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Abstract.  The interchange of ontologies across the World Wide
Web (WWW) and the cooperation among heterogeneous agents
placed on it is the main reason for the development of a new set of
ontology specification languages, based on new web standards
such as XML or RDF. These languages (SHOE, XOL, RDF, OIL,
etc) aim to represent the knowledge contained in an ontology in a
simple and human-readable way, as well as allow for the
interchange of ontologies across the web. In this paper, we
establish a common framework to compare the expressiveness of
“ traditional” ontology languages (Ontolingua, OKBC, OCML,
FLogic, LOOM) and “web-based” ontology languages. As a result
of this study, we conclude that different needs in KR and reasoning
may exist in the building of an ontology-based application, and
these needs must be evaluated in order to choose the most suitable
ontology language(s).

1 INTRODUCTION

In the past years, a set of languages have been used for
implementing ontologies. Ontolingua [1] is the most representative
of all of them, and it is considered as a standard by the ontology
community. Other languages have also been used for specifying
ontologies: LOOM [2], CycL [3], OCML [4], FLogic [5], etc. KR
paradigms underlying these languages are diverse: frame-based,
description logic, first (and second) order predicate calculus,
object-oriented, etc.

In the recent years, new web standard languages have been
created -XML [6], RDF [7]- and are still in a development phase.
As a consequence of this ever-changing context, new XML-based
ontology specification languages have also emerged: SHOE [8],
XOL [9], OIL [10], as well as RDF Schema [11] and XML Schema
[12]. The role of new languages in this scenario is twofold: they
can be used to provide the semantics of information contained in
electronic documents or can be used for the exchange of ontologies
across the web. A study about ontologies and web-based languages
for representing them is presented at [13], where an analysis is
shown on the role of HTML, XML and RDF when providing
semantics for documents on the Web.

The purpose of this paper is to analyse the tradeoff between
readabilit y (how things are said), expressiveness (what can be
said) and inference (what can be obtained from the information
represented) in traditional and web-based ontology languages. In
Section 2, we wil l present a framework for evaluating the

expressiveness and inference mechanisms of potential languages
which could be used to specify ontologies. It is based on a set of
criteria that we consider relevant from the knowledge
representation (KR) and inference mechanisms point of view.
Section 3 wil l describe the so-called traditional ontology
languages. Section 4 will focus on web-based ontology languages.
As a conclusion, section 5 presents a discussion on the results of
the study.

2 EVALUATION FRAMEW ORK

The goal of this section is to set up a framework for comparing the
expressiveness and inference mechanisms of potential ontology
languages. We use in our analysis the framework proposed in
CommonKADS [14], which distinguishes between domain
knowledge and inference knowledge. Figure 1 summarizes the
main dimensions of the framework and the relationship between
the KR components and the reasoning mechanisms of the
language.

2.1. Domain knowledge

The domain knowledge describes the main static information and
knowledge objects in an application domain [14]. We identify the
main kind of components used to describe domain knowledge in
ontologies. Gruber [15] stated that knowledge in ontologies can be
formalized using five kind of components: concepts, relations,
functions, axioms and instances. Concepts in the ontology are
usually organized in taxonomies. Sometimes the notion of
ontology is somewhat diluted, in the sense that taxonomies are
considered to be full ontologies [16]. Other components like
procedures and rules are also identified in some ontology
languages (i.e., OCML). For each one of the components outlined
before (except for procedures, as it is very diff icult to find common
characteristics for them in all l anguages) we will select a set of
features that we consider relevant.

2.1.1. Concepts

Concepts [14] are used in a broad sense. They can be abstract or
concrete, elementary (electron) or composite (atom), real or
fictious. In short, a concept can be anything about which something
is said, and, therefore, could also be the description of a task,
function, action, strategy, reasoning process, etc. The following
questions try to identify the expressiveness of a given language
when we define concepts:
• Is it possible to define Metaclasses (classes as instances of

other ones)?
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• Does the language provide mechanisms to define
Slots/Attributes? For example:
• Local attributes. Attributes which belong to a specific

concept. For instance, attribute age belongs to concept
Person.

• Instance attributes (template slots). Attributes whose
value may be different for each instance of the concept.

• Class attributes (own slots). Attributes whose value
must be the same for all instances of the concept.

• Polymorph attributes. Attributes (slots) with the same
name and different behaviour for different concepts. For
instance, the attribute author for concept Thesis is
different from the attribute author for concept Book. Its
type for Thesis is Student, and its type for Book is
Person.

• Does the language provide the following predefined facets
for attributes?
• Default slot value, which wil l be used to assign a value

to the attribute in case there is no explicit value defined
for it.

• Type, which will be used to constrain the type of the
attribute.

• Cardinality constraints, which will be used to constrain
the minimum and maximum number of values of the
attribute.

• Documentation, which will allow to include a natural
language definition for the attribute.

• Operational definition, which could include the
definition or selection of a formula, a rule, etc to be used,
for instance, when obtaining a value for that attribute.

• May new facets be created for attributes?

2.1.2. Taxonomies

They are widely used to organize ontological knowledge in the
domain using generalization/specialization relationship through

which simple/multiple inheritance could be applied. Since there
exist some confusion regarding the primitives used to build
taxonomies, we propose to analyse whether or not the following
primitives are predefined in the languages. Their semantic is based
on the definitions provided by the frame ontology at Ontolingua
[1].
• Subclass of specializes general concepts in more specific

concepts.
• Partitions define a set of disjoint classes.
• Disjoint decompositions define the set of disjoint subclasses

as subclasses of the parent class. This classification does not
necessarily have to be complete, that is, there may be
instances of the parent class that are not included in any of the
subclasses of the partition.

• Exhaustive subclass decompositions define the set of
disjoint subclasses of the partition as subclasses of the parent
class, where the parent class is defined as a union of all the
classes that make up the partition.

• Not subclass of may be used when we wish to state that a
given class is not a specialization of another class. Usually
this kind of knowledge can be represented using denial of
subclass of primitive.

Some languages do not use the above primitives, but they allow
to define them as relations, and their semantic is defined using
axioms or rules.

2.1.3. Relations

Relations [15] represent a type of interaction between concepts of
the domain. They are formally defined as any subset of a product
of n sets, that is, R: C1 x C2 x … x Cn. Examples of binary
relations are part-of and connected-to.

First, we consider the relationship between relations and other
components in the ontology. We wil l ask if concepts are
considered as unary relations and if attributes are considered as
binary relations. Special attention deserve functions [4], which are
defined as mappings between a list of input arguments and its

Figure 1. Evaluation framework.
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output argument. Formally, functions are defined as F: C1 x C2 x
… x Cn-1 

�
 Cn. In this case, we should ask if they are considered

as a special kind of relations.
Second, related to the arguments (both in relations and

functions):
• Is it possible to define arbitrary n-ary relations/functions?

If this is not possible, which is the maximum number of
arguments?

• May the type of arguments be constrained?
• Is it possible to define integrity constraints in order to check

the correctness of the arguments' value?
• And operational definitions to infer values of arguments by

means of procedures, formulas and rules, or to define its
semantic using axioms or rules?

2.1.4. Axioms

Axioms [1] are used to model sentences that are always true. They
can be included in an ontology for several purposes, such as
constraining the information contained in the ontology, verifying
its correctness or deducting new information.

We will focus on the next characteristics:
• Does the language support building axioms in first order

logic?
• And second order logic axioms?
• Are axioms defined as independent elements in the ontology

(named axioms) or must they be included inside the
definition of other elements, such as relations, concepts, etc?

2.1.5. Instances/Individuals/Facts/Claims

All these terms are used to represent elements in the domain.
Instances usually represent elements of a given concept. Facts [4]
is the term commonly used to represent a relation which holds
between elements. Individuals [1] are used in Ontolingua and
OKBC to refer to any element in the domain which is not a class
(both instances and facts). The term Claims [8] refers to the
assertion of a fact by an instance. Special attention deserves the
inclusion of claims, since people on internet can make whatever
claims they want. Hence, agents shouldn’ t interpret claims as facts
of knowledge, but as claims being made by a particular instance
about itself or about other instances or data, which may prove to be
inconsistent with others [8].

The questions to be asked in this section are the following ones:
• Is it possible to define instances of concepts?
• Is it possible to define instances of relations (facts)?
• Does the language provide special mechanisms to define

claims?

2.1.6. Production rules

Production rules [2], which follow the structure If ... Then ..., are
used to express sets of actions and heuristics which can be
represented independently from the way they will be used. A set of
questions will be asked about them:
• Is it possible to define disjunctive and conjunctive

premises?
• May the chaining mechanism be defined declaratively?
• Is it possible to define truth values or certainty values

attached to the rule?
• May procedures be included in the consequent? They are

commonly used to change the values of attributes of a
concept, add information to the KB, etc.

• Does the language support updates of the KB, performed by
adding or removing facts or claims?

2.2. Inference mechanisms

This dimension describes how the static structures represented in
the so-called domain knowledge can be used to carry out a
reasoning process [14]. There is a strong relationship between
inference mechanisms and domain knowledge components, as the
structures used for representing knowledge are the basis for the
reasoning process, as seen in Figure 1. We analyse the following
features, asking whether they are supported by the language:
• Does the language provide an inference engine that reasons

with the knowledge represented using the language? Is it
sound? And complete?

• Does the inference engine perform automatic classifications?
• Does the inference engine deal with exceptions? Exceptions

are considered in the sense that attribute Attribute1 is defined
for concept C1 and concept C2, being C1 subclass of C2 and
we analyse whether the definition of Attribute1 in concept C1
overrides the definition of Attribute1 in concept C2 or not.

• Is it possible to use inheritance? Which kind of inheritance is
allowed: monotonic, non monotonic, simple and/or multiple?

• Are procedures executable?
• Is it performed any kind of constraint checking by using

axioms defined in the language?
• When reasoning with rules, does the language allow to

perform forward and backward chaining?

3 TRADITIONAL ONTOLOGY
SPECIFICATION LANGUAGES

In this section, we make an analysis of languages which can be
considered as standards for the ontology community (Ontolingua,
OKBC, OCML, FLogic and LOOM). They will serve as a
reference for the comparative study presented in section 5.

3.1. Ontolingua

Ontolingua [1] is a language based on KIF [17] and on the Frame
Ontology [15], and it is the ontology-building language used by the
Ontolingua Server [1].

KIF (Knowledge Interchange Format) was developed to solve
the problem of heterogeneity of languages for knowledge
representation. It provides for the definition of objects, functions
and relations. KIF has declarative semantics and it is based on the
first-order predicate calculus, with a prefix notation. It also
provides for the representation of meta-knowledge and allows for
the representation of non-monotonic reasoning rules.

As KIF is an interchange format, it is tedious to use for
specification of ontologies per se. However, the Frame Ontology
[15], built on top of KIF, allows an ontology to be specified
following the paradigm of frames (it is a knowledge representation
ontology for modeling ontologies under a frame-based approach).
Terms like: class, instance, subclass-of, instance-of, etc are
included in this ontology.

Since the Frame Ontology is less expressive than KIF, that is,
not all of the knowledge that can be expressed in KIF can be
expressed using the Frame-Ontology, Ontolingua allows to include
KIF expressions inside of definitions based on the Frame-
Ontology. So, the Ontolingua language allows to build ontologies
in any of the following three manners: (1) using exclusively the
Frame Ontology vocabulary (it is not possible to represent



axioms); (2) using KIF expressions; (3) using both languages
simultaneously, depending on ontology developer preferences.

Currently, an inference engine is being developed for
Ontolingua. However, in case we want to develop a customized
one, we must build it using the OKBC API (which will be defined
later on this section).

3.2. OKBC

OKBC [18] is an acronym for Open Knowledge Base Connectivity,
previously known as Generic Frame Protocol. It specifies a
protocol for accessing knowledge bases stored in frame knowledge
representation systems, and it is considered complementary to
language specifications developed to support knowledge sharing.

The GFP Knowledge Model, which is the implicit
representation formalism underlying OKBC, supports an object-
centered representation of knowledge and provides a set of
representational constructs commonly found in frame
representation systems: constants, frames, slots, facets, classes,
individuals and knowledge bases.

It also defines a complete tell&ask interface for knowledge
bases accessed using OKBC protocol, and procedures (with a Lisp-
like syntax) in order to describe complex operations to perform in a
knowledge base when accessing it over a network.

Eventually it has been developed the OKBC-Ontology for
Ontolingua, which is fully compatible with the OKBC protocol.

In this study, when referring to OKBC we will mean the API,
together with the maximum expressiveness permitted.

3.3. OCML

OCML [4] stands for Operational Conceptual Modeling Language.
It was originally developed at the Knowledge Media Institute (UK)
in the context of the VITAL project to provide operational
modeling capabil ities for the VITAL workbench. The current
version of the language is v6.3.

It provides mechanism for expressing items such as relations,
functions, rules (with backward and forward chaining), classes and
instances. In order to make the execution of the language more
eff icient, it also adds some extra logical mechanisms for eff icient
reasoning, such as procedural attachments. A general tell&ask
interface is also implemented, as a mechanism to assert facts
and/or examine the contents of an OCML model.

Several pragmatic considerations were taken into account in the
development of OCML. One of them is the compatibility with
standards, such as Ontolingua, so that OCML can be considered as
a kind of “operational Ontolingua”, providing theorem proving and
function evaluation faciliti es for its constructs.

3.4. FLogic

FLogic [5] is an acronym for Frame Logic. FLogic is a language
which integrates frame-based languages and first-order predicate
calculus. It accounts in a clean and declarative fashion for most of
the structural aspects of object-oriented and frame-based
languages. These features include object identity, complex objects,
inheritance, polymorphic types, query methods, encapsulation, and
others. In a sense, FLogic stands in the same relationship to the
object-oriented paradigm as classical predicate calculus stands to
relational programming. FLogic has a model-theoretic semantics
and a sound and complete resolution-based proof theory. A small
number of fundamental concepts that come from object-oriented
programming have direct representation in FLogic; other,
secondary aspects of this paradigm are easily modeled as well .

3.5. LOOM

LOOM [2] is a high-level programming language and environment
intended for use in constructing expert systems and other
intelli gent application programs. It is a descendent of the KL-ONE
family of languages, characterized for their eff icient automatic
classifiers. LOOM achieves a tight integration between rule-based
and frame-based paradigms.

It supports a "description" language for modeling objects and
relationships, and an “assertion” language for specifying
constraints on concepts and relations, and to assert facts about
individuals. Procedural programming is supported through pattern-
directed methods, while production-based and classification-based
inference capabiliti es support a powerful deductive reasoning (in
the form of an inference engine: the classifier). All of these
capabiliti es reside in a framework of query-based assertion and
retrieval.

4 WEB LANGUAGES FOR BUILDING
ONTOLOGIES

This section provides an analysis of new languages created in the
context of Internet (XML, RDF, XOL, SHOE and OIL), which are
the motivation of this study. First, a state of the art in web
standards is given. Second, we describe these web languages which
are used for building ontologies.

4.1. Web standards

4.1.1. XML

XML [6] metalanguage derives from SGML (Standard General
Markup Language). It is being developed by the XML Working
Group of the World Wide Web Consortium (W3C), for ease of
implementation and interoperabili ty with both SGML and HTML.

As a language for the World Wide Web, its main advantages are
the following: it is easy to parse, its syntax is well defined and it is
human readable. There are also many software tools for parsing
and manipulating XML, as XML is widely used. XML allows
users to define their own tags and attributes, define data structures
(nesting them), extract data from documents and develop
applications which test the structural validity of a XML document.

When using XML as the basis for an ontology specification
language (XML-based ontology languages), its main advantages
are:
• The definition of a common syntactic specification by means

of a DTD (Document Type Definition).
• Information coded in XML is easily readable for humans

(although it is not intended to be used for the direct coding of
ontologies, information of the ontology coded in an XML-
based ontology language can be easily read and understood).

• It can be used to represent distributed knowledge across
several web-pages, as it can be embedded in them.

XML also presents some disadvantages which may influence on
ontologies specified in it:
• The standard is defined in order to allow the lack of structure

of information inside XML tags, which makes it diff icult to
find the components of an ontology inside the same document

• Standard tools are available for parsing and manipulating
XML documents, but not for making inferences. These tools
must be created in order to allow inferences with languages
which are based on XML.



XML itself has no special features for the specification of
ontologies, as it just offers a simple but powerful way to specify a
syntax for an ontology specification language. Therefore, XML
will be used for two purposes: for providing the syntax of a set of
languages, such as XOL or OIL, so that the definition of these
languages just consists of describing the semantics of new tags
created and used in it; and for covering ontology exchange needs,
exploiting the communication faciliti es of the World Wide Web.

These are the reasons why XML is not included in the
comparison performed in section 5.

4.1.2. RDF(S)3

RDF [7] stands for Resource Description Framework. It is being
developed by the W3C for the creation of metadata describing Web
resources. Examples of the use of RDF and RDF schemas in
ontological engineering may be analyzed in [19] and [20].

A strong relationship stands between RDF and XML. In fact,
they are defined as complementary: one of the goals of RDF is to
make it possible to specify semantics for data based on XML in a
standardized, interoperable manner. The broad goal of RDF is to
define a mechanism for describing resources that makes no
assumptions about a particular application domain nor the structure
of a document containing information.

The data model of RDF consists of three object types: resources
(subjects), which are entities that can be referred to by an address
at the WWW; properties (predicates), which define specific
aspects, characteristics, attributes or relations used to describe a
resource; and statements (objects), which assign a value for a
property in a specific resource.

The RDF data model does not provide itself mechanisms for
defining the relationships between properties (attributes) and
resources. This is the role of RDFS, the acronym for RDF Schema
Specification language [11], which is a declarative language used
for the definition of RDF schemas4. It is based on some ideas from
knowledge representation (semantic nets, frames and predicate
logic), but it is much simpler to implement (and also less
expressive) than full predicate calculus languages such as CycL
and KIF. Core classes are class, resource and property; hierarchies
and type constraints can be defined (core properties are type,
subclassOf, subPropertyOf, seeAlso and isDefinedBy). Some core
constraints are also defined.

A conclusion is that an ontology defined in RDF(S) wil l lack
from functions and axioms, but concepts, relations and instances
(as well as claims) can be easily defined.

4.2. Web standards and ontologies

4.2.1. XOL

XOL [9] stands for XML-Based Ontology Exchange Language.
XOL was designed to provide a format for exchanging ontology
definitions among a set of interested parties. Therefore, it is not
intended to be used for the development of ontologies, but as an
intermediate language for transferring ontologies among different
database systems, ontology-development tools or application
programs.

                                                
3 RDF(S) is the acronym commonly used to refer to the combination of
RDF and RDFS.
4 An RDF schema consists of the declaration of attributes and their
corresponding semantics in the context of RDF

XOL allows to define in a XML syntax a subset of OKBC,
called OKBC-Lite. As OKBC defines a protocol for accessing
frame-based representation systems, XOL may be suitable for
exchanging information between different systems, via the WWW.
The main handicap is that frames (defined in OKBC) are excluded
from this language, and only classes (and their hierarchies), slots
and facets can be defined.

However, since XOL files are textual, a text editor or XML
editor may be used to author XOL files. It is expected that many
XML tools will soon be available so that XOL documents will be
easily generated with them.

4.2.2. SHOE

SHOE [8] stands for Simple HTML Ontology Extension. It is
being developed at the University of Maryland.

SHOE was first an extension of HTML, with the aim of
incorporating machine-readable semantic knowledge in HTML or
other World Wide Web documents. Recently, it has been adapted
in order to be XML compliant. The intent of this language is to
make it possible for agents to gather meaningful information about
web pages and documents, improving search mechanisms and
knowledge-gathering. The two-phase process to achieve it consists
of: (1) defining an ontology describing valid classifications of
objetcs and valid relationship between them; (2) annotating HTML
pages to describe themselves, other pages, etc.

In SHOE, an ontology is an ISA hierarchy of classes (also
called categories), plus a set of atomic relations between them, and
a set of inferential rules in the form of simpli fied horn clauses.
Therefore, classes, relations and inferential rules can be defined.

An important feature included in SHOE is the abili ty to make
claims about information, as discussed in section 2.

4.2.3. OIL

OIL [10], Ontology Interchange Language, is a proposal for a joint
standard for describing and exchanging ontologies. It is still i n an
early development phase, and has been designed to provide most of
the modell ing primitives commonly used in frame-based and
description logic ontologies (it is based on existing proposals, such
as OKBC , XOL and RDF), with a simple, clean and well defined
semantics, and an automated reasoning support.

In OIL, an ontology is a structure made up of several
components, organized in three layers: the object level (which
deals with instances), the first meta level or ontology definition
(which contains the ontology definitions) and the second meta
level or ontology container (which contains information about
features of the ontology, such as its author).

Concepts, relations, functions and axioms can be defined using
OIL’s ontology definitions.

5 RESULTS AND COMPARISON OF
LANGUAGES

The results of applying the evaluation framework described in
section 2 are described in this section. It is worth mentioning that a
common evaluation framework has been used for different
knowledge representation languages (and different knowledge
representation paradigms, such as frame-based, description logics
and object-centered).

Information in tables of sections 5.1 and 5.2 will be fill ed using
‘+’ to indicate that it is a supported feature in the language, ‘-‘ for
non supported features, ‘+/-’ for non supported features, but could
manage to support it by doing something, ‘?’ when no information



is available and ‘N.D.’ for features which are not restricted, but
could be implemented in order to support them. The contents of
tables represent the present situation of languages and may change
because of the evolution of them.

5.1. Domain knowledge

The information contained in Table 1 shows at first glance the
main characteristics of the ontology specification languages
selected for this study. It can also be used to compare the types of
information that can be represented when using them.

Concepts, relations and instances can be defined easily in
almost all l anguages. In OKBC and FLogic, which are frame-based
languages, relations can be represented by using frames, but not as
special elements provided by the language. In OKBC, axioms are
only supported in the tell&ask part of the API, although neither
deductive nor storage guarantees are made for all OKBC
implementations.

Functions, procedures and axioms cannot be defined using web-
based languages, except for some restricted forms of axioms, such
as deductive rules, which are definable in SHOE.

It is worth mentioning that procedures are only definable in
Lisp-based languages, and production rules are just definable in
OCML and LOOM.

5.1.1. Concepts

Table 2 summarizes the most important features that a language
must provide when describing concepts in an ontology. It is
divided in three sections: metaclasses, definition of attributes and
definitions of properties of attributes (facets).

Note that not all l anguages allow the definition of meta-classes,
which restricts the expressiveness that can be achieved with a
language which does not support them.

                                                
5 'Ontol' will be used to refer to Ontolingua.

Instance attributes and type constraints for attributes can be
defined using any of the chosen languages. The results of the rest
of the values depend on the languages, although a glance at the
table shows us that traditional ontology languages allow us, again,
to define more features than web-based languages.

Procedural knowledge inside the definition of attributes is only
supported by OCML and LOOM, due to their operational behavior.
It must be included in the definition of the OCML´s attributes by
means of special keywords, such as :prove-by or :lisp-fun, not as
simple facets, or in the definition of the LOOM’s attributes by
means of keywords such as :suff icient, :is, :is-primitive or :implies.

FLogic just allows to define the maximum cardinality for slots
as 1 or N, while the minimum cardinality is always set to 0.

5.1.2. Taxonomies

When defining taxonomies, there is just one primitive predefined
in all l anguages and correctly handled by them: subclass of.
Ontolingua and LOOM are the only languages which have the rest
of primitives (except for not subclass of, which must be declared
using the denial of primitve subclass-of). These primitives can be
defined as relations in the rest of languages, but as a consequence,
there is no special treatment for them. In FLogic, axioms must be
defined in order to provide the semantics for them. OIL allows to
define the primitive not subclass-of; hence it is also possible to
define disjoint decompositions. Again, traditional ontology
languages are more expressive.

5.1.3. Relations and functions

We will see how ontology languages allow to define relations and
functions in ontologies. Relations are very important elements in
an ontology (hence they are supported by almost all the ontology
languages), but not every desirable characteristic of relations is
implemented in all languages. Functions are not included in some
languages.

Many languages represent concepts as unary relations, so that

Ontol5 OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
Concepts + + + + + + + + +
Relations + +/- + + +/- - + + +
Functions + +/- + + +/- - - - +
Procedures + + + + - - - - -
Instances + + + + + + + + -
Axioms + +/- + + + - - - +
Production rules - - + + - - - - +/-

Table 1.  Definition of the main elements of domain knowledge.

CONCEPTS Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
METACLASSES + + + + + + - + -
ATTRIBUTES
Template (instance attrs) + + + + + + + + +
Own (class attrs.) + + + + + + - + +/-
Polymorphic + + + + + - - - +
Local scope + + + + + + + + +
FACETS
Default slot value - + + + + + - - -
Type constraint + + + + + + + + +
Cardinality constraints + + + + +/- + - - +
Documentation + + + + - + + - +
Procedural knowledge - - + + - - - - -
Adding new facets + + - + - - - - -

Table 2.  Definition of concepts.



they can be used in the ontology as if they were relations; the rest
of languages clearly distinguish concepts and relations (they are
different components). Attributes are usually considered as binary
relations, except for FLogic, where they are considered as ternary
ones.

Great semantic differences are found when analysing the role
that functions play in different languages. Some languages, such as
KIF (and consequently, Ontolingua), consider functions as a
special case of relations in which the nth element of the relation is
unique for the n-1 preceding elements. LOOM consider functions
as relations where the result can be calculated given the domain
arguments. In OCML, functions are considered as modell ing
elements which play a role which is completely different to the one
of relations. In FLogic, functions are considered as methods which
are defined inside a concept. Their value is calculated by using a
deductive rule associated to the method previously declared.

FLogic, OKBC, RDF(S) and OIL cannot define n-ary relations
directly. They must define them as associative classes or by means
of several binary relations.

All l anguages allow the definition of type constraints for
arguments, and the main differences among traditional and web
ontology languages lays on the definition of integrity constraints
(the last ones don’ t allow to define these kinds of constraints for
relations).

The last comments are on operational definitions for relations:
just OCML, LOOM and FLogic allow to define operations inside
relations, although there is a difference between them: while
LOOM provides operational definitions just for an inferential
purpose, OCML also provides non-operational definitions which
can be used for representational purposes [4]. In FLogic, this kind
of operations must be defined by using axioms, which are defined
apart. Ontolingua does not support user-defined Lisp lambda
bodies for relations, but it does have certain relations that have

procedural attachments which are activated by the tell&ask
interface (for instance, asking (+ 3 2 ?x) will reply with a single
binding of 5 for ?x).

5.1.4. Instances

Instances of concepts and of relations (facts) are supported by all
the languages. Claims, however, are just allowed by some of the
web ontology languages. This is due to the fact that the
management of information which comes from different sources is
an intrinsic characteristic of the web environment and so these
languages have specialized ways to treat this information.

5.1.5. Axioms

This is a good measure of expressiveness. The richest the axioms
can be defined, the more expressive the language is. This is the
case of Ontolingua, which allows the definition of f irst-order and
second-order logic axioms. OCML and FLogic also allow to define
first-order logic axioms independently of the rest of components of
the ontology.

LOOM just allows to define first-order logic axioms inside the
definitions of relations, concepts and functions.

The rest of languages, except for XOL, only allow restricted
types of axioms. So, OKBC just supports a subset of the axioms
which can be represented with KIF (and they must be included as a
frame or by using the tell&ask interface), and SHOE just allows to
define deductive rules. In OIL, the syntax of axioms has not yet
been defined, while in RDF(S) several studies are currently trying
to specify the syntax and semantics for the most commonly used
axioms.

TAXONOMIES Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
Subclass of + + + + + + + + +
Exhaustive subclass
partitions

+ - +/- + +/- - - - -

Disjoint Decompositions + - +/- + +/- - - - +/-
Partitions + - +/- + +/- - - - -
Not subclass of +/- - - +/- - - - - +

Table 3.  Definition of taxonomies of concepts.

RELATIONS/FUNCTIONS Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
Functions as relations + + - + + - - - +
Concepts as unary relations + + + + - - + - +
Slots as binary relations + + + + - - + + +
n-ary relations/functions + +/- + + +/- - + + +/-
Type constraints + + + + + - + + +
Integrity constraints + + + + + - - - -
Operational definitions - - + + + - - - -

Table 4.  Definition of relations and functions.

INSTANCES Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
Instances of concepts + + + + + + + + -
Facts + + + + + + + + -
Claims - - - - - - + + -

Table 5.  Definition of instances.

AXIOMS Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
First-order logic + +/- + + + - +/- +/- +/-
Second-order logic + +/- - - - - - - -
Named axioms + + + - - - - - -

Table 6. Definition of axioms.



5.1.6. Production rules

Production rules are components of an ontology in OCML, LOOM
and OIL.

LOOM makes a distinction between purely deductive rules and
side-effecting, procedural rules (production rules). OCML makes
the same distinction, defining “backward” and “ forward” ones.
Therefore, OCML and LOOM allow to define the chaining when
performing the reasoning with knowledge defined in the ontology.

As far as OIL is concerned, rules are just a weak form of
general inclusion axioms.

Finally, SHOE does not allow to define production rules, but
inference rules, as stated in the previous section.

5.2. Reasoning

A clear distinction between KR and reasoning exists for all
languages, except for OCML. For instance, Ontolingua is maybe
the most expressive of all the languages chosen for this study, but
there is no inference engine implemented for it. OCML allows to
define some features concerning reasoning inside representational
elements (for instance, rules can be defined as backward rules or
forward ones, so that the chaining is explicitly defined).

Just FLogic and OIL inference engines are sound and complete,
which is a desirable feature, although it can make representation in
the language more diff icult.

Automatic classifications are performed by description logic-
based languages (LOOM and OIL).

The exception handling mechanism is not addressed, in general,

by language developers (FLogic is the only one handling
exceptions). Works have been carried out in other languages, such
as LOOM, to support them.

Single and multiple inheritance is also supported by most of the
languages (except for XOL), but conflicts in multiple inheritance
are not resolved. All languages are basically monotonic, although
they usually include some non-monotonic capabil ities. For
instance, the only non-monotonic capabilities present in both
Ontolingua and OCML are related to default values for slots and
facets. In XOL and RDF specifications there is no explicit
definition of the behaviour of inherited values.

All the languages which allow to define procedures, allow to
execute them.

Constraint checking is performed in all the traditional ontology
languages. Information about constraint checking in XOL is not
available. In OKBC, constraint checking is guaranteed to be
included in all i mplementations of it. However, it can be
parametrized and even switched off. Constraint checking in SHOE
is not performed because conflicts are thought to be frequent in the
Web, and resolving them will be problematic. However, type
constraint checking is performed when necessary.

Chaining used in SHOE is not defined in the language: freedom
exists so that each implementation may choose between any of
them. OCML allows to define the chaining of rules when defining
them, although default chaining used is the backward one. LOOM
performs both kinds of chaining, and FLogic’s one is in between.

5.3. Conclusion

Once studied the main components of a given ontology language
and knowing the KR and reasoning mechanisms needed for a given

PRODUCTION RULES Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
PREMISES
Conjunctive - - + + - - - - N.D.
Disjunctive - - + + - - - - N.D.
CONSEQUENT
Truth values - - - - - - - - N.D.
Execution of procedures - - +/- + - - - - N.D.
Updating of the KB - - + + - - - - N.D.

Table 7.  Definition of rules.

REASONING Ontol OKBC OCML LOOM FLogic XOL SHOE RDF(S) OIL
INFERENCE ENGINE
Sound - - + + + - - - +
Complete - - - - + - - - +
CLASSIFICATION
Automatic classif. - - - + - - - - +
EXCEPTIONS
Exception handling - - - - + - - - -
INHERITANCE
Monotonic + + + + + N.D. + N.D. +
Non-monotonic +/- + +/- + + N.D. - N.D. -
Single Inheritance + + + + + N.D. + + +
Multiple inheritance + + + + + N.D. + + +
PROCEDURES
Execution of procedures + + + + - - - - -
CONSTRAINTS
Constraint checking + + + + + - - - -
CHAINING
Forward - - + + + - N.D. - -
Backward - - + + + - N.D. - -

Table 8.  Reasoning mechanisms of the language.



application, this framework will avoid blind decisions on the
selection of ontology languages. We claim that different needs in
KR exist nowadays for applications, and some languages are more
suitable than others. So:
• For interchanging ontologies on the web, we strongly

recommend web based languages.
• For representing – modeling – ontologies with high

expressiveness needs, we recommend traditional ontology
languages. However, if ontologies are considered just as
taxonomies, the use of XML-based languages is not a
problem.

• For performing reasoning inside agents, XML-based
languages do not provide inference engines. However, some
of the traditional ontology languages not only provide them
but also translators to other computable languages.

An additional analysis of the existing tools to build ontologies
could be also useful in the task of determining which one is more
suitable for our needs. A good analysis can be found in [21].

This evaluation framework is being used in the context of the
MKBEEM6 project, IST project number 1999-105897, which aims
to create a multili ngual electronic marketplace for companies in
Europe. Each user of the ontologies to be developed for this project
has fill ed the information in the tables presented in section 5. The
union of all the characteristics expressed in them will determine the
ideal KR and reasoning needs of the languages which will be used
to specify these ontologies.
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