

Ontobroker: How to make the WWW Intelligent

Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer
University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany

Email: {f ensel, decker, erdmann, studer}@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/WBS/broker

Abstract.

The World Wide Web can be viewed as the largest knowledge base
that has ever existed. However, its support in query answering and automated
inference is very limited. We propose formalized ontologies as means to enrich
web documents for representing semantic information to overcome this
bottleneck. Ontologies enable informed search as well as the derivation of new
knowledge that is not represented in the WWW. The paper describes a software
tool called

Ontobroker

 that provides the necessary support in realizing this idea.
Basically it provides formalisms and tools for formulating queries, for defining
ontologies, and for annotating HTML documents with ontological information.

1 Intr oduction

The World Wide Web (WWW) contains huge amounts of knowledge about most subjects one
can think of. HTML documents enriched by multi-media applications provide knowledge in
different representations (i.e., text, graphics, animated pictures, video, sound, virtual reality,
etc.). Hypertext links between web documents represent relationships between different
knowledge entities. Based on the HTML standard, browsers are available that present the
material to users and that use the HTML-links to browse through distributed information and
knowledge units. However, taking

 the metaphor of a knowledge base

as a way to look at the
WWW brings the bottleneck of the web into mind. Its support of automated inference is very
limited. Deriving new knowledge from existing knowledge is hardly supported. Actually, the
main inference services the web provides are keyword-based search facilities carried out by
different search engines, web crawlers, web indices, man-made web catalogues etc. (see
[Mauldin, 1997], [Selberg & Etzioni, 1997]). Given a keyword, such an engine collects a set
of knowledge portions from the web that use this keyword. This limited inference access to
existing knowledge stems from the fact that there are only two main types of standardization
for knowledge representation on the web. The HTML standard is used to represent
knowledge in a (browser and) man-readable way and to define links between different
knowledge units. Furthermore, mainly the English language is used to represent the
knowledge units.

Deriving semantic information automatically from sentences in natural language is still an
unsolved problem. Inference by keyword search may deliver some results but it also leads to
a lot of unrelated information and at the same time it may miss a lot of important information
(i.e., precision and recall are low). [Luke et al., 1996] and [Luke et al., 1997] propose

ontologies

to improve the automatic inference support of the knowledge base WWW. An
ontology provides “an explicit specification of a conceptualization“ [Gruber, 1993].
Ontologies are discussed in the literature as means to support knowledge sharing and reuse

- 2 -

([Swartout et al., 1996], [Farquhar et al., 1997], [Fridman Noy & Hafner, 1997]). This
approach to reuse is based on the assumption that if a modelling scheme

—

i.e. an

ontology

—

is
explicitly specified and agreed upon by a number of agents, it is then possible for them to
share and reuse knowledge.

Clearly, we cannot expect that ontologies will be used by every web user and even if
everybody used ontologies to annotate his web pages it will hardly ever be possible to
negotiate on a worldwide-used standard for representing knowledge about all possible
subjects. Therefore, we used the

metaphor of a newsgroup

 in [Fensel et al., 1997] to define
the role of such an ontology. It is used by a group of people who share a common subject and
a related point of view on this subject. Thus it allows them to annotate their knowledge to
enable automatic inference based on the shared ontology. We create the term

Ontogroup

 to
refer to such a group of web users who agree upon a joint ontology.

We designed and implemented a couple of tools necessary to enable the use of ontologies for
enhancing the web. We developed a broker architecture called

Ontobroker

 [Ontobroker] with
three core elements: A query interface for formulating queries, an inference engine used to
derive answers, and a webcrawler used to collect the required knowledge from the web. We
provide a

representation

 language for formulating ontologies. A subset of it is used to
formulate queries, i.e. to define the

query language

. A formal semantics is defined to enable
automatic reasoning by the inference engine. An

annotation

 language is offered to enable
knowledge providers to enrich web documents with ontological information. The strength of
our approach is the tight coupling of informal, semiformal and formal information and
knowledge. This support their maintenance and provide a service that can be used more
general for the purpose of knowledge management and for integrating knowledge-based
reasoning and semiformal representation of documents (cf. [Euzenat, 1996], [Skuce,1997]).

The contents of the paper is organised as follows. First we provide a general motivation of
our approach in section 2. Then in section 3, we sketch the general architecture of the

Ontobroker

and its different parts. The languages used to represent ontologies, to formulate
queries, and to annotate web documents with ontological information are discussed in
section 4. In section 5 we discuss the three main tools of

Ontobroker

: its graphical and logic-
based query interface, its inference engine, and its webcrawler. A discussion of the
possibilities and limitations of

Ontobroker

 is provided in section 6 and related work and
conclusions are given in section 7.

2 The Bottlenecks of the WWW tha t are Bypassed by Ontobroker

The WWW provides huge amounts of information in informal and semi-structured
representations. This is one of the key factors that enabled its incredible success story. The
representation formalisms are simple and retain a high degree of freedom in how to present
the information. In consequence, we strictly follow the basic design paradigm of web
documents. Our approach does not restrict the information providers in deciding

how

 they
want to represent their information. They are able to choose and modify the formats of their
web documents without being hampered by using our techniques. Also, we did not introduce
a new and difficult language for defining semantics but introduced a small extension of
HTML. We will discuss later how this extension relates to emerging web standards like XML

- 3 -

[XML] and RDF [RDF].

Having said that our approach incorporates the basic paradigm that made the WWW a
success we will now sketch some shortcomings of the WWW that motivated our approach.
Freedom in information representation and simple representation formalisms cause serious
bottlenecks in accessing information from the web because of the growing amount of
information it contains (i.e., the same factors that led to its success may also hamper its
further development). Basically there are two different search techniques available at the
moment: human browsing through textual and graphical representations following hyperlinks
and keyword based search engines that retrieve further hyperlinks for this browsing process.
The query answering and inference service of the WWW is very limited when compared to
relational or deductive databases that enable precise queries and inference service for
deriving new knowledge. In the following we will discuss some examples that illustrate
limitations of current WWW access.

• Imagine that you want to find out about the research subjects of a researcher named

Smith

or

 Feather

.

1

 Consulting a search engine will result with a huge set of pages
containing the key words

Feather

. Preciseness, recall, and presentation are limited. All
pages containing the string

Feather

 are returned and many of these pages are completely
irrelevant. The important page may be missing. Imagine that he has a headline like
“

Topics of interest

” at the page that is imported by a framed homepage. Such a page does
not contain any of the assumed keywords. Even if the pages of the person are identified it
requires a significant human search effort to investigate these pages until the page that
contains the required information has been found. Even search engines specialized in
retrieving homepages of persons cannot make use of the information that he is a
researcher and are specialized in retrieving address information and not in making
sophisticated queries about what a person is doing etc.

• The format of query responses is a list of hyperlinks and textual and graphical
information that is denoted by them. It requires human browsing and reading to extract
the relevant information from these information sources. Remember, we were looking
for the research subjects of Mr.

Feather

. We would like to get a list of research topics
like: “

World Wide Web, Ontologies, Knowledge Acquisition, Software Engineering

“.
However, it requires further human extraction to retrieve this information. This burdens
web users with an additional loss of time and seriously limits information retrieval by
automatic agents that miss all common sense knowledge required to extract such
informations from textual representations. A further consequence is that the outcome of a
web query cannot directly be processed by another software tool because a human has to
extract and to represent it in a way that fits some standard representation.

• Still, the above mentioned problems are rather trivial compared to queries that refer to
the content of several pages. Imagine that you want to find the research subjects of a
research group. You have to figure out whether this is written on a central page or
whether each researcher enumerates them on his pages. Then you have to determine all
members of this research group and go through all their pages. The required search effort
and lack of recall make such queries impractical for a large, distributed and
heterogeneous group of people (i.e., web sources). Imagine that you want to extract the
research topics of all researchers who also work on ontologies. This shows fairly clearly

1.

Not to mention the case where his name is

Cook

.

- 4 -

that the current information access to the WWW cannot handle information that is
distributed at several locations and pages.

• Finally, each current retrieval service can only retrieve information that is represented by
the WWW. This sounds trivially true, but it significantly limits query answering
capability. Imagine that

Feather

 writes on his homepage that he cooperates with another
researcher

E. Motta

 on investigating formal specifications of problem-solving methods.
However, you will completely miss this information for

E. Motta

 if he does not repeat the
information (with the reverse direction) on his homepage and you are only consulting his
page. However, an answering mechanism that can make use of the implicit symmetry of
cooperation could provide you with this answer. Similarly, because

Smith

 is a researcher
and he cooperates on research issues with E. Motta one can derive that

E. Motta

 is also a
researcher and may want to receive this information even if it is not explicitly stated on
one of

E. Mottas´

pages. Here we would make use of a type information of a relationship.

Summing up our discussion we identify the following limitations of information access of the
WWW that we will bypass with our approach:

• We want to use semantic information for guiding the query answering process.

• We want to enable answers with a well-defined syntax and semantics that can directly be
understood and further processed by automatic agents or other software tools.

• We want to enable a homogeneous access to information that is physically distributed
and heterogeneously represented in the WWW.

• We want to provide information that is not directly represented as facts in the WWW but
which can be derived from other facts and some background knowledge.

3 The Ar chitecture of Ontobroker

The general architecture of the ontology-based brokering service

Ontobroker

 is shown in
Figure 1. It consists of three main elements: a

query interface,

an

inference engine,

 and a

webcrawler

 (called

Ontocrawler

). Each of these elements is accompanied with a formalization
language: the query language for formulating queries, the representation language for
specifying ontologies, and the annotation language for annotating web documents with
ontological information.

The user communicates with the inference engine using a query interface. Two different
interfaces are available: a graphical one, that hides the syntax of the query language and
enables a direct access to the ontology, and a conventional, text base interface, where a user
can directly type in queries in the query language. Both interfaces are realized with internet/
intranet technologies. The graphical interface is realized as a Java-applet, and thus it is
executable within modern web browsers like Netscape and Explorer. It uses specific
techniques for information visualisation [Lamping & Rao, 1994][Lamping et al., 1995], that
presents the ontology in a accessible way and exploits the structure of the query language.
With these ingredients it enables a guided query formulation. The textual query interface of
Ontobroker is realized as a HTML-form, where a user can type in the query as plain text.

The

inference engine

 receives the query of a client and uses two information sources for

- 5 -

deriving an answer: It uses the ontology chosen by the clients and it uses the facts that were
found by the

Ontocrawler

 in the WWW. The basic inference mechanism of the inference
engine is the derivation of a minimal model of a set of Horn clauses (see section 5.2 for more
details). However, the language for representing ontologies is syntactically enriched. First,
ideas of [Lloyd & Topor, 1984] were used to get rid of some of the limitations of Horn logic
without requiring a new inference mechanism. Second, languages with richer epistemological
primitives than predicate logic are provided. Frame logic [Kifer et al., 1995] is used as the
representation language for ontologies. It incorporates objects, relations, attributes, classes,
and subclass-of and element-of relationships within a first-order semantic framework. To
improve the accessibility of our service we are currently realizing a translator to Ontolingua
[Farquhar et al., 1997], see section 4.1 for more details.

Ontocrawler

 searches through a fragment of the WWW that makes use of one of the ontologies
and collects these knowledge fragments and it implements a wrapper that translates annotated
web documents into facts formulated in the representation language. Neither the inference
engine nor the query client have to be aware of the syntactical way, the facts are represented
in the web. The

Ontocrawler

 provides this abstraction mechanism. Only a knowledge

provider

has to use the annotation language. Each provider of an ontologically annotated knowledge
portion has to do an index of his annotated documents and he has to use the annotation
language and an ontology of the

Ontobroker

 to annotate these documents.

The answering of queries and the collection of facts from the web are decoupled in the current
architecture. The collection of facts is done independently from the queries. For efficiency
reasons in query answering, the

Ontocrawler

 periodically caches the annotations. In addition, it
can be started by a knowledge

provider

 that submits new knowledge fragments to the web.
Our experience will show whether a stronger coupling mechanism will be required.

Subsequently we will discuss the different languages and tools that are provided by the

Ontobroker

.

 Facts

 Query

Knowledge

Ontology

1

Fig. 1

The architecture of the

Ontobroker

Ontocrawler
Inference

Provider
Index

Ontology

1

Onto.

Engine

Representation
language

<HTML>
...
</HTML><HTML>

...
</HTML>

<HTML>
...
</HTML>

Annotation
language

Query
language

Query Interface

- 6 -

4 The Languages of Ontobroker

In the following, we discuss the formalisms used by

Ontobroker

. First, we describe the
representation formalism used to define ontologies. Second, we discuss the query formalism
that is used by a client asking for information. Finally we discuss the annotation formalism
that is used by the knowledge provider to annotate web documents with ontological
information.

4.1 The Representation Formalisms for Ontologies

Many different formal approaches for defining ontologies have emerged, among them e.g.
approaches based on Description Logics; Ontolingua and conceptual graphs that use
syntactical extensions of Full Predicate Logic; and Horn logic oriented approaches from
deductive databases and logic programming. Therefore, we had to make a choice between
these different paradigms. One of the key requirements for our design choice was the ability
to provide an effective and efficient inference service enabling query answering.

Ontolingua [Gruber, 1993] (based on KIF [Genesereth & Fikes, 1992]) is intended for
portable ontology specifications. It does not provide any inference support. In addition, an
inference engine would be very inefficient, because the language is based on full predicate
logic, so a full fledged theorem prover would be needed to support this language.

Systems based on Description Logics (like LOOM [MacGregor, 1990]) provide mainly two
kinds of inference: consistency checking of ontologies (resp. subsumption checking) and
classification of instances [Nebel, 1990]. However, our application scenario is query
answering over instances. Techniques from deductive databases evolved from relational
databases and are explicitly designed for this type of query answering facilities. These
inference techniques for deductive databases and logic programming are developed for
returning ground instantiations of predicates as answers.

Since there are effective and efficient query evaluation procedures for Horn-logic like
languages we based our inference engine on horn logic. However, simple horn logic is not
appropriate from an epistemological point of view for two reasons:

• First, the epistemological primitives of simple predicate logic (which Horn logic is a
subset of) are not rich enough to support adequate representations of ontologies.

• Second, often it is very artificial to express logical relationships via Horn clauses.

We will subsequently discuss how we bypassed both shortcomings.

4.1.1 Elementary Expressions

Usually, ontologies are defined via concepts or classes, is-a relationships, attributes, further
relationships, and axioms. Therefore an adequate language for defining the ontology has to
provide modeling primitives for these concepts. Frame-Logic [Kifer et al., 1995] provides
such modeling primitives and integrates them into a logical framework providing a Horn
logic subset. Furthermore, in contrast to most Description Logics

2

, expressing the ontology in

2.

[Badea, 1997] recently proposed to extend Description Logics a step into the direction of Frame-Logic.

- 7 -

Frame-Logic allows for queries, that directly use parts of the ontology as first class citizens.
That is, not only instances and their values but also concept and attribute names can be
provided as answers via variable substitutions.

We use a slightly modified variant of Frame-Logic, which suits our needs. Mainly the
following elementary modeling primitives are used:

• Subclassing:

C

1

 ::

C

2

, meaning that class

C

1

 is a subclass of

C

2

.

• Instance of:

O

 :

C

, meaning that

O

 is an instance of class

C

.

• Attribute Declaration:

C

1

[

A

=>>

C

2

], meaning that for the instances of class

C

1

 an
attribute

A

 is defined, whose value must be an instance of

C

2

.

• Attribute Value:

O

[

A

->>

V

], meaning that the instance

O

 has an attribute with value

V

.

• Part-of:

O

1

 <:

O

2

, meaning that

O

1

 is a part of

O

2

. This, however, is more a syntactic
convention. Because there are so many different characterizations of

part-of

 (e.g.
transitive and non-transitive) the exact behaviour of part-of is application and domain
dependent.

• Relations: predicate expressions like

p

(

a

1

,...,

a

2

) can be used as in usual logic based
representation formalisms, except that not only terms can be used as arguments, but also
object expressions.

Compared with the original Frame-Logic of [Kifer et al., 1995] we skipped functional
attributes. Functional attributes define a kind of integrity constraint. Two syntactically
different values of a functional attribute applied to the same object must either be
semantically equal or the set of axioms is not well-defined. However, knowledge provided by
the web may be redundant and slightly differently presented by different knowledge
providers. Therefore we decided not to include any integrity constraints in the basic
primitives of our language.

4.1.2 Complex Expressions

From the elementary expressions more complex ones can be built. We distinguish between
the following complex expressions: facts, rules, double rules, and queries. Facts are ground
elementary expressions. A rule consists of a head, the implication sign

 <-

, and the body. The
head is just a conjunction of elementary expressions (connected using

AND

). The body is a
complex formula built from elementary expressions and the usual predicate logic connectives
(implies:

->

, implied by:

<-

, equivalent:

<->

,

AND

,

OR

, and

NOT

. Variables can be
introduced in front of the head (with an

FORALL

-quantifier) or anywhere in the body (using

EXISTS

 and

FORALL

-quantifiers). A double rules is an expression of the form:

head

<->

body

,

where the

head

 and

body

 are just conjunctions of elementary expressions. A double rule can
be understood as an abbreviation of

head

<-

body

 and

body

<-

head

.

An example of a rules where just predicates (relations) are used as elementary expressions is
given below:

FORALL

X

,

Y

subset

(

X

,

Y

)

<-

set

(

X

)

AND

set

(

Y

)

AND FORALL

Z

in

(

Z,X

)

->

in

(

Z,Y

).

- 8 -

Examples of double rules are given in Table 1. An EBNF syntax description of the complete
representation language is given in Figure 2.

4.1.3 An Illustr ation

Ontologies defined with this language consist mainly of two resp. three parts:

• The concept hierarchy, which defines the subclass relationship between different classes,
together with the attribute definitions. These two parts can be split for readability
reasons.

• A set of rules defining relationships between different concepts and attributes.

A part of an example ontology (see [Ontobroker] for the entire ontology) defining a small
concept hierarchy, some attributes and two rules relating different concepts are provided in
Table 1.

The concept hierarchy consists of elementary expressions declaring subclass relationships.
The attribute definitions declare attributes of concepts and the valid types, that a value of an

Fig. 2

EBNF-syntax of the representation language.

START

←

 {(Query | Rule | DoubleRule | Fact) }* "EOF.
Query

←

["FORALL" VarList] ("<-" | "?-") Formula) ".".
Rule

←

["FORALL" VarList] MoleculeConjunction ("<-" | ":-") Formula ".".
DoubleRule

←

["FORALL" VarList] MoleculeConj "<->" MoleculeConj ".".
Fact

←

["FORALL" VarList] MoleculeConj ".".
MoleculeConj

←

Molecule {("AND" | ",") Molecule }*.
Formula

←

("EXISTS"|"FORALL") VarList Formula.
| Formula ("AND" | "OR" | "<-" | "<->" | "->") Formula.
| "NOT" Formula .
| "(" Formula ")" |

Molecule .
VarList

←

Identifier {"," Identifier}*.
Molecule

←

FMolecule | PMolecule.
FMolecule

←

Reference Specification.
Reference

←

Object ([Specification] ("#" | "##") MethodApplication)*.
Specification

←

((":" | "::" | "<:") Object ["[" [ListOfMethods] "]"])
| "[" [m=ListOfMethods] "]" .

PMolecule

←

Identifier ["(" ListOfPaths ")"] .
Path

←

Object [Specification] (("#" | "##") MethodApplication [Specification]) *.
ListOfPaths

←

Path ("," Path)*.
Object

←

ID_Term | "(" Path ")".
Method

←

MethodApplication MethodResult .
ListOfMethods

←

Method (";" Method)*.
MethodApplication

←

Object ["@(" ListOfPaths")"].
MethodResult

←

(("->" | "=>" | "*->" | "->>" | "=>>" | "*->>") Path).
| ("->>" | "=>>" | "*->>") "{" ListOfPaths "}".

IDTerm

←

IDENTIFIER ["(" ListOfPaths ")"]
| INTEGER_LITERAL
| FLOATING_POINT_LITERAL
| STRING_LITERAL
| "[" [ListOfPaths ["|" Path]] "]".

- 9 -

attribute must have. The first rule ensures symmetry of cooperation and the second rule
specifies, that whenever a person is known to have a publication, then also the publication has
an author, who is the particular person, and vice versa. This kind of rules complete the
knowledge and frees a knowledge provider to provide the same information at different
places reducing development as well as maintenance efforts.

4.1.4 Translation of Ontologies

To allow the usage of ontologies defined in different languages, we plan to provide
translators to other languages. Currently we investigate a translator from and to Ontolingua
because from Ontolingua translators to other representation languages (e.g. LOOM, KIF etc.)
are already available (cf. [Farquhar et al., 1997]). Fortunately, the main building blocks for
formulating ontologies are very similar, if we are using the frame-ontology of Ontolingua. So
we are able to sketch a translation based on syntactical transformation from F-Logic to
Ontolingua using the Frame-Ontology. For the translation from and to Ontolingua we have
mainly to provide support for the class definitions, the attribute definitions and the rules.
Class definitions of Frame-Logic are translated into class definitions in Ontolingua (see first
row of Table 2). Subclass expressions need an additional subclass-expression (Table 2 third
row). Attributes are translated into relations of Ontolingua, therefore we need an additional
relation definition (Table 2 second row). If rules are defining attribute values of classes, they
have to be incorporated into the relation definition (sometimes at more than one attribute

Table 1. Some Ontology Definitions

Concept Hierarchy Attr ibute Definitions Rules

Object[].

Person :: Object.

Employee :: Person.

AcademicStaff :: Employee.

Researcher :: AcademicStaff.

Publication::Object.

Person[

firstName =>> STRING;

lastName =>> STRING;

eMail =>> STRING;

...

publication =>> Publication].

Employee[

affiliation =>> Organization;

worksAtProject =>> Project;

headOfGroup =>> ResearchGroup].

AcademicStaff[

supervises =>> PhDStudent].

Researcher[

researchInterest =>> ResearchTopic;

memberOf =>> ResearchGroup;

cooperatesWith =>> Researcher].

Publication[

author =>> Person;

title =>> STRING;

year =>> NUMBER;

abstract =>> STRING].

FORALL Person1, Person2

Person1:Researcher

[cooperatesWith ->>

Person2]

<-

Person2:Researcher

[cooperatesWith ->>

Person1].

FORALL Person1,

Publication1

Publication1:Publication

[author ->> Person1]

<->

Person1:Person

[publication ->>

Publication1].

- 10 -

definition (Table 2 second and sixth row)).

Currently, we are working on mechanising this translation process.

4.2 The Query Formalism

The query formalism is oriented towards Frame-Logic syntax, that defines the notion of
instances, classes, attributes and values. The generic schema for this is

Table 2. Translating between F-Logic and Ontolingua

F-Logic Definitions Ontolingua Definitions

Object[]. (define-class Object (?Object))

Person :: Object[publication =>> Publication]

FORALL Person1, Publication1

Publication1:Publication[author ->> Person1]

<->

Person1:Person[publication ->>Publication1].

(define-class Person (?Person)

:def

(and (Object ?Person)

(has-some ?Person has-publication)))

(define-relation has-publication (?Person ?Publication)

:def

(and (Person ?Person) (Publication ?Publication)

(has-author ?Publication ?Person)))

Employee :: Person. (define-class Employee (?Employee)

:def

(Person ?Employee))

AcademicStaff :: Employee. (define-class AcademicStaff (?AcademicStaff)

:def

(Employee ?AcademicStaff))

Researcher :: AcademicStaff

[cooperatesWith =>> Researcher].

FORALL Person1, Person2

Person1:Researcher

[cooperatesWith ->> Person2]

<->

Person1:Researcher

[cooperatesWith ->> Person1].

(define-class Researcher (?Researcher)

:def

(and (AcademicStaff ?Researcher)

(has-some ?Researcher cooperatesWith)))

(define-relation cooperatesWith (?Res1 ?Res2)

:def

(and (Researcher ?Res1) (Reseacher ?Res2)

(cooperatesWith ?Res2 ?Res1)))

Publication::Object[author =>> Person]. (define-class Publication(?Publication)

:def

(and (Object ?Publication)

(has-some ?Publication has-author)))

(define-relation has-author(?Publication ?Author)

:def

(and (Publication ?Publication) (Person ?Author)

(has-publication ?Author ?Publication)))

- 11 -

O

:

C

[

A

->>

V

]

meaning that the object

O

 is an instance of the class

C

 with an attribute

A

 that has a certain
value

V

. At each position in the above scheme variables, constants or arbitrary expressions
can be used. Furthermore because the ontology is part of the knowledge base itself, the
ontology definitions can be used to validate the knowledge base. In the following we will
provide some example queries to illustrate our approach.

FORALL

R

 <-

R

:

Researcher

.

3

This query asks for all known objects, which are instances of the class researcher. Because
the object identifier of a researcher is his/her homepage-URL, this query would result in a
large list of URLs. This is one of the simplest possible queries. However, usually we are not
interested in all researchers, instead we are interested in information about researchers with
certain properties. e.g. we want to know the homepage, the last name and the email address of
all researchers with first name

Richard

. To achieve this we can use the following query:

FORALL

Obj

,

LN

,

EM

<-

Obj

:

Researcher

[

firstName

->>

Richard

;

lastName

->>

LN

;

email

->>

EM

].

In our example scenario the

Ontobroker

 gives the following answer (actually, there is only one
researcher with first name

Richard

 in the knowledge base.

Obj

 =

http://www.iiia.csic.es/~richard/index.html

LN

 =

Benjamins

EM

 =

mailto:richard@iiia.csic.es

Another example is:

FORALL

Obj

,

CP

<-

Obj

:

Researcher

[

lastName

->>

“Motta“

;

cooperatesWith

->>

CP

].

The interesting point with this query is, that the ontology contains a rule specifying the
symmetry of cooperating. That means, even if the researcher with last name

Motta

has not
specified a cooperation with another researcher,

Ontobroker

 would derive such a cooperation,
if a second researcher has specified the cooperation. The ontology contains another strong
rule that is used to abductively complete types. The relation

cooperatesWith

 is defined for
researchers. Therefore, for each instantiation for

CP

 that cooperates with

Motta

or another
researcher

Ontobroker

 also derives that this instantiation is an element of the class researcher.
Both rules are examples of how

Ontobroker

 can be used to derive new knowledge that is not
directly represented at the WWW.

Ontobroker

can also be used to collect distributed information. The query in Figure 3 collects
all research topics of the members of the research group on knowledge-based systems at the
Institute AIFB, i.e. it retrieves the research topics of a research group that are distributed at
the different homepages of the researcher.

Another possibility is to query the knowledge base for information about the ontology itself,
e.g. the query

3.

A query is a rule without a head.

- 12 -

FORALL

C

 <-

C

::

Object

[]

asks for all classes defined in the ontology which are subclasses of the class

Object

. The
query

FORALL

Att, T

<-

Researcher

[

Att

=>>

T

]

asks for all attributes of the class

Researcher

 and their associated classes.

The query interface of

Ontobroker

 either directly uses the query language or provides further
abstractions by query form and graphical representations that significantly simplify the query
process for naive users (see section 5.1).

4.3 The Provider Side: Annotating Web-Pages with Ontological Information

Mainly knowledge contained in the WWW is formulated using the Hyper-Text Mark-up
Language (HTML). Therefore, we developed an extension to the HTML syntax to enable
ontological annotation of web pages.

4

 First, we will provide the general idea. Then we
introduce some more details that significantly economise the annotation effort for knowledge
providers. For an overview of our extensions to HTML see the EBNF-syntax definition of the

Fig. 3

The textual query interface.

- 13 -

annotation language as provided in Figure 4. An extract from an example page is given in
Figure 5.

4.

We did not make use of the

extensible Markup Language (XML)

 to define our annotation language as an extension of
HTML because many existing HTML pages are not well-formed XML documents, i.e., the document type HTML defined in
XML is more restrictive than HTML as it is widely used now. Compare also section 6.

Fig. 4

EBNF-syntax of the annotation language.

anchor

←

 “<“ “A“ attributes “>“ [body] ““.
attributes

←

 attribute*.
attribute

←

 “name“ “=“ CDATA
| “href“ “=“ URL
| “rel“ “=“ CDATA
| “rev“ “=“ CDATA
| “title“ “=“ CDATA
| “onto“ “=“ ontoInfo.

ontoInfo

←

 “\‘“ ontoInf o1 “\‘“
| “\“ “ ontoInfo1 “\““.

ontoInfo1

←

 host “:“ c lass
| host “[“ ontoAttr ibute “=“ v alue “]“
| relation “(“ object (“,“ object)* “)“.

host

←

 object.
value

←

 object.
class

←

 ID.
relation

←

 ID.
object

←

 URL | CDATA.

<html>
<head><TITLE> Richard Benjamins </TITLE>

</head>

<H1>

<a onto=“page[photo=href]“
HREF=“http://www.iiia.csic.es/~richard/pictures/richard.gif“ >

Richard
Benjamins
</h1> <p>

Artificial Intelligence Research Institute (IIIA) -
CSIC, Barcelona, Spain

and

Dept. of Social Science Informatics (SWI)
-
UvA,
Amsterdam, the Netherlands

<HR>

Fig. 5

An example HTML page.

- 14 -

4.3.1 The general idea

The idea behind our approach is to take HTML as a starting point and to add only few
ontologically relevant tags. By these few changes to the original HTML pages the knowledge
contained in the page is annotated and made accessible as facts to the

Ontobroker

. This
approach allows the knowledge providers to annotate their web pages gradually, i.e. they do
not have to completely formalize the knowledge contained therein. Further the pages remain
readable by standard browsers like Netscape Navigator or MS Explorer. Thus there is no need
to keep several different sources up-to-date and consistent reducing development as well as
maintenance efforts considerable. All factual ontological information is contained in the
HTML page itself.

The names of classes and relationships are already provided by the ontology that is defined
using the representation language (see section 4.1). However, names that are used to denote
instances of classes, attribute values, and relationships have to be defined using the
annotation language. We need

identifiers

 or

handles

 to identify objects. This handle has to be
globally unique and unambiguous. We chose the URL (Uniform Resource Locator, [URL])
of the WWW to denote objects, which is quite natural as we will see in the examples below.
The URL defines by definition

a unique way to determine which entity is referred to in the
Internet.

5

 The identifiers are called

object

 in the EBNF of Figure 4.

We provide three different epistemological primitives to annotate ontological information in
web documents:

1) An object can be defined as an instance of a certain class.

2) The value of an object‘s attribute can be set.

3) A relationship between two or more objects may be established.

All three kinds are expressed by using an extended version of a frequent HTML tag, i.e. the
anchor tag:

<a ...> ...

The anchor tag is usually used to define named locations within a web page and hypertext
links to other locations in the WWW. Thus, it contains the attributes

name

 and

href

 to fulfill
these purposes, respectively. For ontologically annotating a web page we added another
attribute to the syntax of the anchor tag, namely the

onto

 attribute. All three attributes may
contain information which describes objects relevant to the

Ontobroker

.

Typically a provider of information first defines an object. This is done by stating which class
of the ontology it is an instance of. For example, if Richard Benjamins would like to define
himself as an object, he would say he is an instance-of the class

 Researcher

. To express this
in our HTML extension he would use the following line on his home page.

This line states that the object denoted by the handle

‘http://www.iiia.csic.es/~richard‘

 is an

5.

However, it is less unique as we would wish. For example, http://www.aifb.uni-karlsruhe.de/WBS/dfe/ and http://
www.aifb.uni-karlsruhe.de/WBS/../WBS/dfe/index.html denote the same address. Even worse, http://www.aifb.uni-
karlsruhe.de/~dfe is another way to point to the same address. Equalities of the former type could be handled by general
equality axioms. Equalities of the latter type are introduced by web servers which are not knowable from the outside.

- 15 -

instance of class

Researcher

. Actually the handle given above is the URL of Richard
Benjamins home page, thus, from now on he as a researcher is denoted by the URL of his
home page.

Each class is possibly associated with a set of attributes. Each instance of a class can define
values for these attributes. To define an attribute value on a web page the knowledge provider
has to name the object he wants to define the value for, he has to name the attribute and
associate it with a value. For example, the ontology contains an attribute

email

 for each object
of class

Researcher

. If Richard Benjamins would like to provide his email address, he would
use this line on his home page.

This line states that the object denoted by the handle

‘http://www.iiia.csic.es/~richard‘

 has the
value

‘mailto:richard@iiia.csic.es‘

for the attribute

 email

.

Several objects and attributes can be defined on a single web page, and several objects can be
related to each other explicitly. Given the name of a relation

REL

 and the object handles

Obj

1

to

Obj

n

 this definition looks like this:

<a onto= “REL(Obj

1

, Obj

2

, Obj

3

, ..., Obj

n

)“ > ...

The listed examples look rather clumsy, esp. because of their long object handles and the
redundancy, due to writing information twice, once for the browser and second for

Ontobroker

. So the annotation language provides some means to ease annotating web pages
and get rid of a big portion of the clumsiness and redundancy. In the following section we
will provide some examples that illustrate the key ideas behind these short-cuts.

4.3.2 Short-cuts that Impr ove Convenience

6

To define on a web page that an object is an instance of a class, e.g. that Richard Benjamins is
a

Researcher

, one uses the following kind of annotation:

 ...

The term

CLASS

 has to be substituted by a concrete class as defined in the underlying
ontology, e.g.

Researcher, Workshop, Article

. The object denoted by the handle

HOST

 then
is defined as an instance of this class. There are several possibilities to define a host object.
There are special keywords which represent short-cuts for certain URLs.

• If

HOST

 equals the string

page

, the URL of the currently processed HTML page is
defined as the handle of the host object.

Example

:

<a onto=“

page

:Person“>

This tag defines the URL of the page which the tag appears on as an instance of the class

Person

. By that, the clumsy original URL can be avoided, and the ontological
information becomes more readable.

6.

While describing the annotation syntax all lower case and special characters are to be read literally (including the different
quotes), all upper case terms have to be replaced by actual objects, URLs etc.

- 16 -

• If

HOST

 equals the string

tag

 or the string

name

, the current tag, i.e. the named region
defined by the current anchor tag becomes an instance of

CLASS

. In this case the tag has
to contain a name-attribute.

Example

:

Ontology Groups: Semantically enriched subnets of the WWW.

This tag defines the named region as an object of class

Article

. Assuming the page of this
tag is

“http://www.aifb.uni-karlsruhe.de/WBS/dfe/publications97.html“

 this would create a
new object with handle

“http://www.aifb.uni-karlsruhe.de/WBS/dfe/
publications97.html#Fensel at al. 97“

 which belongs to the class

Article

.

• If

HOST

 equals the string

href

, the page to which the anchor tag refers to, i.e. the value of
the tag‘s

href

-attribute becomes the host object. To work correctly an

href

-attribute has to
be given within the anchor tag.

Example

:

<a onto=“

href

:Workshop“ href=“http://ksi.cpsc.ucalgary.ca/KAW“>
KAW 98, Banff, Canada

This tag defines the page the hyperlink refers to as an object of class

Workshop

. In this
example a global URL has been given so that this URL becomes the object handle for the
newly created object. When using this variant, the part of the page embraced by

<a ...>

and

 becomes clickable.

• If none of the above equivalencies hold,

HOST

 is assumed to contain a concrete object
handle, normally an actual URL. This URL then is defined as belonging to the named
class.

Example

:

KAW 98, Banff, Canada

This tag defines the page specified by the URL as an object of class

Workshop

, and thus
results in exactly the same fact as the previous example. This variant should be used if
the named region should not be clickable.

To improve convenience in defining attribute values and relationships similar techniques are
provided. The same special keywords (

page

,

href

,

name

, and

tag

) are supported.

Example

:

<a onto=“

page

[affiliation=

href

]“ href=“http://www.iiia.csic.es/“>
IIIA - Artificial Intelligence Institute.

In this tag the already defined keyword

page

 and

href

 have been used. This tag defines the

affiliation

 attribute of the object denoted by the URL of the current

page

. Its value is taken
from the anchor-tag‘s

href

-attribute.

Because several attributes contain only plain text and no complete objects, another keyword
is introduced: “

body”

. This keyword enforces the marked portion of the web page (contained
between

<a ...>

 and

) to be taken as the attribute value.

- 17 -

Example

:

<a onto=“

page

[firstName=

body

]>
Richard

This annotation defines

Richard

 (contained between

<a ...>

 and

) as the value of the
attribute

firstName

 of the object which is denoted by

page

. Through this convention the
annotation of web pages becomes more concise and redundancy can be nearly avoided.

Finally, also in the annotation of relationships on web pages special keywords and actual
URLs may be used freely. Thus an example relationship may look like this.

Example

:

<a onto=“appointment(

page

,
‘http://aifb.uni-karlsruhe.de/WBS/~dfe‘,
‘October, 17th 1997‘,

body

)“ >
(KA)2-Initiative: The Inaugural Meeting

In this example a relationship called

appointment

 is defined. It defines a relationship between
four attributes respectively, two persons, a given date, and a certain title, respectively. The
first object denotes the current

page

, e.g. Richard Benjamins‘ home page, the second denotes
another object denoted by an actual URL, the third is given as a literal string, and the last one
refers to the text contained in the

body

 of the tag, namely the title of the meeting.

5 The Tool Set of Ontobroker

Ontobroker

 mediates between clients and knowledge providers with three tools. The query
interface is used by clients to formulate queries and to receive answers. The inference engine
derives answers based on the ontology and the facts that have been found at the web. The
webcrawler (called

Ontocrawler

) collects annotations from the web and translates them into
facts that can be processed by the inference engine.

5.1 The Query Interf ace

Ontobroker

 provides two query interfaces: a text based interface for expert users and a
graphical interface for naive users. The text based interface allows the direct formulation of
queries in the above described query language. However, the direct formulation of the query
string has two drawbacks:

• The user has to know the syntax of the query language. That means he has to exactly type
in the syntactic expressions. However, user don‘t learn a query language just for one
search engine. Furthermore people are making mistakes when typing text, so a good
interface should lead the user and should help to avoid such mistakes.

• The user also has to know the ontology, when formulating a query. This is even a bigger
hassle than the missing knowledge of the query language: without knowledge of the

- 18 -

ontology one cannot formulate a useful query, because all knowledge is organized by the
ontology. So an interface should present the ontology and allow an easy access to it.

To remedy the first drawback, the structure of the query language can be exploited: the
general structure of an elementary expression is:

Object

:

Class

[

Attribute

->>

Value

]

This provides the guidance when designing a query interface. Each part of the above depicted
elementary expression can be related to an entry fields. Possible values of the entry field can
then be selected from a menu (e.g. variable names). This frees users from typing and
understanding logical expressions as much as possible. The simple expressions can then be
combined by logical connectives as shown in Figure 6 which asks for the researchers with last
name

Benjamins

 and their email addresses.

This does not resolve the second drawback: one also need support for selecting classes and
attributes from the ontology. To allow the selection of classes, the ontology has to be
presented in an appropriate manner. Usually a ontology can be represented as a large
hierarchy of concepts. Concerning the handling of this hierarchy a user has at least two
requirements: first he wants to scan the vicinity of a certain class, looking for classes better
suitable to formulate a certain query. Second a user needs an overview over the whole
hierarchy to allow an easy and quick navigation from one class in the hierarchy to another
class. These requirements are met by a presentation scheme based on Hyperbolic Geometry
[Lamping & Rao, 1994][Lamping et al., 1995]: classes in the center are depicted with a large
circle, whereas classes at the border of the surrounding circle are only marked with a small
circle (see Figure 7). The visualisation techniques allows an quick navigation to classes far
away from the center as well as the close examination of classes and their vicinity. When a
user selects a class from the hyperbolic ontology view, the class name appears in the class
field, and the user can select one of the attributes from the attribute choice menu, because the
preselected class determines the possible attributes. The interface is programmed in Java as
an applet, thus it is executable on all major platforms where a Web-browser with Java support
exists. The hyperbolic ontology view is based on a Java-profiler written by Vladimir Bulatov
and available on http://www.physics.orst.edu/~bulatov/HyperProf/index.html.

Fig. 6.

The advanced query interface.

- 19 -

Based on these interfaces Ontobroker derives automatically the query in textual form and
present the result of the query (see Figure 8).

5.2 The Inference Engine of the Ontobroker

The inference engine of

Ontobroker

 has two key components: the translation (and
retranslation) process from the rich modelling language to a restricted one, and the evaluation
of expressions in the restricted language. In the following, we describe both processes.

The input of the inference engine consists of the ontology, collected facts from the web and
queries formulated in Frame-Logic. We have decided against direct evaluation of expressions
of the rich modelling language. Due to the conceptual richness of the language evaluation
techniques would be rather complicated and difficult to build. There are techniques known
for evaluating Frame-Logic, see [Frohn et al, 1997], but they do not support the whole
language and semantics we need (e.g. full first order rule bodies). Furthermore a direct
evaluation approach would be very inflexible, a small change in the input language would
result in changes of the whole system. The situation is very similar to compiler construction:
usually a language is not compiled directly to a target language, but through several
intermediate states and languages. This helps bridging the conceptual gap between the
language and the target language. We adopted that approach: the input is processed and
translated in several stages: The first step (besides the necessary parser) is the Frame-Logic-
translator, that translates the Frame-Logic expressions to first-order logic expressions. Table
3 gives an idea of how this translation is performed, but it does not catch the complete

Fig. 7.

The hyperbolic ontology view.

- 20 -

translation: e.g. more complex Frame-logic expressions like

O

[

A

->>

V

:

C

[

AA

->>

VV

]]

can also be translated. The output of this stage are generalized logic programs. After this
translation the output has to be translated further to normal logic programs [Lloyd, 1987] via

Table 3. Principle of Translating Frame Logic to Predicate Logic

Frame Logic Meaning Predicate Logic

C

1

 ::

C

2

class

C

1

 is a subclass of

C

2

sub(

C

1

,

C

2

)

O

 :

C

O

 is an instance of class C isa(

O

,

C

)

C

1

[

A

=>>

C

2

] for the instances of

C

1

 an attribute

A

 is defined,
the value must be an instance of

C

2

att_type(

C

1

,

A

,

C

2

)

O

[

A

->>

V

] the instance

O

 has an attribute

A

, the value is

V

att_val(

O

,

A

,

V

)

O

1

 <:

O

2

O

1

 is a part of

O

2

part_of(

O

1

,

O

2

)

Fig. 8.

The textual query interface.

- 21 -

a Lloyd-Topor transformation [Lloyd & Topor, 1984]. The entire translation process is
surveyed in Figure 9.

As a result we obtain a normal logic program. Standard techniques from deductive databases
are applicable to implement the last stage: the bottom-up fixpoint evaluation procedure.
Because we allow negation in the clause body we have to carefully select an appropriate
semantics and evaluation procedure. If the resulting program is stratified, we use simple
stratified semantics and evaluate it with a technique called dynamic filtering (cf. [Kifer &
Lozinskii, 1986], [Angele, 1993]). But the translation of Frame Logic usually results in a
logic program with only a limited number of predicates, so the resulting program is often not
stratified. For an example see Figure 10. Although the clauses have a reasonable model

{

O

1

/

l

;

O

2

/

m

;

V

/

n

}

this can not be computed using a stratified semantics. To deal with non stratified negation we
have adopted the well-founded model semantics [Van Gelder et al., 1991] and compute this
semantics with dynamic filtering and the alternating fixpoint approach [Van Gelder, 1993].

Frame-Logic

Input

Output

Ontology
Instances
Queries

Predicate-Logic Normal Logic
Programs

Fixpoint Procedure
Lloyd-Topor
Transformation

Frame Logic to
Predicate Logic

Variable

to Frame Logic
Substitutions

Language

Variable
Substitution
in F-Logic

Variable
Substitution

Rich Language

Primiti ves
Object Modeling

Restricted Language
only relations and
Horn clauses

Fig. 9.

Stages and Languages used in the Inference Engine

FORALL O1,O2,V
O1[a->>V]<- O1:c1 and O2:c2 and V:c3 and not O2[a->>V].
l:c1. m:c2. n:c3. m[a->>o].

FORALL O1,O2,V
att_val(O1,a,V)<- isa(O1,c1) and isa(O2,c2) and isa(V,c3) and

not att_val(O2,a,V).
...

Translation

Negative Cycle

Fig. 10.

Non stratified clauses due to negative cycle

- 22 -

The inference engine is completely written in Java [Javasoft] and therefore not bound to a
particular system. However for performance reasons we generated a machine code version of
it using the Toba Java-Bytecode to C compiler [Proebsting et al., 1997].

5.3 The Ontocrawler

Ontocrawler

 is a simple cgi-script that periodically caches the annotated pages from the web.
For finding the pages it consults the index pages of each provider. For this purpose, the
providers need to register.

6 Discussions of the Approach and Future Work

Providing information and knowledge via the

Ontobroker

 requires two time-consuming
activities: designing an ontology and annotating web documents. Both are serious bottlenecks
that may hamper the success of

Ontobroker

. In the following, we discuss both problems.

Designing ontologies is a time consuming activity because it aims for a formal and
consensual model of some aspect of reality. However, building such a model pays back in
several dimensions much beyond only improving the web presentation of documents. It can
be used by companies and organisations as a reference model for their internal data and
informations. It can be used by standardization committees to establish standard for
representing information about some area. Therefore, these ontologies found increasing
popularity for supporting knowledge management in different areas. We initiated together
with colleagues from other research groups the

Knowledge Annotation Initiative (KA)

2

 to get
better insights into the merits and difficulties of establishing such ontologies ([Benjamins et
al., 1998], [Benjamins & Fensel, 1998]). Part of this initiative is to establish an ontology that
can be used to describe the different research groups in knowledge acquisition, their
organisatorial informations, their products, results, and subjects. This initiative raises a
couple of interesting questions at different levels: what are the necessary tools to support
ontological engineering in a heterogeneous and distributed environment and how to organize
the social process in establishing consensus and in attracting the critical mass of participants.
Meanwhile a core ontology has been established and a broad range of research groups
participate.

The creation, usage and maintainability of knowledge are the key problems that need to be
solved for

knowledge management

 in enterprises (cf. [Davenport, 1996]). An ontology can be
used to support all of these processes. More specific,

Ontobroker

 can be used to support
usability and maintainability of these documents. One strength of

Ontobroker

 is the tight
coupling of textual, semiformal and formal knowledge which is identified as a main
requirement for successful knowledge management (see e.g. [Euzenat, 1996], [Skuce,1997]).
The textual and semiformal knowledge is directly coupled with annotations that describe their
formal semantics. Therefore, maintenance need not deal with problems introduced by
redundancy (i.e., representing the same information at different places, one time as textual
knowledge one as formalized knowledge). In addition,

Ontobroker

 integrates these semiformal
knowledge with inference rules expressed in the ontology. Automatic processing of these
knowledge or coupling with automatically derived knowledge bits from other sources are

- 23 -

enabled. Currently we apply

Ontobroker

 in the project

Work Oriented Design of Knowledge
Systems (WORKS)

 for developing a knowledge management system for industrial designers
for decision-support in ergonomic decisions. Pages with ergonomic knowledge are annotated,
with the following goals: first to make them retrievable for users, and second, to use the
knowledge also for inferences of the system. In this case the knowledge (often numerical
data) is provided as an input (and output) to problem solving methods for e.g. parametric
design.

Annotating web documents with ontological information is much easier to do. A trained
person with some basic HTML knowledge is able to annotate ca. five pages an hour (ca.
thousand per month). Still, we would like to provide a more sophisticated tool that supports
this process. Currently, annotations have to be written with text editors. However, as for the
query interface one could make use of a graphical representation of the ontology and use it for
a click-and-paste process in producing annotation. Another possibility for stable web sources
is to replace the annotation effort by writing wrappers. [Ashish & Knoblock, 1997] mention
information sources like the CIA World Fact Book or the Yahoo listing of countries. These
sources use a stable format for information representation that can be used to derive wrappers
that extract this information. Such a wrapper can be used to directly derive the factual
knowledge that is used by the inference engine of

Ontobroker

. In this scenario a wrapper
replaces the annotation process and the translation process from annotations to facts.

Finally, we decided to design our annotation language as a small extension of HTML because
most documents on the web use this formalism. However, there are some new trends which
we have to be aware. The W3C

the international

World Wide Web Consortium

 for
developing and promoting standards for the web

currently introduces the extensible Markup
Language (XML) [XML] as a new standard for expressing the structure of web documents.
XML is a language to define the syntax of structured documents and to allow the
communication of several applications due to a common specification of the document
syntax. To allow the annotation of XML documents the W3C currently develops the

resource
description framework

 (RDF) [RDF]. This format can be used to add meta information to
documents, i.e. to include semantical information about documents. That approach shows a
number of similarities with

Ontobroker

, because both approaches aim at machine-
understandable content information and enable automated processing of web resources. Both
use URLs to represent entities in the WWW. Both use attribute-value pairs to define
properties of objects. But there are profound differences. The annotation information is
tightly integrated into HTML in

Ontobroker

. This reduces redundancy of information on a web
page to a minimum. Meta data defined in RDF have to be provided on an extra page or en-
block inside of a web-page. Therefore, elements from a web page like text fragments or links
cannot directly be annotated with semantics. These elements must be repeated for enriching
them with meta-information. This design decision may cause significant problems for
maintaining web documents due to the redundancy of the information. However, when a final
version of RDF will be recommended by the W3C it will be an easy task to implement a
wrapper that automatically generates RDF definitions from annotation in

Ontobroker

.
Therefore, we will join this standard enabling other agents to read our meta information. In
that sense the annotation language of

Ontobroker

 can be seen as a maintenance tool for RDF
description because it allows the direct annotations of elements of a web page and their
separate content description will be generated automatically. Using automatically generated
RDF descriptions makes the annotated knowledge available to agents and brokering services

- 24 -

that searches the web for information. That is, this knowledge may not only be used by

Ontobroker

 to answer direct questions of a human user but it will be available for all
automated search mechanisms that can read RDF and that can make use of an ontology (cf.
[Ambite & Knoblock, 1997]).

7 Conclusions and Related Work

Up to now, the inference capabilities of the World Wide Web are very limited. In essence,
they are restricted to keyword-based search facilities which are offered by the various Web
search engines. In the paper we introduced methods and tools for enhancing the Web to a
knowledge-based WWW. We proposed ontologies as a means to annotate WWW documents
with semantic information and used the metaphor of a newsgroup to define a collection of
people which share a common view on a subject and thus a common ontology. To define
various subnets in the WWW different ontologies can be used to annotate Web documents.
We use Frame logic for defining ontologies and an appropriate subset for specifying
(semantic) queries to the Web. An annotation language for attaching ontological information
with Web documents is offered as well avoiding redundancy as far as possible. Our

Ontobroker

 tool includes a query interface for formulating queries, an inference engine for
deriving answers to the posed queries, and a web crawler for searching through the various
subnets and translating the ontological annotations into facts for the inference engine. In that
way, the web crawler implements a wrapper which hides the syntactical structure of
annotations from the inference engine and the query client.

Ontobroker

 is the basis for
realizing the Knowledge Acquisition Initiative (KA)

2

 ([Benjamins et al., 1998], [Benjamins
& Fensel, 1998]) and for developing a knowledge management system for industrial
designers concerning ergonomic questions. In the latter project, the same knowledge may be
used by humans and for inferences of the system. This twofold use of the same piece of
knowledge is enabled through the tight coupling of semiformal and formal knowledge in

Ontobroker

. In the paper, we presented

Ontobroker

 mainly as a tool to enhance information

access

. However,

maintenance

 of distributed and heterogeneous information sources may
become an even more important topic given the steadily increasing amount of knowledge that
is provided by semiformal knowledge sources like web documents. Annotating parts of
documents with semantical information enable automatic support for modifying these
documents. Instead of searching by hand through several documents that may contain the
same or parts of the same information that needs to be changed one can automatically
propagate such modifications without changing the semiformal nature of the documents.

The approach closed to ours is SHOE that introduced the idea of using ontologies to annotate
information in the WWW (cf. [Luke et al., 1996], [Luke et al., 1997]). HTML pages are
annotated via ontologies to support information retrieval based on semantic information.
However, there exist main differences in the underlying philosophy: In SHOE providers of
information can introduce arbitrary extensions to a given ontology. Furthermore, no central
provider index is defined. As a consequence, when specifying a query the client may not
know all the ontological terms which have been used to annotate the HTML pages and the
web crawler may miss knowledge fragments because it cannot parse the entire WWW. Thus
the answer may miss important information. and the web crawler may miss knowledge
portions because it cannot parse the entire WWW. In contrast, Ontobroker relies on the notion

- 25 -

of an

ontogroup

 [Fensel et al., 1997] defining a group of Web users that agree on an ontology
for a given subject. Therefore, both the informations providers and the clients have complete
knowledge of the available ontological terms. In addition, the provider index of the

Ontocrawler

 provides a complete collection of all annotated HTML pages. Thus,

Ontobroker

can deliver complete answers to the posed queries. The philosophy of

Ontobroker

 is also
tailored to homogeneous intranet applications, e.g. in the context of knowledge management
within an enterprise. SHOE and

Ontobroker

 also differ with respect to their inferencing
capabilities. SHOE uses description logic as its basic formalism and currently offers rather
limited inferencing capabilities.

Ontobroker

 relies on Frame-Logic and supports rather
complex inferencing for query answering (see [Kandzia & Schlepphorst, 1997], [Fensel et al.,
to appear] for comparisons of both representation and reasoning paradigms).

One can situate

Ontobroker

 in the general context of approaches that support the integration of

distributed

 and

heterogeneous

 information sources like CARNOT [Collet et al., 1991],
Infomaster [Genesereth et al., 1997], Information Manifold [Levy et al., 1996], HERMES
[Subrahmanian et al., 1995], SIMS [Arens et al., 1993], and TSIMMIS [Papakonstantinou et
al., 1995]. Instead of assuming a global data scheme such systems have a

mediator

[Wiederhold, 1992] that translates user queries into sub-queries on the different information
sources and integrates the sub-answers. Wrappers and content descriptions of information
sources provide the connection of an information source to the mediator. However, these
approaches assume that the information sources have a stable syntactical structure that a
wrapper can use to extract semantic informations. Given the heterogeneity of any large
collection of web pages this assumptions seems hardly be fulfilled in our application area.
Therefore, we delegated the semantical enrichment of the information sources to the provider
and make no assumptions about the format of the information source and its changes.
However, wrapper and annotation-based approaches are complementary. [Ashish &
Knoblock, 1997] distinguish three types of information sources at the web: multiple-instance
sources, single-instance sources, and loosely-structured sources. The former two types have a
stable format that can be used by a wrapper to extract information (cf. [Ashish & Knoblock,
1997]). The latter type covers home pages of persons etc. where the layout is neither standard
nor stable over time. Writing wrappers for this type of sources would be a time-consuming
activity which is soon out of date, too. However, writing wrappers for stable information
sources that automatically generate factual knowledge processable by

Ontobroker

 enables to
broaden our approach to structured information sources that do not make use of our
annotation language.

Acknowledgements.

 We thank Richard Benjamins and Rainer Perkuhn for their
helpful comments and Asun Gomez-Perez for providing the Ontolingua translation.
Special thanks to Jürgen Angele who developed the inference engine for L-KARL
that is used by

Ontobroker

.

References

[Ambite & Knoblock, 1997] J. L Ambite and C,. A. Knoblock: Agents for Information Gathering,

IEEE Expert, Sept

ember/October 1997.

- 26 -

[Angele, 1993] J. Angele:

Operationalisierung des Models der Expertise mit KARL

, Infix, St.
Augustin, 1993.

[Arens et al., 1993] Y. Arens, C. Y. Chee, C.-N. Hsu and C. Knoblock: Retrieving and Integrating
Data From Multiple Information Sources,

International Journal of Intelligent Cooperative
Information Systems

, 2(2):127

158, 1993

[Ashish & Knoblock, 1997] N. Ashish and C. Knoblock: Semi-automatic Wrapper Generation for
Internet Information Sources. In

Proceedings of the IFCIS Conference on Cooperative
Information Systems (CoopIS)

, Charlston, South Carolina, 1997.

[Badea, 1997] L. Badea: Reifying Concepts in Description Logics. In

Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI-97)

, Nagoya, Japan, August 23-
29, 1997.

[Benjamins et al., 1998] V. R. Benjamins, D. Fensel, A. Gomez-Perez, S. Decker, Michael Erdmann,
E. Motta, and M. Musen: Knowledge Annotation Initiative of the Knowledge Acquisition
Community (KA)

2

. In

Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-
Based System Workshop (KAW´98)

, Banff, Canada, April 18-23, 1998.

[Benjamins & Fensel, 1998] R. Benjamins and D. Fensel: Community is Knowledge! in (KA)

2

. In

Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´98)

, Banff, Canada, April 18-23, 1998.

[Collet et al., 1991] C. Collet, M. N. Huhns, and W.-M. Shen: Resource Integration Using a Large
Knowledge Base in Carnot,

IEEE Computer

, December 1991.

[Davenport, 1996] T. Davenport: S

ome Principles of Knowledge Management

, URL:http://
www.bus.utexas.edu/kman/kmprin.htm, 1996.

[Euzenat, 1996] J. Euzenat: Corporate Memory through Cooperative Creation of Knowledge Bases
and Hyper-documents. In:

Proceedings of the 10th Banff Knowledge Acquisition Workshop
(KAW 96

), Banff, Canada, November 1996

[Farquhar et al., 1997] A. Farquhar, R. Fikes, and J. Rice: The Ontolingua Server: a Tool for
Collaborative Ontology Construction,

International Journal of Human-Computer Studies
(IJHCS)

, 46(6):707

728, 1997.

[Fensel et al., 1997] D. Fensel, M. Erdmann, and R. Studer: Ontology Groups: Semantically Enriched
Subnets of the WWW. In

Proceedings of the 1st International Workshop Intelligent Information
Integration during the 21st German Annual Conference on Artificial Intelligence

, Freiburg,
Germany, September 9-12, 1997.

[Fensel et al., to appear] D. Fensel, M.-C. Rousset, and S. Decker: Workshop on Comparing
Description and Frame Logics, to appear in

Data and Knowledge Engineering

.

[Fridman Noy & Hafner, 1997] N. Fridman Noy and C. D. Hafner: The State of the Art in Ontology
Design,

AI Magazine

, 18(3):53—74, 1997.

[Frohn et al, 1997] J. Frohn, R. Himmeröder, P.-Th. Kandzia, G. Lausen, and C. Schlepphorst:
FLORID - A Prototype for F-Logic, In:

Proceedings of the International Conference on Data
Engineering (ICDE, Exhibition Program)

, Birmingham, 1997.

[Genesereth et al., 1997] M. R. Genesereth, A. M. Keller, and O. M. Duschka: Infomaster

:

An
Information Integration System. In

Proceedings of the ACM SIGMOD International Conference
on Management of Data

, Tucson, AZ, May 1997.

[Genesereth & Fikes, 1992] M. R. Genesereth and R. E. Fikes:

Knowledge Interchange Format,
Version 3.0, Reference Manual

, Report Logic-92-1, Stanford University, June 1992.

[Gruber, 1993] T. R. Gruber: A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition

, 5(2), 1993.

[Javasoft] Javasoft-Homepage: „http://www.javasoft.com“.,1997

- 27 -

[Kandzia & Schlepphorst, 1997] P.-T. Kandzia and C. Schlepphorst: DOOD and DL - Do We Need an
Integration. In

Proceedings of the 4th KRDB Workshop

, Athens, Greece, August 30, 1997.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages,

Journal of the ACM

, 42, 1995

.

[Kifer & Lozinskii, 1986] M. Kifer, E. Lozinskii: A Framework for an Efficient Implementation of
Deductive Databases. In

 Proceedings of the 6th Advanced Database Symposium

, Tokyo, 1986.

[Kühn & Abecker, 1997] Otto Kühn and Andreas Abecker: Corporate Memories for Knowledge
Management in Industrial Practice: Prospects and Challenges,

Journal of Universal Computer
Science, Special Issue on Information Technology for Knowledge Management

, Springer
Science Online,

3(8),

August 1997

.

[Lamping & Rao, 1994] L. Lamping and R. Rao: Laying Out and Visualizing Large Trees Using a
Hyperbolic Space. In

Proceedings of the ACM Symposium on User Interface Software and
Technology

, November, 1994

[Lamping et al., 1995] L. Lamping, R. Rao, and Peter Pirolli.: A Focus+Context Technique Based on
Hyperbolic Geometry for Visualizing Large Hierarchies. In

 Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems,

 1995

[Lloyd, 1987] J.W. Lloyd:

Foundations of Logic Programming

, 2nd Edition. Springer-Verlag, 1987

[Levy et al., 1996] A. Y. Levy, A. Rajaraman, and J. J. Ordille: Query-Answering Algorithms for
Information Agents. In

Proceedings of the AAAI-96

, Portland, Oregon, August 4-8, 1996.

[Lloyd & Topor, 1984] J. W. Lloyd and R. W: Topor: Making Prolog more Expressive,

Journal of
Logic Programming,

 3:225-

240, 1984.

[Luke et al., 1996] S. Luke, L. Spector, and D. Rager: Ontology-Based Knowledge Discovery on the
World-Wide Web. In

Proceedings of the Workshop on Internet-based Information Systems

 at the

AAAI-96

, Portland, Oregon, August 4-8, 1996.

[Luke et al., 1997] S. Luke, L. Spector, D. Rager, and J. Hendler: Ontology-based Web Agents. In
P

roceedings of First International Conference on Autonomous Agents

, 1997.

[MacGregor, 1990] MacGregor:

LOOM Users Manual

, ISI/WP-22, USC/Information Sciences
Institute, 1990.

[Mauldin, 1997] M. L. Mauldin: Lycos: Design Choices in an Internet Search Engine,

IEEE Expert

,
January-February 1997. http://www.lycos.com.

[Nebel, 1990] B. Nebel:

Reasoning and Revision in Hybrid Representation Systems

, LNAI 422,
Springer-Verlag, 1990.

[Ontobroker] http://www.aifb.uni-karlsruhe.de/WBS/broker

[Papakonstantinou et al., 1995] Y. Papakonstantinou, H. Garcia Molina, and J. Widom: Object
Exchange Across Heterogeneous Information Sources. In

Proceedings of the IEEE International
Conference on Data Engineering (ICDE)

, Taipei, Taiwan, March 1995.

[Proebsting et al., 1997] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and
S. A. Watterson: Toba: Java for Applications: A Way Ahead of Time (WAT) Compiler. In

Proceedings of the Third Conference on Object-Oriented Technologies and Systems (COOTS
97)

, 1997, (also „http://www.cs.arizona.edu/sumatra/toba/“).

[RDF] Resource Description Framework, http://www.w3.org/Metadata/RDF/Group/WD-rdf-syntax

[Selberg & Etzioni, 1997] E. Selberg and O. Etzioni: The MetaCrawler Architecture for Resource
Aggregation on the Web,

IEEE Expert

, January-February 1997. http://www.metacrawler.com.

[Skuce,1997] D. Skuce: Hybrid KM: Integrating Documents, Knowledge Bases, Databases, and the
Web. In:

Proceedings of AAAI Spring Symposium on Artificial Intelligence in Knowledge
Management

, 1997. URL: http://ksi.cpsc.ucalgary.ca/AIKM97/AIKM97Proc.html

- 28 -

[Subrahmanian et al., 1995] V. S. Subrahmanian, S. Adali, A. Brink, J. J. Lu, A. Rajput, T. J. Rogers,
R. Ross, and C. Ward:

HERMES: A Heterogeneous Reasoning and Mediator System

, Technical
Report, University of Maryland, 1995.

[Swartout et al., 1996] B. Swartout, R. Patil, K. Knight, and T. Russ: Toward Distributed Use of
Large-Scale Ontologies. In

Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop (KAW-96)

, Banff, Alberta, Canada, November 9-14, 1996.

[URL] Uniform Resource Locator, http://www.w3.org/pub/WWW/Protocols.

[Van Gelder, 1993] A. Van Gelder: The Alternating Fixpoint of Logic Programs with Negation,

Journal of Computer and System Sciences

, 47(1):185

221, 1993.

[Van Gelder et al., 1991] A. Van Gelder, K. Ross, J. S. Schlipf: The Well-Founded Semantics for
General Logic Programs,

Journal of the ACM

, 38(3): 620

650, 1991.

[Wiederhold, 1992] G. Wiederhold: Mediators in the Architecture of Future Information Systems,

IEEE

Computer

, 25(3):38

49, 1992.

[XML] Extensible Markup Language, http://www.w3.org/TR/PR-xml-971208.

