Introduction to InterProlog

Warning: this file has not been updated for version 1.0b3, and may contain minor discrepancies with this version

Draft, comments welcome
November 16, 1998

Miguel Calejo, mc@servisoft.pt
2Overview

Requirements
2
Perspective from Prolog
3
Prolog as usual
3
Sending messages to Java
3
Java object specifications in Prolog
4
Specifying Java objects in Prolog
4
Object specification varieties
6
Additional primitives
6
Perspective from Java
7
No explicit interaction from the Java side
7
Interacting via unstructured text
8
Interacting at a higher level
8
An example: “Hello World !” in 4 flavors
9
HW! as usual
9
HW! Into Java’s text console
9
HW! to GUI, in reaction to GUI event
10
HW based on a minimal patch to an existing GUI
13
Design recommendations
15
Acknowledgments
16

Overview

InterProlog 1.0b1 is a preliminary version of a Java front-end and functional enhancement for standard Prologs, running on both Windows 95/NT and Solaris, and currently supporting XSB Prolog from the State University of New York at Stony Brook. It is implemented as a set of standard Java classes and Prolog predicates, and is available under the terms of the GNU Library License, from http://dev.servisoftpt/interprolog.

First, InterProlog provides a simple facelift to Prolog, by running it under a separate process and redirecting its STDIO to a Java window.

But it also provides Prolog with the ability to call any Java method, and for Java to invoke Prolog goals, by using standard TCP/IP sockets to pass object/term data among both processes:

[image: image1.png]
Java Reflection and Serialization mechanisms, together with Prolog’s natural strengths, are used fully to give the combination a level of flexibility and dynamism previously found only in environments based on interpreted languages.

The InterProlog system elaborates on ideas previously explored in a C++ context in “From Graphical Objects to Terms and Back: an Extended Application Framework for Prolog” (http://www.cs.usask.ca/projects/envlop/8WLPE/Proceedings.shtml), and also in “Embedding Prolog in the Java Environment” (http://clement.info.umoncton.ca/lpnet/proceedings97/). The evolution of Java as a dynamic language lead to the articulation of Java Serialization with Prolog Definite Clause Grammars:

[image: image2.wmf]Stream bytes

InterProlog

Object

Grammar

object(class(...),...data)

JAVA

Serialization

API

Object network

in memory

Prolog

Term

Requirements

The reader is expected to have a basic understanding of Java, cf. for example the introductory chapters in http://java.sun.com/docs/books/tutorial/, as well as of Prolog.

Depending on the application, the computer running InterProlog is expected to perform at the level of a 200MHz Pentium, and ideally should be compatible with the latest Java Development Kit from SUN. More details can be found in the InterProlog download page, at http://dev.servisoft.pt/interprolog.htm.

Perspective from Prolog

Prolog as usual

InterProlog can be used as the underlying Prolog would be used in a conventional setting. After launch a Java window appears, with two panes: the top shows all output (stdout and stderr) from Prolog; the bottom is an editable text field which is sent to Prolog’s input (stdin) after hitting the Enter key:

[image: image4.png]All Prolog built-ins continue available, such as file I/O etc., because Prolog is still running as usual; only its input/output streams where redirected to this window.

In addition to the Java window there may be another window open with the shell environment from where the Java virtual machine was invoked. Output appearing in that window is not originated from Prolog, it constitutes instead Java’s System.out console, where typically Java debugging messages may appear.

Sending messages to Java

Here are the main InterProlog primitives on the Prolog side (cf. file InterProlog.P):

Predicate
Description

javaMessage(Target,Result,Exception,MessageName,ArgList,NewArgList)
Synchronously sends a message to Java object Target, waiting for its Result, catching any Exception that may occur. You may prefer to use the sugared versions below. In any case, arguments in ArgList must be of the proper Java-compatible types, in the form of object specifications. NewArgList contains the same objects in ArgList after the message is processed, possibly reflecting state changes.
The messages available are those documented as public methods on the Java classes being used.

javaMessage(Target,Result,Message)
Same as javaMessage/6, but accepts the Message in methodName(arguments) format, neglects the new state of the arguments, and treats some Target cases, avoiding the need for common object specifications: object reference (integer), class object (atom), and class variable (class-variable)

javaMessage(Target,Message)
Same as javaMessage(Target,_,Message)

In order to use these predicates, object specifications are needed, introduced below.

Java object specifications in Prolog

Each language has its basic datum: objects in Java, terms in Prolog.

InterProlog provides a regular mechanism to specify Java objects in Prolog. It is based on the use of standard Serialization on the Java side, and on a Definite Clause Grammar on the Prolog side. This grammar is able to parse a sequence of bytes representing a serialized object into a Prolog term representing/specifying it, and vice-versa: given an object specification term, it is able to produce a sequence of bytes such that the standard Java Serialization process can recreate the object.

Specifying Java objects in Prolog

We’re now going to introduce the template-based InterProlog facility that enables us to build objects from term specifications, based on some minimal information provided explicitly by the Java programmer.

But first we’ll discuss the need for such a facility. Couldn’t we simply build objects from Prolog by invoking a constructor through javaMessage(), and setting their internal state through the Reflection API ? Theoretically, we could. But Java objects may initialize themselves in convoluted ways, and it may not be convenient to have the Prolog programmer explicitly calling every constructor variant, or providing elaborate sequences of setup messages.

Furthermore, InterProlog will soon support specification of objects whose classes have custom readObject/writeObject methods, making a “specification by prototyping” mechanism essential (because in general Prolog might not be able to explicitly understand/generate the result of those custom Java operations).

Therefore we aim to make the Prolog programmer’s life easier, possibly with the help of a Java-fluent friend that provides him/her with object examples.

The InterProlog template-based facility is implemented through 2 alternative predicates, which are generated based on (serialized object) examples sent from the Java side, and which should be used to specify, on the Prolog side, objects of the respective classes. In addition there’s also a single fact with a reference to the Java object that controls the current Prolog executor:

ipObjectSpec(Name,G,Vars,examples-[SubstA,SubstB]/ANames)
One such fact is made available for each ObjectPairExample(Name,A,B) instance that the Java programmer sent to Prolog, either on startup or through teachMoreObjects(); Name is the name of the class as given by the Java programmer; objects A and B are compared, producing a generalizing object (specification) G plus variable list Vars, that if bound to either SubstA or SubstB would become A or B resp. For the meaning of ANames see ipObjectTemplate

ipObjectTemplate(Name,Template,ANames,TVars,TSubs)
One such fact is made available for each ObjectPairExample(Name,A,B) instance that the Java programmer sent to Prolog, either on startup or through teachMoreObjects(); object A is analysed, and all variables in its class description are replaced by logic variables, collected in TVars, with values collected in TSubs; the resulting object specification is Template; binding TVars to TSubs would make Template = A; the variable types(names) are collected in ANames.

ipPrologEngine(E)
E is an object reference to the PrologEngine that launched this Prolog process.

You may wish to do a listing(ipObjectSpec) or listing(ipObjectTemplate) to see the templates available.

Why do we need both ipObjectSpec and ipObjectTemplate ? They’re partially redundant alternatives. The first allows a Java programmer to provide 2 prototypes that differ in just that part of internal state which is relevant for Prolog, and which will become easy to parametrize. The second makes all Java variables explicit to Prolog, which may be more convenient if both Java and Prolog code are being written alongside.

In any case, both predicates are produced simultaneously, for every object example given by Java.

Object specification varieties

An object specification corresponds to the blueprint for a new object instance on the Java side. But what if we wish to refer to an existing object, rather then create a new one? Or what if we want to pass as argument to javaMessage() a Java basic type such as int, rather than an object?

These and other cases are treated by special InterProlog Java code, together with a set of “special” object specifications; these are enumerated in the table below, which tells what ipObjectSpec call should be used to produce each one:

Object/data specification variety
ipObjectSpec call to use

Object X should be the object already existing and registered as ID on the Java side
ipObjectSpec(‘InvisibleObject’,X,[ID],_)

X is the class object for class with name C
ipObjectSpec(‘IPClassObject’,X,[C],_)

X is the class variable V of class C
ipObjectSpec(‘IPClassVariable’,X,[C,V],_)

X is a boolean basic type for B (which should be 1 or 0); similar ipObjectSpec facts are available for the remaining basic types: byte, small, int, long, float, double, char
ipObjectSpec(boolean,X,[B],_)

New String object with string Atom
None necessary, simply use string(Atom)

New object X of class C
ipObjectSpec(C,X,Variables,_)

Strings are the only objects that map directly to a Prolog data type (atom), and thus have a simpler object specification. A priori, Java numbers could also have a simple mapping to Prolog numbers, however there are more varieties of numbers in Java than in Prolog, and so it is necessary to use the full-blown object specifications above.

Additional primitives

In addition there are other predicates available (cf. file Visualization.P):

Predicate
Description

BuildTermModel(Term,TermModel)
Builds an object specification for a TermModel instance representing Term; used by browseTerm or any code that needs to pass a Prolog term to Java.

browseTerm(Term)
Creates a window with an outline (JTree) browser for Term. Information is passed to the Java side eagerly (one-shot).

browseList(List)
Creates a window with a JList browser on List. Double-clicking on items creates a term browser window. Information is passed to the Java side eagerly (one-shot).

browseTreeTerm(Tree)
Creates a window with a multi-pane hierarchical browser for Tree; this is assumed to be represented by some (dummy) functor with arity 2 or larger; the first argument is considered the node, the second a children list. The tree must have depth 2 or larger. Information is passed to the Java side eagerly (one-shot).

browseXSBTable(Functor/Arity)
Creates a window allowing browsing on the current snapshot for a predicate. Double-click on items creates a term browser window. Information is passed to the Java side eagerly (one-shot).

browseLiteralInstances(GroundTerm,Instances)
Creates a window with a JTable showing a set of similar terms. Information is passed to the Java side eagerly (one-shot).

Perspective from Java

InterProlog allows a Java programmer to use Prolog encapsulated in a Java object, a PrologEngine instance.

PrologEngine may be used at different levels of sophistication, by resorting to simple textual communication or to structured objects; we’ll now describe them, together with the relevant methods of the PrologEngine class, moving from trivial to more sophisticated.

No explicit interaction from the Java side

Even without explicit Java programming, there may Prolog (Java interaction through the javaMessage predicate. The callback service is activated by PrologEngine, runs transparently in a Java background thread and requires no explicit setup.

Interacting via unstructured text

For simple applications like the InterProlog Prolog listener window, it is sufficient to communicate with Prolog using plain text. Some relevant PrologEngine methods are:

· PrologEngine(): the simplest constructor, launches Prolog based on the executable specified in the InterProlog.prefs preferences file. Multiple class instances will cause multiple Prolog processes to be launched.

· addPrologOutputListener(PrologOutputListener client): causes the client to later receive the messages described in the PrologOutputListener interface (promptWasOutput(), print(String)), which constitute a slightly higher level of information than the raw bytes coming over Prolog’s output. The client may then react by appending the strings received to a GUI text field, as is the case with TopLevelWindow.

· sendAndFlush(String s): sends some text to Prolog’s stdin, such as a top goal in string form

· interrupt(), shutdown(): respectively simulate a ctrl-c and terminate the Prolog process.

You may wish to take a look at TopLevelWindow.java to see these methods being used.

Interacting at a higher level

If a Java application actually wishes to get some data back from Prolog in a controlled manner, and/or specific Java code is written to support a Prolog project, then in addition to the previous PrologEngine methods others may become relevant:

· teachMoreObjects(ObjectExamplePair[] examples): sends an array of object example pairs to Prolog, in order to automatically produce further ipObjectSpec/ipObjectTemplate facts. You may wish to look into the TopLevelWindow constructor for an example.

· registerJavaObject(Object x): registers an object with this PrologEngine and returns an integer ID, which can later be used on the Prolog side to refer to x

· isAvailable(): returns true if Prolog is believed to be not busy

· deterministicGoal(String G, String RVars, Object[] bindings): To use only when the PrologEngine isAvailable(). Calls Prolog goal G, returning objects in the ‘bindings’ array that reflect the first solution found; the objects are created according to the list of object specifications in RVars, which typically will share variables with G. The number of elements of RVars should be bindings.length. Returns true if G succeeds.

An example: “Hello World !” in 4 flavors

In order to illustrate InterProlog at work, we’ll examine different ways of having a Prolog program saying “Hello World!” (HW!) to an user watching a Java GUI. For each “flavor” we’ll see both the Prolog and Java side of the solution, together with some comments.

HW! as usual

First, the minimal solution. You’ve used Prolog through a textual shell interface, and you want to be sure most things stay the same. Basically, they do:

[image: image5.png]What was done:

Java side
Prolog side

No explicit Java programming
write(‘Hello World!’), nl.

TopLevelWindow lets you type the Prolog goal, and displays its output.
Just an ordinary top goal.

HW! Into Java’s text console

Although not used for regular applications, the Java console is many times used to debug or test. Let’s therefore use InterProlog to let Prolog show output on the Java console, by sending a message to System.out:

[image: image6.png]
The shell where the Java machine was launched should now show something like:

[image: image7.png]The lines above “Hello World!” contain some debugging information produced on the Java side upon detecting the beginning of the javaMessage callback.

What was done:

Java side
Prolog side

No explicit Java programming
javaMessage('java.lang.System' -out,
 println(string('Hello World!'))
).

PrologEngine offers a generic callback service to Prolog
Any message can be sent to any Java object. Java classes must be referred by their full names, including the package if any.

HW! to GUI, in reaction to GUI event

Now for a friendlier “Hello World!”: Java will provide the GUI, but Prolog will provide the event handling/processing capability. First, let’s ask a fellow Java programmer to hack a window with a text field to show the “Hello World!” message, and a button so the user can ask for that to happen:

[image: image8.png]
The event handling setup code uses an anonymous inner class instance to handle the button events in typical Java fashion. When the user clicks the button a message actionPerformed(ActionEvent) will be sent to the event handler object, which will react by sending the message deterministicGoal("greetat("+engine.registerJavaObject(text)+")") to the PrologEngine that was passed to the HelloWindow constructor.

In this context ‘+’ means string concatenation: we’re building a string to be sent as a goal to the PrologEngine: greetat(text). In order for Prolog to be able to later reference the already existing text object on the Java side, we’re registering it in the PrologEngine’s referred object table. The registerJavaObject() method returns an integer ID.

Finally, here’s the Prolog code needed to handle the event and actually greet the user, by changing the contents of the TextField object:

 greetat(TextID) :- javaMessage(TextID, setText(string('Hello world!'))).

Having written the Java code implementing the window, let’s see it:

[image: image9.png]After calling this goal another window apears, and after clicking the button the desired message appears on the text field:

[image: image10.png]Here’s a summary of this version of “Hello world!”:

Java side
Prolog side

A window class (HelloWindow) defining appearance, together with an event handler (anonymous) class relaying the event to Prolog as a goal
A message was sent to the HelloWindow class constructor, to create a window instance:

ipPrologEngine(Engine), javaMessage('pt.servisoft.interprolog.examples.HelloWindow','HelloWindow'(Engine)).

A predicate was defined, handling the event message from Java, and calling back Java to change the text object:

greetat(TextID) :- javaMessage(TextID, setText(string('Hello world!'))).

In pre-JDK 1.1 days an additional (non-anonymous) class would also be needed, to define the event-handling behavior
The PrologEngine object that launched Prolog is available through ipPrologEngine. A constructor method can be called directly from Prolog through javaMessage, like any other method, by using the class as target.

HW based on a minimal patch to an existing GUI

Now we’ll explore the dynamic features of Java and InterProlog, showing how a functionally equivalent solution can be implemented virtually without specific Java event-handling code, foreseeing scenarios where most of the GUI will be built outside Prolog’s control, using interface builders etc. This is possible because Java GUI objects may have event handlers (“listeners”) attached to them at any time; we’ll use that to let Prolog attach “its own” event handler.

First let’s revisit the HelloWindow class, now stripped of event-handling code:

[image: image11.png]
Then we create an instance, just like before:

ipPrologEngine(Engine), javaMessage('pt.servisoft.interprolog.examples.HelloWindow2','HelloWindow2'(Engine)).

Then we write down the object ID numbers that were output to the console:

[image: image12.png] And finally Prolog can create an object listening to the button’s events. For that we will first introduce the auxiliary PrologEventBroker class, a simple mechanism that uses a pre-declared Prolog goal to handle the events it catches. PrologEventBroker also attempts to show meaningful tooltips for the Prolog programmer (code not shown here).

public class PrologEventBroker implements ActionListener{

…

public void actionPerformed(ActionEvent e){

…

engine.deterministicGoal(thisGoal);

}

}

Summarizing, PrologEventBroker is just a Prolog convenience add-on to the required ActionListener interface.

By using it, Prolog can now define an event listening object, and attach it to the button:

ipPrologEngine(Engine), buildTermModel(greetat(4),TM),

javaMessage('pt.servisoft.interprolog.gui.PrologEventBroker', R, 'PrologEventBroker'(Engine,TM)),

javaMessage(3,addActionListener(R)).

From this moment on HelloWindow2 behaves to the user like HelloWindow. Following is the message flow resulting from a click on the window button. Round rectangles depict objects (class instances), with the messages flowing between them appearing in the arrows. The rectangle at the bottom represents the Prolog back-end:

[image: image3.wmf]a JButton

a

PrologEventBroker

actionPerformed()

a PrologEngine

deterministicGoal("greetat(BUTTONID)")

a CallbackHandler

a JTextField

setText("Hello World!")

greetat(T) :-

 javaMessage(T,string('Hello World!'))

All classes shown are generic. The PrologEngine and CallbackHandler objects are created on InterProlog’s startup.

Here’s a summary of this approach:

Java side
Prolog side

A window class (HelloWindow2) defining appearance, but no event-handling
A message was sent to the HelloWindow class constructor, to create a window instance:

ipPrologEngine(Engine), javaMessage('pt.servisoft.interprolog.examples.HelloWindow2','HelloWindow2'(Engine)).

A predicate was defined handling the event message from Java, and calling back Java to change the text object:

greetat(TextID) :- javaMessage(TextID, setText(string('Hello world!'))).

A PrologEventBroker event handler (mapping to a Prolog goal) was built and attached to the button:

ipPrologEngine(Engine), buildTermModel(greetat(4),TM),

javaMessage('pt.servisoft.interprolog.gui.PrologEventBroker', R, 'PrologEventBroker'(Engine,TM)),

javaMessage(3,addActionListener(R)).

The relevant objects must be somehow registered with a PrologEngine
A Prolog term may be passed to the Java side using the TermModel class, and the auxiliary Prolog predicate buildTermModel. The PrologEventBroker constructor asks the TM term to convert itself into string form.

Design recommendations

There are many possibilities to design InterProlog-based systems. Knowledge about the application may reside more on the Java or Prolog side, depending on each projects’ technological bias.

For GUI-intensive (sub)projects, and borrowing some practices common in Object-Oriented Programming, a promising guideline is as following: adopt a view/document partition of your data. Let Prolog know about “deep” data representation, and let Java handle front-end events, appearance, editing etc. The Java Foundation Classes (JFC, “Swing”) provide a natural framework to practice this, as we did for several of the examples accompanying InterProlog, such as all the visualization predicates.

For example, the InterProlog Prolog term browser is made of several parts:

· The TermModel class, which represents in Java a Prolog term tree, and which knows also how to respond to the messages defined in the (JFC) TreeModel interface

· buildTermModel(T,M), a Prolog predicate to build a TreeModel object specification M from a given term T

· The TermModelWindow class, a window which contains a JFC JTree object using a TermModel as its TreeModel, to whom it asks for data to display

The Prolog part only specifies the TermModel; it knows nothing about user events, drawing etc. – that responsibility is given to the Java parts.

Acknowledgments

This work was sponsored partly by the PROLOPPE (Praxis/3/3.1/TIT/24/94) and REAP (Fundação Luso-Americana para o Desenvolvimento) projects, as well as by Servisoft (http://dev.servisoft.pt). Special thanks also to the XSB group at SUNY Stony Brook, for their encouragement, feedback and help. InterProlog maintenance and improvements have been supported by XSB, Inc.

1

