2.7% 1.0x 0% 7.2x 1.6%
Urban Airship Datacube 8.3m 36 1.9x 25.0% 4.7x 44.4% 1.9x 25.0% 1.0x 0% 1.9x 25.0%

Average 4.0m 1,006.6 7.6x 20.3% 3.5x 11.7% 12.7x 24.3% 1.9x 2.1% 4.2x 12.2%

manifested slowdown instead of speedup. Recall that parallel
execution introduces the overhead of spawning and managing
JVMs and threads. Overall, results show that 0% of flakiness
have been reported in 30 of the 75 (=5x15) pairs of project and
configuration we analyzed (40% of the total). In for 4 of the
15 projects flakiness was not manifested in any combination
pairs. We noticed with some surprise that the average speedup
of configuration C1 was higher compared to FC1 indicating
that it is not always the case that using more CPUs pays off.
Important to note that the cost of spawning new JVMs can be
significant in FC1.

Answering RQ7: Overall results indicate that the test
suites of 73.33% of the projects we analyzed could be run
in parallel without manifesting any flaky tests. In some
of these cases, speedups were significant, ranging from
1x to 28.8x.

V. DISCUSSION

This paper reports our finding on a study to evaluate impact
and usage of test suite parallelization, enabled by modern
build systems and testing frameworks. This study is important
given the importance to speedup testing. Note that test suite
parallelization is complementary to alternative approach to
speedup testing (see Section VII). The observations we made
in this study trigger multiple actions:
• Incentivize forking. Forked JVMs manifest low rates of test

flakiness. For instance, in FC0, only 4 of 10 projects manifest
flakiness and, excluding the extreme case of Moquette,
projects manifest flaky tests in low rates 0.23% to 1.70%.
Developers of projects with long-running test suites should
consider using that feature, which is available in modern
build systems today (e.g., Maven).

• Break test dependencies. Non-forked JVMs can achieve
impressive speedups at the expense of sometimes impressive
rates of flakiness. Breaking test dependencies to avoid

flakiness and take full advantage of those options is advised
for developers with greater interest in efficiency.

• Refactor tests for load balancing. Forked JVMs scales
better with the number of cores when the test workload
is balanced across testing classes. To balance the workload,
automated user-oblivious refactoring can help in scenarios
where developers are not willing to change test code but
have access to machines with a high number of cores.

• Improve debugging for build systems. While preparing our
experiments, we found scenarios where Maven’s executions
did not reflect corresponding JUnit’s executions. Those
issues can hinder developers from using parallel testing.
Better debugging infrastructure is important.

This study brings to light the benefits and burdens of test
suite parallelization to improve test efficiency. It provides
recommendations to practitioners and developers of new
techniques and tools aiming to speed up test execution with
parallelization.

VI. THREATS TO VALIDITY

The main threats to validity of this study are the following.
External Validity: Generalization of our findings is limited

to our selection of subjects, testing framework, and build
system. To mitigate that issue, we selected subjects according
to an objective criteria, described in Section III. It remains to
evaluate the extent to which our observations would change
when using different testing frameworks and build systems.
Also, some of the selected subjects contain failing tests. Test
failures may reduce the testing time due to early termination
or even inflate the time (e.g., test waiting indefinitely for an
unavailable resources). To mitigate this threat, we eliminated
subjects with flaky tests and filtered projects with at least 90%
of the tests passing. Only 17% of our subjects have failing
tests. We carefully inspected our rawdata to identify and ignore
these failures with JUnit’s @Ignore annotation.

Internal Validity: Our results could be influenced by uninten-
tional mistakes made by humans who interpreted survey data
and implemented scripts and code to collect and analyze the
data. For example, we developed JUnit runners to reproduce
Maven’s parallel configurations and implemented several
scripts to automate our experiments (e.g., run tests and detect
parallelism enabled by default in the subjects). All those tasks
could bias our results. To mitigate those threats, the first two
authors of this paper validated/inspected each other to increase
chances of capturing unintentional mistakes.

Construct Validity: We considered a number of metrics in
this study that could influence some of our interpretations.
For example, we measured number of test cases per suite,
distribution of test costs in a suite, time to run a suite, etc.
In principle, these metrics may not reflect the main problems
associated with test efficiency.

VII. RELATED WORK

Regression testing research has focused mostly on test
suite minimization, prioritization, reduction, and selection [36],
[42]. Most of these techniques are unsound (i.e., they do
not guarantee that fault-revealing tests will be considered
for testing). The test selection technique Ekstazi [8], [15]
is an example of a sound regression testing technique. It
conservatively computes which tests have been impacted by file
changes. A test is discarded for execution if it does not depend
on any changed file dynamically reachable from execution.
Important to note that regression testing techniques, including
test selection, is complementary to test suite parallelization.

ElectricTest [6] is a tool for efficiently detecting data depen-
dencies across test cases. Dependency tracking is important as
to avoid test flakiness when parallelizing test suites. ElectricTest
observes reads and writes on global resources made by tests
to identify these dependencies at low cost. We remain to
investigate the impact of ElectricTest to reduce flakiness in
unrestricted test suite parallelization.

The use of the Single Instruction Multiple Data (SIMD)
design has been previously explored in research to accelerate
test execution [10], [11], [21], [27], [32], [35], [41]. The SIMD
architecture, as implemented in modern GPUs, for instance,
allows the execution of a given instruction simultaneously
against multiple data. For that reason, in principle, one test
could be ran simultaneously against multiple inputs provided
that multiple test inputs exist associated to that one test. Recent
work [32], [41] explored that idea to speedup test execution of
embedded software using graphic cards. Although benchmarks
indicate superior performance compared to traditional multicore
CPUs, the use of the technology in broader settings is limited.
For example, execution of more general programs can violate
the SIMD’s lock-step assumption on the control-flow of threads.
This violation would affect negatively performance. Further-
more, handling complex data is challenging in SIMD [10],
[11]. The approach is promising when multiple input vectors
exist for each test and the testing code heavily manipulates
scalar data types. The datasets used in those papers satisfied
those constraints.

Google [16], [38] and Microsoft [31] have been creating
distributed infrastructures to efficiently build massive amounts
of code and run massive amounts of tests. Those scenarios
bring different and challenging problems such as deciding when
to trigger the build under multiple file updates [26]. Although
such distributed systems are targeted to extremely large scale
code and test bases, the same ideas can be applied to handle
the build process of large, albeit not as large, projects. For
example, Gambi et al. [12] recently proposed CUT, a tool to
automatically parallelize JUnit tests on the cloud. The tool
allows the developer to control resource allocation and deal
with the project specific test dependencies. Note that test suite
parallelization is complementary to these high-level parallelism
schemes.

Continuous Integration (CI) services, such as Travis CI [5],
are becoming widely used in the open-source community [17],
[40]. Accelerating time to run tests in CI is important as
to reduce the period between test report updates. Module-
level regression testing [39], for example, can be helpful in
that setting. It is important to note that test failures are more
common in CI compared to an overnight run or a local run,
for instance. This can happen because of semantic merge
conflicts [7], for instance. As such effect can impact developer’s
perception and tolerance towards failures, we are curious to
know if developers would be willing to receive more frequent
test reports at the expense of potentially increasing failure rates
due to flakiness caused by parallelism.

VIII. CONCLUSIONS

Testing is expensive. Despite all advances in regression
testing research, dealing with high testing costs remains
an important problem in Software Engineering. This paper
reports our findings on the usage and impact of test execution
parallelization in open-source projects. Multicore CPUs are
widely available today. Testing frameworks and build systems
that capitalize on these machines also became popular. Despite
some resistance observed from practitioners, our results suggest
that parallelization can be used in many cases without sacri-
ficing reliability. More research needs to be done to improve
automation (e.g., breaking test dependencies, refactoring test
suites, enforcing safe test schedules) as to safely optimize
parallel execution. The artifacts we produced as result of this
study are available from the following web page:

https://jeandersonbc.github.io/testsuite-parallelization/

ACKNOWLEDGMENT

Jean(derson) and Luis are supported by FACEPE schol-
arphips IBPG-0632-1.03/15 and IBPG-1175-1.03/16, respec-
tively. This work was partially supported by CNPq grants
457756/2014-4 and 203981/2014-6.

REFERENCES

[1] List of popular hosting cloud services. https://clutch.co/cloud.
[2] Jenkins ci. https://jenkins.io/, 2017.
[3] Maven surefire source repository. http://svn.apache.org/viewvc/maven/su

refire/trunk/, 2017.

[4] Our web page. https://jeandersonbc.github.io/testsuite-parallelization/,
2017.

[5] Travis ci. https://travis-ci.org/, 2017.
[6] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. Efficient

dependency detection for safe java test acceleration. In ESEC/FSE, pages
770–781, 2015.

[7] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive
detection of collaboration conflicts. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 168–178, New York,
NY, USA, 2011. ACM.

[8] Ahmet Çelik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric.
Regression test selection across JVM boundaries. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages
809–820, 2017.

[9] Unix StackExchange community. Using isolcpus.
http://unix.stackexchange.com/questions/326579/
how-to-ensure-exclusive-cpu-availability-for-a-running-process,
2017.

[10] Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. Delta
execution for efficient state-space exploration of object-oriented programs.
In ISSTA, pages 50–60, 2007.

[11] Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. Delta
execution for efficient state-space exploration of object-oriented programs.
IEEE Transactions on Software Engineering, 34(5):597–613, September
2008.

[12] Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas Zeller.
Cut: Automatic unit testing in the cloud. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2017, pages 364–367, New York, NY, USA, 2017. ACM.

[13] Github. Github about stars, 2017. https://help.github.com/articles/
about-stars/.

[14] Github. Github api web site, 2017. http://developer.github.com/v3/search/.
[15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression

test selection with dynamic file dependencies. In ISSTA, pages 211–222,
2015.

[16] GoogleTechTalks. Tools for continuous integration at google, October
2010. http://www.youtube.com/watch?v=b52aXZ2yi08.

[17] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny
Dig. Usage, costs, and benefits of continuous integration in open-source
projects. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, pages 426–437, New
York, NY, USA, 2016. ACM.

[18] JUnit. Junit web site, 2017. http://junit.org.
[19] JUnit. Parallelcomputer (junit api), 2017. http://junit.org/junit4/javadoc/

4.12/org/junit/experimental/ParallelComputer.html.
[20] Kernel.org. Kernel linux options. https://www.kernel.org/doc/html/latest/

admin-guide/kernel-parameters.html?highlight=isolcpu, 2017.
[21] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared

execution for efficiently testing product lines. In ISSRE, pages 221–230,
2012.

[22] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory,
Sabrina Souto, Paulo Barros, and Marcelo d’Amorim. SPLat: Lightweight
Dynamic Analysis for Reducing Combinatorics in Testing Configurable
Systems. In ESEC/FSE, pages 257–267, 2013.

[23] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov.
An empirical analysis of flaky tests. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2014, pages 643–653, New York, NY, USA, 2014.
ACM.

[24] Linux man Page. timeout - run a command with a time limit. http:
//linux.die.net/man/1/timeout, 2017.

[25] Maven, 2017. https://maven.apache.org/.
[26] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric

Nickell, Rob Siemborski, and John Micco. Taming google-scale
continuous testing. In 39th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 233–242,
2017.

[27] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Exploring
variability-aware execution for testing plugin-based web applications. In
ICSE, pages 907–918, 2014.

[28] NUnit. Nunit web site, 2017. http://www.nunit.org.
[29] Maven Dependency Plugin, 2017. https://maven.apache.org/plugins/

maven-dependency-plugin/.
[30] Maven Surefire Plugin, 2017. http://maven.apache.org/surefire/

maven-surefire-plugin/.
[31] Chandra Prasad and Wolfram Schulte. Taking control of your engineering

tools. Computer, 46(11):63–66, 2013.
[32] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroening.

Accelerated test execution using gpus. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering,
ASE ’14, pages 97–102, New York, NY, USA, 2014. ACM.

[33] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test
selection technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210,
April 1997.

[34] David Saff and Michael D. Ernst. Reducing wasted development time via
continuous testing. In Proceedings of the 14th International Symposium
on Software Reliability Engineering, ISSRE ’03, pages 281–, Washington,
DC, USA, 2003. IEEE Computer Society.

[35] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise:
Multi-path symbolic execution using value summaries. In ESEC/FSE
2015, pages 842–853, 2015.

[36] Quinten David Soetens, Serge Demeyer, Andy Zaidman, and Javier Pérez.
Change-based test selection: An empirical evaluation. Empirical Softw.
Engg., 21(5):1990–2032, October 2016.

[37] TestNG. Testng web site, 2017. http://testng.org.
[38] Google Engineering Tools. Testing at the speed and scale of

google, June 2011. http://google-engtools.blogspot.com.br/2011/06/
testing-at-speed-and-scale-of-google.html.

[39] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric.
File-level vs. module-level regression test selection for .net. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017, pages 848–853, 2017.

[40] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and
Vladimir Filkov. Quality and productivity outcomes relating to continuous
integration in github. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 805–816,
2015.

[41] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. Compiler-assisted
test acceleration on gpus for embedded software. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, pages 35–45, New York, NY, USA, 2017. ACM.

[42] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. Software Testing Verification and Reliability,
22(2):67–120, March 2012.

