Evaluating Knowledge Representation and Reasoning
Capabilities of Ontology Speafication Languages

Oscar Corcho' and Asuncién GomezPérez’

Abstract. The interchange of ontologies aaoss the World Wide
Web (WWW) and the cooperation among heterogeneous agents
placad on it isthe main reason for the development of a new set of
ontology spedficaion languages, based on new web standards
such as XML or RDF. These languages (SHOE, XOL, RDF, OIL,
etc) aim to represent the knowledge contained in an ontology in a
simple and human-readable way, as well as alow for the
interchange of ontologies aaoss the web. In this paper, we
establish a @mmon framework to compare the expressveness of
“traditional” ontology languages (Ontolingua, OKBC, OCML,
FLogic, LOOM) and “web-based” ontology languages. As a result
of this gudy, we @nclude that different needs in KR and reasoning
may exist in the building d an ontology-based application, and
these needs must be evaluated in order to choase the most suitable

ontology language(s).

1INTRODUCTION

In the past yeas, a set of languages have been used for
implementing ontologies. Ontolingua [1] is the most representative
of al of them, and it is considered as a standard by the ontology
community. Other languages have dso been used for spedfying
ontologies: LOOM [2], CycL [3], OCML [4], FLogic [5], etc. KR
paradigms underlying these languages are diverse: frame-based,
description logic, first (and second) order predicae cdculus,
objed-oriented, etc.

In the recant yeas, new web standard languages have been
creded -XML [6], RDF [7]- and are still in a development phase.
As a aonsequence of this ever-changing context, new XML-based
ontology spedficaion languages have dso emerged: SHOE [8],
XOL [9], OIL [10], aswell as RDF Shema[11] and XML Schema
[12]. The role of new languages in this senario is twofold: they
can be used to provide the semantics of information contained in
eledronic documents or can be used for the exchange of ontologies
aaossthe web. A study about ontologies and web-based languages
for representing them is presented at [13], where ax analysis is
shown on the role of HTML, XML and RDF when providing
semantics for documents on the Web.

The purpose of this paper is to analyse the tradeoff between
readability (how things are said), expressveness (what can be
said) and inference (what can be obtained from the information
represented) in traditional and web-based ontology languages. In
Sedion 2 we will present a framework for evauating the

1 Facultad de Informética Universidad Politécnica de Madrid. Campus de
Montegancedo s/n. Boadilla del Monte, 28660. Madrid. Spain. Tel: +34 91
3366604, Fax: +34 91 337412, email : ocorcho@delicias.dia.fi.upm.es

2 Facultad de Informética Universidad Politécnica de Madrid. Campus de
Montegancedo s/n. Boadilla del Monte, 28660. Madrid. Spain. Tel: +34 91
3367439, Fax: +34 91 3367412, email : asun@fi.upm.es

expressveness and inference mechanisms of potential languages
which could be used to spedfy ontologies. It is based on a set of
criteria that we onsider relevant from the knowledge
representation (KR) and inference mechanisms point of view.
Sedion 3 will describe the so-called traditional ontology
langueges. Sedion 4 will focus on web-based ontology languages.
As a onclusion, sedion 5 presents a discusson on the results of
the study.

2 EVALUATION FRAMEW ORK

The goal of this ®dion isto set up aframework for comparing the
expressveness and inference mechanisms of potential ontology
langueges. We use in our analysis the framework proposed in
CommonKADS [14], which dstinguishes between damain
knowledge and inference knowledge. Figure 1 summarizes the
main dmensions of the framework and the relationship between
the KR components and the reasoning mechanisms of the

languege.

2.1.Domain knowledge

The domain knowledge describes the main static information and
knowledge objeds in an applicaion damain [14]. We identify the
main kind of components used to describe domain knowledge in
ontologies. Gruber [15] stated that knowledge in ontologies can be
formalized using five kind of components: concepts, relations,
functions, axioms and instances. Concepts in the ontology are
usualy organized in taxonomies. Sometimes the nction of
ontology is omewhat diluted, in the sense that taxonomies are
considered to be full ontologies [16]. Other components like
procedures and rules are dso identified in some ontology
langueges (i.e., OCML). For ead one of the components outlined
before (except for procedures, asit is very difficult to find common
charaderistics for them in al languages) we will sded a set of
feduresthat we cnsider relevant.

2.1.1. Concepts

Concepts [14] are used in a broad sense. They can be astrad or
concrete, elementary (eledron) or composite (atom), red or
fictious. In short, a cncept can be anything about which something
is sid, and, therefore, could also be the description o a task,
function, adion, strategy, reasoning process etc. The following
guestions try to identify the expressveness of a given language
when we define concepts:

* Isit posshle to define Metaclasses (classes as instances of

other ones)?

Knowledge
Representation

. Classes
. M etaclasses
. Slots/Attributes

. Axioms

. Production Rules

Evaluation framework

- * Exceptions
eAutomatic classifications

. Facets
. Taxonomies e e — eInheritance
*Monotonic, Non monotonic
*Simple, M ultiple
. Procedures 0= e .Execution of Procedures
. Relations/Functions

o ——
. Instances / Individuals / Facts }DD

[e——

Inference
M echanisms

*Constraint Checking

*Reasoning with rules
* Backward chaining
e Forward Chaining

Figure 1. Evaluation frameworKk.

* Does the language provide mechanisms to define

Slotg/Attributes? For example:

e Local attributes. Attributes which belong to a spedfic
concept. For instance, attribute age belongs to concept
Person.

* Instance attributes (template sots). Attributes whose
value may be different for eat instance of the concept.

e Class attributes (own dlots). Attributes whose value
must be the same for all instances of the cncept.

e Polymorph attributes. Attributes (dots) with the same
name and dfferent behaviour for different concepts. For
instance, the atribute author for concept Thesis is
different from the &tribute author for concept Book. Its
type for Thesis is Sudent, and its type for Book is
Person.

» Does the language provide the following predefined facets
for attributes?

« Default dot value, which will be used to assgn a value
to the &tribute in case there is no explicit value defined
for it.

e Type, which will be used to constrain the type of the
attribute.

e Cardinality constraints, which will be used to constrain
the minimum and maximum number of vaues of the
attribute.

e Documentation, which will allow to include a natural
language definition for the dtribute.

e« Operational definition, which could include the
definition or seledion of aformula, arule, etc to be used,
for instance when oltaining avalue for that attribute.

*« May new facets be aeaed for attributes?

2.1.2. Taxonomies

They are widely used to organize ontologicd knowledge in the
domain using generalizaiorn/spedalization relationship through

which simple/multiple inheritance ould be gplied. Since there

exist some mnfusion regarding the primitives used to buld

taxonomies, we propose to analyse whether or not the following
primiti ves are predefined in the languages. Their semantic is based
on the definitions provided by the frame ontology at Ontolingua

(1.

* Subclass of spedalizes general concepts in more spedfic
concepts.

* Partitions define aset of digoint classes.

« Digoint decompositions define the set of digoint subclasses
as subclasses of the parent class This clasdficaion does not
necessxrily have to be wmplete, that is, there may be
instances of the parent classthat are not included in any of the
subclasses of the partition.

* Exhaustive subclass decompositions define the set of
digoint subclasses of the partition as aubclasses of the parent
class where the parent classis defined as a union of al the
classes that make up the partition.

e Not subclass of may be used when we wish to state that a
given classis nat a spedalizaion of another class Usually
this kind of knowledge can be represented using denia of
subclass of primitive.

Some languages do not use the aove primitives, but they allow
to define them as relations, and their semantic is defined using
axioms or rules.

2.1.3. Relations

Relations [15] represent a type of interadion between concepts of
the domain. They are formally defined as any subset of a product
of n sets, that is, R: C1 x C2 x ... x Cn. Examples of binary
relations are part-of and connected-to.

First, we consider the relationship between relations and other
comporents in the ontology. We will ask if concepts are
considered as unary relations and if attributes are considered as
binary relations. Spedal attention deserve functions [4], which are
defined as mappings between a list of input arguments and its

output argument. Formally, functions are defined as F: C1 x C2 x
... X Cn-1 - Cn. In this case, we shoud ask if they are mnsidered
asaspedal kind of relations.

Sewmnd, related to the aguments (both in relations and
functions):

* Isit posshble to define arbitrary n-ary relations/functions?
If this is not possble, which is the maximum number of
arguments?

* May thetype of arguments be constrained?

* Isit possbleto defineintegrity constraintsin order to chedk
the mrrednessof the aguments value?

e And operational definitions to infer values of arguments by
means of procedures, formulas and rules, or to define its
semantic using axioms or rules?

2.1.4. Axioms

Axioms [1] are used to model sentences that are dways true. They
can be included in an ontology for severa purposes, such as
constraining the information contained in the ontology, verifying
its correanessor deducting new information.
We will focus on the next charaderistics:
* Does the language support building axioms in first order
logic?
* Andsecond order logic axioms?
» Are aioms defined as independent elements in the ontology
(named axioms) or must they be included inside the
definition of other elements, such as relations, concepts, etc?

2.1.5. Instances/Individual §Facts/Claims

All these terms are used to represent elements in the domain.
Instances usually represent elements of a given concept. Facts [4]
is the term commonly used to represent a relation which holds
between edements. Individuals [1] are used in Ontolingua ad
OKBC to refer to any element in the domain which is not a dass
(both instances and fads). The term Claims [8] refers to the
assrtion d a fad by an instance Spedal attention deserves the
inclusion of claims, since people on internet can make whatever
claims they want. Hence, agents souldn't interpret claims as fads
of knowledge, but as claims being made by a particular instance
abou itself or about other instances or data, which may proveto be
inconsistent with athers[8].

The questionsto be asked in this dion are the foll owing ones:
* Isit possbleto defineinstances of concepts?
* Isit possbleto defineinstances of relations (facts)?
» Does the language provide spedal mechanisms to define

claims?

2.1.6. Production rules

Production rules [2], which follow the structure If ... Then ..., are

used to express &ts of adions and heuristics which can be

represented independently from the way they will be used. A set of

questions will be asked about them:

e Is it possble to define disunctive and conjunctive
premises?

e May the chaining mechanism be defined dedaratively?

* Is it posshle to define truth values or certainty values
attached to therule?

* May procedures be included in the consequent? They are
commonly used to change the values of attributes of a
concept, add information to the KB, etc.

* Does the language support updates of the KB, performed by
adding or removing fads or claims?

2.2. I nference mechanisms

This dimension describes how the static structures represented in
the so-cdled domain knowledge can be used to cary ou a
reasoning process [14]. There is a strong relationship between
inference mechanisms and domain knowledge components, as the
structures used for representing knowledge ae the basis for the
reasoning process as ®a in Figure 1. We analyse the following
feaures, asking whether they are supported by the language:

» Does the language provide an inference engine that reasons
with the knowledge represented uwsing the language? Is it
sound? And complete?

» Doestheinference angine perform automatic classifications?

« Does the inference engine ded with exceptions? Exceptions
are onsidered in the sense that attribute Attributel is defined
for concept C1 and concept C2, being C1 subclassof C2 and
we analyse whether the definition of Attributel in concept C1
overrides the definition o Attributel in concept C2 or nat.

* Isit posshbleto useinheritance? Which kind of inheritanceis
alowed: monotonic, non monctonic, simple and/or multiple?

e Areprocedures executable?

e Isit peformed any kind d constraint checking by using
axioms defined in the language?

* When reasoning with rules, does the language dlow to
perform forward and backward chaining?

3TRADITIONAL ONTOLOGY
SPECIFICATION LANGUAGES

In this ®dion, we make ar anaysis of languages which can be
considered as gandards for the ontology community (Ontolingua,
OKBC, OCML, FLogic and LOOM). They will serve & a
referencefor the comparative study presented in sedion 5

3.1. Ontolingua

Ontolingua [1] is a language based on KIF [17] and on the Frame
Ontology [15], andit is the ontology-building language used by the
Ontolingua Server [1].

KIF (Knowledge Interchange Format) was developed to solve
the problem of heterogeneity of languages for knowledge
representation. It provides for the definition of objeds, functions
and relations. KIF has dedarative semantics and it is based on the
first-order predicate cdculus, with a prefix notation. It aso
provides for the representation of meta-knowledge and all ows for
the representation of non-monotonic reasoning rules.

As KIF is an interchange format, it is tedious to use for
spedficaion o ontologies per se. However, the Frame Ontology
[15], built on top of KIF, alows an ortology to be spedfied
following the paradigm of frames (it is a knowledge representation
ontology for modeling ontologies under a frame-based approacd).
Terms like: class instance subclassof, instance-of, etc ae
included in this ontology.

Since the Frame Ontology is less expressve than KIF, that is,
not al of the knowledge that can be expressd in KIF can be
expresed using the Frame-Ontology, Ontolingua dl ows to include
KIF expressons inside of definitions based on the Frame
Ontology. So, the Ontolingua language dlows to build ontologies
in any of the following three manners: (1) using exclusively the
Frame Ontology vocabulary (it is not possble to represent

axioms); (2) using KIF expresdons; (3) using both languages
simultaneously, depending on orology developer preferences.

Currently, an inference engine is being developed for
Ontolingua. However, in case we want to develop a austomized
one, we must build it using the OKBC API (which will be defined
later onthis dion).

3.2. OKBC

OKBC [18] isan aaonym for Open Knowledge Base Connectivity,
previously known as Generic Frame Protocol. It spedfies a
protocol for accessng knowledge bases gored in frame knowledge
representation systems, and it is considered complementary to
languege spedfications devel oped to support knowledge sharing.

The GFP Knowledge Model, which is the implicit
representation formalism underlying OKBC, supports an oljed-
centered representation of knowledge and povides a set of
representational constructs commonly found in frame
representation systems: constants, frames, dots, facds, classs,
individuals and knowledge bases.

It also defines a mmplete tell&ask interface for knowledge
bases acessed using OKBC protocol, and procedures (with a Lisp-
like syntax) in order to describe cmplex operationsto performin a
knowledge base when accesgng it over anetwork.

Eventudly it has been developed the OKBC-Ontology for
Ontolingua, which is fully compatible with the OKBC protocol.

In this gudy, when referring to OKBC we will mean the AP,
together with the maximum expressvenesspermitted.

3.3. OCML

OCML [4] stands for Operational Conceptual Modeling Language.
It was originally developed at the Knowledge Media Institute (UK)
in the ontext of the VITAL projed to provide operationa
modeling capabilities for the VITAL workbench. The airrent
version d the language isv6.3.

It provides mechanism for expressng items such as relations,
functions, rules (with badward and forward chaining), classes and
instances. In order to make the exeaution o the language more
efficient, it also adds some extra logicd mechanisms for efficient
reassoning, such as procedural attachments. A generd tell&ask
interface is also implemented, as a mechanism to assrt fads
and/or examine the contents of an OCML model.

Severa pragmatic considerations were taken into acourt in the
development of OCML. One of them is the compatibility with
standards, such as Ontolingua, so that OCML can be mnsidered as
akind of “operationa Ontolingua”, providing theorem proving and
function evaluation fadliti esfor its constructs.

3.4. FLogic

FLogic [5] is an acdonym for Frame Logic. FLogic is a language
which integrates frame-based langueges and first-order predicate
cdculus. It acounts in a dean and dedarative fashion for most of
the structura aspeds of objed-oriented and frame-based
langueges. These feaures include objed identity, complex ohjeds,
inheritance, polymorphic types, query methods, encapsulation, and
others. In a sense, FLogic stands in the same relationship to the
ohjed-oriented paradigm as classcd predicae cdculus gands to
relational programming. FLogic has a model-theoretic semantics
and a sound and complete resolution-based proof theory. A small
number of fundamental concepts that come from objed-oriented
programming have dired representation in FLogic; other,
sendary aspeds of this paradigm are eaily modeled as well.

3.5.LOOM

LOOM [2] isahigh-level programming language and environment
intended for use in constructing expert systems and other
intelli gent applicaion programs. It is a descendent of the KL-ONE
family of languages, charaderized for their efficient automatic
classfiers. LOOM adhieves a tight integration between rule-based
and frame-based paradigms.

It supports a "description” language for modeling oheds and
relationships, and an “assrtion” language for spedfying
constraints on concepts and relations, and to assrt fads about
individuals. Procedural programming is supported through pettern-
direded methods, while production-based and classficaion-based
inference cqabiliti es support a powerful deductive reasoning (in
the form of an inference engine: the clasdfier). All of these
capabiliti es reside in a framework of query-based assertion and
retrieval.

4WEB LANGUAGESFOR BUILDING
ONTOLOGIES

This fdion provides an analysis of new languages creaed in the
context of Internet (XML, RDF, XOL, SHOE and OIL), which are
the motivation of this gqudy. First, a state of the at in web
standards is given. Second, we describe these web languages which
are used for building ontologies.

4.1. Web standards

4.1.1. XML

XML [6] metalanguage derives from SGML (Standard Genera

Markup Language). It is being developed by the XML Working

Group of the World Wide Web Consortium (W3C), for ease of

implementation and interoperabili ty with both SGML and HTML.

Asalanguage for the World Wide Web, its main advantages are
the following: it is easy to parse, its syntax iswell defined and it is
human readable. There ae dso many software tools for parsing
and manipulating XML, as XML is widely used. XML allows
users to define their own tags and attributes, define data structures

(nesting them), extrad data from documents and develop

applicaions which test the structural validity of a XML document.

When using XML as the basis for an ortology spedficaion
languege (XML-based ortology languages), its main advantages
ae

» The definition of a ommon syntadic spedficaion by means
of aDTD (Document Type Definition).

e Information coded in XML is easly readable for humans
(although it is not intended to be used for the direa coding of
ontologies, information of the ontology coded in an XML-
based ontology language can be eaily read and understood).

e It can be used to represent distributed knowledge acoss
several web-pages, asit can be enbedded in them.

XML dso presents ome disadvantages which may influence on
ontologies pedfiedinit:

* The standard is defined in order to allow the lad of structure
of information inside XML tags, which makes it difficult to
find the cmponents of an ontology inside the same document

e Standard tools are available for parsing and manipulating
XML documents, but not for making inferences. These tools
must be aeded in order to alow inferences with languages
which are based onXML.

XML itself has no spedal fedures for the spedficaion of
ontologies, asit just offers a simple but powerful way to spedfy a
syntax for an ontology spedficaion language. Therefore, XML
will be used for two puposes: for providing the syntax of a set of
langueges, such as XOL or OIL, so that the definition of these
langueges just consists of describing the semantics of new tags
creded and wsed in it; and for covering ontology exchange needs,
exploiting the cmmunication fadliti es of the World Wide Web.

These ae the reasons why XML is not included in the
comparison performed in sedion 5.

4.1.2. RDF(9)?3

RDF [7] stands for Resource Description Framework. It is being
developed by the W3C for the aedion of metadata describing Web
resources. Examples of the use of RDF and RDF schemas in
ontologicd engineging may be analyzed in [19] and [20].

A strong relationship stands between RDF and XML. In fad,
they are defined as complementary: one of the goals of RDF is to
make it possble to spedfy semantics for data based on XML in a
standardized, interoperable manner. The broad goal of RDF is to
define a medhanism for describing resources that makes no
asumptions about a particular applicaion domain nor the structure
of adocument containing information.

The data model of RDF consists of threeobjed types: resources
(subjeds), which are entities that can be referred to by an address
a the WWW,; properties (predicaes), which define spedfic
aspeds, charaderistics, attributes or relations used to describe a
resource and statements (objeds), which asdgn a vaue for a
property in aspedfic resource

The RDF data model does not provide itself mechanisms for
defining the relationships between properties (attributes) and
resources. This isthe role of RDFS, the aconym for RDF Schema
Spedfication language [11], which is a dedarative language used
for the definition of RDF schemas'. It is based on some ideas from
knowledge representation (semantic nets, frames and pedicae
logic), but it is much simpler to implement (and aso less
expressve) than full predicae caculus languages such as CycL
and KIF. Core dasses are class, resource and property; hierarchies
and type nstraints can be defined (core properties are type,
subclassOf, subPropertyOf, seeAlso and isDefinedBy). Some re
constraints are dso defined.

A conclusion is that an ontology defined in RDF(S) will ladk
from functions and axioms, but concepts, relations and instances
(aswell asclaims) can be eaily defined.

4.2. Web standards and ontologies

4.2.1. XOL

XOL [9] stands for XML-Based Ontology Exchange Language.
XOL was designed to provide aformat for exchanging ontology
definitions among a set of interested perties. Therefore, it is not
intended to be used for the development of ontologies, but as an
intermediate language for transferring ontologies among diff erent
database systems, ontology-development tools or application
programs.

3 RDF(S) isthe aconym commonly used to refer to the combination of
RDF and RDFS.

4 An RDF schema mnsists of the declaration o attributes and their
corresponding semantics in the cntext of RDF

XOL dlows to define in a XML syntax a subset of OKBC,
cdled OKBC-Lite. As OKBC defines a protocol for accessng
frame-based representation systems, XOL may be suitable for
exchanging information between diff erent systems, viathe WWW.
The main handicap is that frames (defined in OKBC) are excluded
from this language, and only classes (and their hierarchies), sots
and faces can be defined.

However, since XOL files are textual, a text editor or XML
editor may be used to author XOL files. It is expeded that many
XML tools will soon be available so that XOL documents will be
easily generated with them.

4.2.2. SHOE

SHOE [8] stands for Simple HTML Ontology Extension. It is
being developed at the University of Maryland.

SHOE was first an extension of HTML, with the am of
incorporating machine-readable semantic knowledge in HTML or
other World Wide Web dacuments. Recantly, it has been adapted
in order to be XML compliant. The intent of this language is to
make it possble for agents to gather meaningful information about
web pages and documents, improving seach mechanisms and
knowledge-gathering. The two-phase processto achieve it consists
of: (1) defining an ontology describing valid clasdfications of
objetcs and valid relationship between them; (2) annotating HTML
pages to describe themselves, other pages, etc.

In SHOE, an ontology is an ISA hierarchy of classs (aso
cdled caegories), plus a set of atomic relations between them, and
a set of inferentia rules in the form of simplified horn clauses.
Therefore, classes, relations and inferential rules can be defined.

An important feaure included in SHOE is the dility to make
claims about information, as discussed in sedion 2.

4.2.3.0IL

OIL [10], Ontology Interchange Language, is a proposal for a joint
standard for describing and exchanging ontologies. It is gill in an
ealy development phase, and has been designed to provide most of
the modelling primitives commonly used in frame-based and
description logic ontologies (it is based onexisting proposals, such
as OKBC , XOL and RDF), with asimple, clean and well defined
semantics, and an automated reasoning support.

In OIL, an ontology is a structure made up o severa
comporents, organized in three layers: the objed level (which
deds with instances), the first meta level or ontology definition
(which contains the ontology definitions) and the secnd meta
level or ontology container (which contains information about
feaures of the ontology, such asits author).

Concepts, relations, functions and axioms can be defined using
OIL’s ontology definitions.

5RESULTSAND COMPARISON OF
LANGUAGES

The results of applying the evauation framework described in
sedion 2 are described in this ®dion. It is worth mentioning that a
common evauation framework has been used for different
knowledge representation languages (and different knowledge
representation paradigms, such as frame-based, description logics
and objed-centered).

Information in tables of sedions 5.1 and 5.2 will be fill ed using
‘+' toindicae that it is a supported feaure in the language, ‘-* for
non supported feaures, ‘+/- for non supported feaures, but could
manage to support it by doing something, ‘? when noinformation

Ontol® | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDE(S) | OIL
Concepts + + + + + + + + +
Relations + +/- + + +/- - + + +
Functions + +/- + + +/- - - - +
Procedures + + + + - - - - -
Instances + + + + + + + + -
Axioms + +/- + + + - - - +
Production rules - - + + - - - - +/-
Table 1. Definition of the main elements of domain knowledge.
CONCEPTS Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL
METACLASSES + + + + + + - + R
ATTRIBUTES
Template (instance attrs) + + + + + + + + +
Own (class attrs.) + + + + + + - + +/-
Polymor phic + + + + + - R +
L ocal scope + + + + + + + + +
FACETS
Default dot value - + + + + + - R
Type constraint + + + + + + + + +
Cardinality constraints + + + + +/- + - - +
Documentation + + + + - + ¥ _ +
Procedural knowledge - - + + - - R R R
Adding new facets + + - + - R R R R

Table 2. Definition of concepts.

is available and ‘N.D." for feaures which are not restricted, but
could be implemented in order to support them. The mntents of
tables represent the present situation of languages and may change
because of the evolution of them.

5.1. Domain knowledge

The information contained in Table 1 shows at first glance the
main charaderistics of the ontology spedficaion languages
seleded for this gudy. It can aso be used to compare the types of
information that can be represented when using them.

Concepts, relations and instances can be defined easly in
amost al languages. In OKBC and FLogic, which are frame-based
langueges, relations can be represented by using frames, but not as
speda elements provided by the language. In OKBC, axioms are
only supported in the tell&ask part of the API, although neither
deductive nor storage guarantees are made for al OKBC
implementations.

Functions, procedures and axioms cannat be defined using web-
based languages, except for some restricted forms of axioms, such
as deductive rules, which are definable in SHOE.

It is worth mentioning that procedures are only definable in
Lisp-based languages, and production rules are just definable in
OCML and LOOM.

5.1.1. Concepts

Table 2 summarizes the most important feaures that a language
must provide when describing concepts in an ortology. It is
divided in three sedions: metadasses, definition of attributes and
definitions of properties of attributes (faces).

Note that not all 1anguages allow the definition of meta-classes,
which restricts the expressveness that can be atieved with a
languege which does nat support them.

5 Ontol" will be used to refer t@ntolingua.

Instance dtributes and type cnstraints for attributes can be
defined using any of the chosen languages. The results of the rest
of the values depend on the languages, athough a glance a the
table shows us that traditional ontology languages alow us, again,
to define more feaures than web-based languages.

Procedura knowledge inside the definition of attributes is only
supported by OCML and LOOM, due to their operational behavior.
It must be included in the definition of the OCML s attributes by
means of speda keywords, such as :prove-by or :lisp-fun, not as
simple facds, or in the definition of the LOOM’s attributes by
means of keywords such as :sufficient, :is, :is-primitive or :implies.

FLogic just allows to define the maximum cardinality for slots
as 1 or N, while the minimum cardinaity is always st to 0.

5.1.2. Taxonomies

When defining taxonomies, there is just one primitive predefined
in al languages and corredly handled by them: subclass of.
Ontolingua and LOOM are the only languages which have the rest
of primitives (except for not subclass of, which must be dedared
using the denia of primitve subclass-of). These primitives can be
defined as relations in the rest of languages, but as a mnsequence,
there is no spedal treament for them. In FLogic, axioms must be
defined in order to provide the semantics for them. OIL alows to
define the primitive not subclass-of; hence it is aso passble to
define digoint decmpositions. Again, traditional ontology
langueges are more expressve.

5.1.3. Relations and functions

We will seehow ontology languages allow to define relations and
functions in ontologies. Relations are very important elements in
an ontology (hence they are supported by amost al the ontology
langueges), but not every desirable charaderistic of relations is
implemented in al languages. Functions are not included in some

langueges.
Many languages represent concepts as unary relations, so that

TAXONOMIES Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL
Subclass of + + + + + + + + +
Exhaustive subclass + - +/- + +/- - - R R
partitions
Disoint Decompositions + - +/- + +/- - - B +/-
Partitions + - +/- + +/- - - R R
Not subclass of +/- - - +/- - - - _ +
Table 3. Definition of taxonomies of concepts.
RELATIONS/FUNCTIONS | Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL
Functions asrelations + + - + + - - _ +
Conceptsas unary relations + + + + - _ + - T
Slotsas binary relations + + + + - R + + T
n-ary relations/functions + +/- + + +/- - + + +/-
Type constraints + + + + + - + + +
Integrity constraints + + + + + - - R -
Operational definitions - - + + + - - R R
Table4. Definition of relations and functions.
INSTANCES Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL
I nstances of concepts + + + + + + + + -
Facts + + + + + + + + -
Claims - - - - - - + + -
Table5. Definition of instances.
AXIOMS Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL
First-order logic + +/- + + + - +/- +/- +/-
Second-or der logic + +/- - - - - - - R
Named axioms + + + - - - R - R

Table 6. Definition of axioms.

they can be used in the ontology as if they were relations; the rest
of languages clealy distinguish concepts and relations (they are
different components). Attributes are usually considered as binary
relations, except for FLogic, where they are mnsidered as ternary
ones.

Grea semantic differences are found when analysing the role
that functions play in dfferent languages. Some languages, such as
KIF (and consequently, Ontolingua), consider functions as a
speda case of relations in which the n" element of the relation is
unique for the n-1 precading elements. LOOM consider functions
as relations where the result can be cdculated gven the domain
arguments. In OCML, functions are mnsidered as modelling
elements which play arole which is completely different to the one
of relations. In FLogic, functions are mnsidered as methods which
are defined inside a oncept. Their value is cdculated by wsing a
deductive rule sssciated to the method previously dedared.

FLogic, OKBC, RDF(S) and OIL cannot define n-ary relations
diredly. They must define them as asciative dasss or by means
of several binary relations.

All languages alow the definition o type cnstraints for
arguments, and the main dfferences among traditional and web
ontology languages lays on the definition of integrity constraints
(the last ones don’t allow to define these kinds of constraints for
relations).

The last comments are on operational definitions for relations:
just OCML, LOOM and FLogic dlow to define operations inside
relations, athough there is a difference between them: while
LOOM provides operational definitions just for an inferentia
purpose, OCML also provides non-operational definitions which
can be used for representational purposes [4]. In FLogic, this kind
of operations must be defined by using axioms, which are defined
apart. Ontolingua does not support user-defined Lisp lambda
bodies for relations, but it does have cetain relations that have

procedural attachments which are adivated by the tell&ask
interface (for instance, asking (+ 3 2 ?x) will reply with a single
binding of 5 for ?x).

5.1.4. Instances

Instances of concepts and of relations (fads) are supported by all
the languages. Claims, however, are just dlowed by some of the
web onology languages. This is due to the fad that the
management of information which comes from different sources is
an intrinsic charaderistic of the web environment and so these
langueges have speddlized ways to tred this information.

5.1.5. Axioms

This is a good measure of expressveness The richest the akioms
can be defined, the more expressve the languege is. This is the
case of Ontolingua, which allows the definition o first-order and
seand-order logic axioms. OCML and FLogic dso alow to define
first-order logic axioms independently of the rest of components of
the ontology.

LOOM just alows to define first-order logic axioms inside the
definitions of relations, concepts and functions.

The rest of languages, except for XOL, only alow restricted
types of axioms. So, OKBC just supports a subset of the akioms
which can be represented with KIF (and they must be included as a
frame or by using the tell & ask interfacg, and SHOE just allows to
define deductive rules. In OIL, the syntax of axioms has not yet
been defined, while in RDF(S) severa studies are arrently trying
to spedfy the syntax and semantics for the most commonly used
axioms.

PRODUCTION RULES | Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL

PREMISES

Conjunctive - - + + - - - - N.D.

Digunctive - - + + - - - - N.D.

CONSEQUENT

Truth values - - - - - - - - N.D.

Execution of procedures - - +/- + - - - - N.D.

Updating of the KB - - + + - - - - N.D.
Table 7. Definition of rules.

REASONING Ontol | OKBC | OCML | LOOM | FLogic | XOL | SHOE | RDF(S) | OIL

INFERENCE ENGINE

Sound - - + + + - - - +

Complete - - - - + - - - +

CLASSIFICATION

Automatic classif. - - - + - - - - +

EXCEPTIONS

Exception handling - - - - + - - - -

INHERITANCE

M onotonic + + + + + N.D. + N.D. +

Non-monotonic +/- + +/- + + N.D. - N.D. -

Single Inheritance + + + + + N.D. + + +

Multiple inheritance + + + + + N.D. + + +

PROCEDURES

Execution of procedures + + + + - - - - -

CONSTRAINTS

Constraint checking + + + + + - - - -

CHAINING

Forward - - + + + - N.D. - -

Backward - + + + - N.D. - -

5.1.6. Production rules

Production rules are cmmporents of an ortology in OCML, LOOM
andOIL.

LOOM makes a distinction between purely deductive rules and
side-effeding, procedura rules (production rules). OCML makes
the same distinction, defining “badkward” and “forward” ones.
Therefore, OCML and LOOM dllow to define the chaining when
performing the reasoning with knowledge defined in the ontology.

As far as OIL is concerned, rules are just a we& form of
genera inclusion axioms.

Finally, SHOE does not allow to define production rules, but
inferencerules, as gated in the previous ®dion.

5.2. Reasoning

A clea digtinction between KR and reasoning exists for dl
langueges, except for OCML. For instance, Ontolingua is maybe
the most expressve of all the languages chosen for this gudy, but
there is no inference engine implemented for it. OCML alows to
define some fedures concerning reasoning inside representational
elements (for instance rules can be defined as badkward rules or
forward ones, so that the chainingis explicitly defined).

Just FLogic and OIL inference engines are sound and complete,
which is adesirable feaure, although it can make representationin
the language more difficult.

Automatic dassficaions are performed by description logic-
based languages (LOOM and OIL).

The exception handling medchanism is not addressed, in general,

Table 8. Reasoning mechanisms of the language.

by language developers (FLogic is the only one handling
exceptions). Works have been caried ou in other languages, such
as LOOM, to support them.

Single and multiple inheritanceis also supported by most of the
langueges (except for XOL), but conflicts in multiple inheritance
are not resolved. All languages are basicdly monotonic, although
they usualy include some non-monotonic caabilities. For
instance, the only non-monotonic caabilities present in bah
Ontolingua and OCML are related to default values for slots and
facds. In XOL and RDF spedficaions there is no explicit
definition of the behaviour of inherited values.

All the languages which alow to define procedures, alow to
exeaute them.

Constraint cheding is performed in all the traditional ontology
langueges. Information about constraint cheding in XOL is not
available. In OKBC, constraint chedking is guaranteed to be
included in al implementations of it. However, it can be
parametrized and even switched off. Constraint chedking in SHOE
isnat performed because @nflicts are thought to be frequent in the
Web, and resolving them will be problematic. However, type
congtraint chedking is performed when necessary.

Chaining used in SHOE is not defined in the language: freedom
exists o that eah implementation may choose between any of
them. OCML alows to define the chaining of rules when defining
them, although default chaining used is the badkward ore. LOOM
performs both kinds of chaining, and FLogic'soneisin between.

5.3. Conclusion

Once studied the main components of a given ontology language
and knowing the KR and reasoning mechanisms needed for a given

applicaion, this framework will avoid blind dedsions on the

seledion o ontology languages. We claim that different neels in

KR exist nowadays for applications, and some languages are more

suitable than others. So:

e For interchanging ontologies on the web, we strongly
recommend web based languages.

e For representing — modeling — ontologies with high
expresgveness negls, we recmmend traditional ontology
languages. However, if ontologies are nsidered just as
taxonomies, the use of XML-based languages is not a
problem.

e For peforming reasoning inside ajents, XML-based
languages do not provide inference engines. However, some
of the traditional ontology languages not only provide them
but also translators to ather computabl e languages.

An additional analysis of the existing tools to huild ontologies
could be dso useful in the task of determining which one is more
suitable for our needs. A good analysis cen befoundin [21].

This evaluation framework is being used in the mntext of the
MKBEEM® projed, IST projed number 1999-10589', which aims
to crege amultilingual eledronic marketplace for companies in
Europe. Each user of the ontologies to be developed for this projed
has fill ed the information in the tables presented in sedion 5. The
union d al the dharacderistics expressed in them will determine the
ided KR and reasoning nedals of the languages which will be used
to spedfy these ontologies.

ACKNOWLEDGEMENTS

This paper would na be posshle without the cmments and
feedbadk of developers and users of the mentioned languages that
verified our tables: V. K. Chaudhri (XOL), Stefan Dedker
(FLogic), Belén Diaz (LOOM), Yolanda Gil (LOOM), Jeff Heflin
(SHOE), lan Horrocks (OIL), Enrico Motta (OCML), James Rice
(Ontolingua and OKBC) and Tom Russ(LOOM).

REFERENCES

[1] Farquhar, A., Fikes, R., Rice, J. The Ontolingua Server: A Tool for
Collaborative Ontology Construction. Proceedings of KAW96.
Banff, Canada, 1996.

[2] MacGregor, R. Insde the LOOM clasifier. SIGART bulletin.
#2(3):70-76. June, 1991.

[3] Lenat, D.B., Guha, R.V. Building Large Knowledge-based systems.
Representation ard Inference in the Cyc Project. Addison-Wedey.
Reading. Masschusetts. 1990.

[4] Motta, E. Reusable Components for Knowiedge Modelling. 10S
Press Amsterdam. 1999.

[5] Kifer, M., Lausen, G., Wu, J. Logical Foundations of Objed-
Oriented and Frame-Based Languages. Journal of the ACM. 1995.

[6] Bray, T., Padli, J.,, Sperberg, C. Extensible Markup Language (XML)
1.0. W3C Recommendation. Feb 198. http://www.w3.0org/TR/REC-
xml.

[7] Lasdla, O., Swick, R. Resource Description Framework (RDF)
Model and Syntax Spedfication. W3C Proposed Recommendation.
January, 99. http://www.w3.org/TR/PR-rdf-syntax.

[8] Luke S, Heflin J. SHOE 1.01. Proposed Secification. SHOE
Project. February, 2000.
http://www.cs.umd.edu/projects/plus/SHOE/specl.01.htm

6 Multilingual Knowledge Based European Eledronic Marketplace

7 The full IST-MKBEEM consortium comprises: France Telecom-R&D,
SEMA Group Sae, UPM, National Technical Univ. of Athens, Univ. of
Montpellier, Tradezore International Ltd, VTT, Ellos Postimyynti, SNCF,
FIDAL-France Started 1* February 2000- Ending August 2002.

Seeaso http://www.linglink.lu/hlt/proj ects'mkbeean/

(9]
(10
(11

(12

(13]

(14

(19

(16

(17]

(18]
(19

(20

(21

Karp, R., Chaudhri, V., Thomere, J. XOL: An XML-Based Ontology
Exchange Language. July, 1999.

Horrocks, I., Fensel, D., Harmelen, F., Decker, S., Erdmann, M,
Klein, M. OIL in aNutshell. 2000.

Brickley, D., Guha, R.V. Resource Description Framework (RDF)
Schema Secification. W3C Proposed Recommendation. March,
1999. http://www.w3.0rg/TR/PR-rdf-schema.

Thompson, H., Beech, D., Maorey, M., Mendelsohn, N. XML
Schema Part 1: Sructures. 1999. http://www.w3.0rg/TR/xmlschema-
.

Van Harmelen, F., Fensel, D. Suveying ndations for machine-
processable semantics of Web sources. Proceedings of the 1JCAI' 99
Workshop on Ontologies & PSMs. 1999.

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R., Shadbolt,
N., Van de Velde, W., Wielinga, B. Knowledge engineering ard
management. The CommonKADS Methodology. MIT press,
Massachussets. 1999.

Gruber, R. A trandlation approach to portable ontology specification.
Knowledge Acquisition. #5: 199-220. 1993.

Studer, R., Benjamins, R., Fensel, D. Knowledge Engineeing:
Principles and Methods. DKE 25(1-2).pp:161-197. 1998

Genesereth, M., Fikes, R. Knowledge Interchange Format. Technical
Report. Computer Science Department. Stanford University. Logic-
92-1. 1992.

Chaudhri, V., Farquhar, A, Fikes, R., Karp, P., Rice, J. The Generic
Frame Protocol 2.0. uly, 1997.

Amann, B., Fundulaki, I. Integrating Ontologies and Thesauri to
Build RDF Schemas. 1999.

Using Protégé-2000 to Edit RDF. Technicad Report. Knowledge
Modelling Group. Stanford University. February, 2000.
http://www.smi.Stanford.edu/proj ects/protege/protege-rdf/protege-
rdf.html

Duineveld, A., Studer, R., Weiden, M, Kenepa, B., Benjamis, R.
Wonder Tools? A comparative study of ontological engineering tools.
Proceedings of KAW99. Banff, Canada. 1999.

