
1

Abstract Communication Model and Automatic
Interface generation for IP integration in
Hardware/Software Co-design

C. Araujo and E. Barros
Centro de Informática, UFPE

Abstract: The use of standard languages like VHDL and C for the description of hardware
and software IP has became a common practice. Despite this, these languages,
specially the hardware description languages lack constructs that allow the IP
designer to develop highly re-usable IP blocks. In this paper is described an
abstract communication mechanism that uses extensions to the VHDL
language, communication library for software and automatic interface
generation for the easy integration of IP modules.

1. INTRODUCTION

Current processes for IC fabrication allow the easy integration of millions
of transistors in a single chip. Despite this evolution in the fabrication
processes, designer are unable to fulfill this enormous capacity respecting a
more constrained time-to-market. This phenomena is known as “Design
Productivity Gap”. One of the most promising solutions to this problem is
the IP reuse. Where known, reliable system modules are integrated in digital
designs.

One problem arises here, how to build and integrate these IP modules to
designs. Languages currently used for hardware description, like VHDL and
Verilog don’t have the abstract communication mechanisms needed for an
easy “plug and play” integration of IP modules. Use of mixed
hardware/software modules is a task even harder.

2 Chapter

In this paper is described the mechanisms used in the PISH Co-design
system for an easy integration of IP modules. The solution uses a
combination of automatic interface generation, extension of the VHDL
language with the introduction of abstract communication constructors for
hardware modules and communication library for the software ones.

The rest of this paper is organized as follows: in section 2 is given an
overview of the PISH Co-design system. In next section some of the related
works in this area are shown. Section 4 describes the proposed system
InterfPISH, which allows automatic interface generation as well as code
generation for hardware and software synthesis. A case study and results
obtained are given in section 5 and finally a conclusion section is given.

2. THE PISH CO-DESIGN SYSTEM

An overview of the PISH Co-design system can be seen in Figure 1. It
can be divided into three main stages: specification and partitioning, co-
synthesis and prototyping.

The first stage, specification and partitioning taking an initial
specification of the digital system to be implemented and partition it into
processes to be implemented in hardware and software components. This
system uses occam as specification mechanism [4]. The main reason to use
occam is that, being based on CSP [5] occam has a simple and a elegant
semantics, given in terms of algebraic laws, which allows the partitioning be
performed by applying a series of algebraic transformations into the initial
occam description in order to preserve the semantics. These transformations
change the initial specification and as result new concurrent processes and
communication are introduced. Despite being a new description, the
transformed one is guaranteed to have the same semantic as the original
specification. The set of transformation rules is applied according to the
results of a cost analysis obtained by using a Petri net based estimator and
clustering techniques [3]. The interface generation depends on the number of
concurrent processes of different nature (hardware/software) that
communicate, the type of the data being transferred between the processes
and also the target architecture taken into account. Most co-design systems
considers a very simple architecture composed of one software component.
In order to have a pre-defined protocol some systems consider the hardware
running as a co-processor, i.e. hardware and software do not execute
concurrently [1][2].

In this work, software and hardware can run concurrently and for that
device drivers must be generated at the software side, as well as specific

 3

hardware to make transparent for the hardware side which processor is being
used. The interface between hardware modules must also be synthesized.

Occam
description partitioning

estimators

Formal
verification

Swprocesses Hwprocesses

Software
synthesis

Hardware
synthesis

Communication
synthesis

Interface
generation

processor

FPGAFPGA

FPGA FPGA

PROTOTYPING

Psw
Phw Pcon PconPhw

Phw Phw

Control processes

Pcon Pcon

Figure 1: PISH Co-design system

3. THE PROPOSED APPROACH

In this section is described an approach for co-synthesis that allows the
generation of code for hardware and software synthesis, including the
automatic interface generation between the hardware and software parts of
the digital system.

The flow for co-synthesis and interface generation is shown in Figure 1.
It can be divided in four parts: translation into an internal format
representation, threads and communication extraction, interface generation
and the last phase code generation. In the first part of the flow, Figure 1a, a
description of the partitioned system representing the software, hardware and
communication processes is given as input.. These processes are described
using the occam language. This is the result of the automatic partitioning
tool of the PISH system. These descriptions are translated to Petri Net
representing the control and a graph representing the data flow.

The second part, Figure 1b, performs the capture of the concurrent
threads existing in the digital system, the extraction of the communication
among the concurrent threads and for the insertion of IO modules in order to
allow for interaction with the outside world. Initially are identified in the
Petri Net representation all the concurrent threads. These threads can only
execute sequential statements. Concurrency in the system is obtained by the
simultaneous execution of several threads. Threads can activate others

4 Chapter

threads in the system and also communicate with other threads through
communication channels. After the threads identification, the
communication among them is extracted. This information is used for the
implementation of communication channels in hardware and software,
depending on the nature of the communicating threads. In the last part of this
phase IO elements are inserted in the digital system. These IO elements have
a dual mean. They act by one side as an execution thread and can
communicate with others threads through the use of communication
channels and can also control IO devices, at the other side.

The following part, Figure 1c, is responsible for the automatic interface
generation between the hardware and software parts of the digital system. In
this step the target architecture must be taken into account. The designer can
choose a particular target architecture from a library and code for interface
between hardware and software is automatic generated. The system may be
composed of several concurrent threads and most may want to communicate
simultaneously. To handle this situation the generated interface is able to
schedule its use of the shared resources by concurrent threads. The data
transferred in the communications can also be of any data length. So the
interface is also responsible for the transference of data independent of its
length.

The last step in Figure 1 is the code generation phase. VHDL code is
automatically generated for the hardware parts of the system while standard
C code is generated for the software parts of the digital system. Both codes
are standard and can be synthesized by most of the VHDL and C tools.

Hw Sw Con

occam → Petri Net

Data Flow

Threads Extraction

Threads

Communication
Extraction

Threads + communication

IO insertion

Threads + IO
+

communication

Interface extraction

Threads + E\S
communication + interface

Code generation

VHDL C

Petri Net

a)

b)

c)

d)

Figure 1: InterPISH: co-synthesis + interface generation

 5

3.1 System Model

In this approach the defined model for the digital system is seen in
Figure 2. As can be seen it is completely symmetrical, what means that the
software and hardware parts of the system are treated in the same way and
have basically the same elements. The digital system is composed of
concurrent executing processes or threads that communicate through
communication channels. These channels implement the synchronous CSP
communication semantics [6]. The IO processes are responsible for the
control and transfer of data to/from the IO devices. This way the IO
processes or IO threads have a dual behavior, they can communicate through
communication channels and control IO devices. Between the hardware and
software parts of the digital system is the interface component. This
component is also symmetrical, with the same parts implemented both in
hardware and software. This component performs the communication among
threads of different nature and has some important characteristics: is
transparent to the communicating threads, it can transfer different data
lengths and can also schedule the use of the shared resources among several
concurrent threads communicating through the interface.

IO
p0

p1

p0

pn

comm

comm

IO
device

c0

c2

c 1

p3

IO
p1

p4

pi

comm

comm

cm

c3

c4

IO
deviceinterfacecommunication

processes
hardware software

io process

Figure 2: System Model

3.2 Communication Model

Two communication models are used in the implementation of the digital
system. Direct communication and synchronous communication by channel.

Direct communication is used in two occasions. The first is used when
one thread activates another one. When this happens data may be need by
the activated thread, so there is a direct transfer of data from the parent
thread (the one that activates) and the son thread (the one that is activated).
The second situation happens when one son thread finishes its execution and
then returns to the parent thread the data previously transferred. These data

6 Chapter

values are returned updated. In Figure 3 a parent thread activates a son
thread. The set {Vp0, ..., Vpn} represents the variables used by the parent
thread and {Vf0,..., Vfm} represents the set of variables used by the son
thread. The values of the shared variables are transferred from the parent
thread to the son thread by using the activation block shown in Figure 3.
This block is also responsible for sending the activation signal from the
parent thread to the son one. The opposite happens with the finalization
block. This one, shown in Figure 4, is responsible for returning the updated
values of shared variables and also to indicate to the parent thread that the
son thread has finished its execution.

The second communication type models the synchronous communication
by channel. This communication model implements the occam
communication semantics for concurrent processes that cannot share
variables[7]. This model is shown in Figure 5 where two concurrent threads
p0 and p1 transfer data synchronously through the channel c0.

parent
process

child
process

activation
block

Vp0
Vp1
Vpn

Vf0
Vf1
Vfmactivation

signal

shared
variables

parent
process

child
process

activation
block

Vp0
Vp1
Vpn

Vf0
Vf1
Vfmactivation

signal

shared
variables

Figure 3: Thread activation

child
process

parent
process

finalization
block

Vp0
Vp1
Vpn

Vf0
Vf1
Vfmfinalization

signal

shared
variables

child
process

parent
process

finalization
block

Vp0
Vp1
Vpn

Vf0
Vf1
Vfmfinalization

signal

shared
variables

Figure 4: Thread finalization

process
p0

process
p1channel

c0

activates
ready
data0
data1
datan

activates
ready
data0
data1
datan

process
p0

process
p1channel

c0

activates
ready
data0
data1
datan

activates
ready
data0
data1
datan

Figure 5: Synchronous channel communication

 7

3.3 Automatic Interface Generation

This section details the automatic interface generation done in the
InterfPISH tool. The communication models shown in the previous section
are independent on the nature of the two communicating threads. It doesn’t
matter whether the two threads are implemented in hardware, software or
one is in hardware and the other in software. If the two threads have the
same nature the communication component (activation block, finalization
block and communication channel) is implemented in the same technology
(hardware or software). For instance if the two concurrent threads are in
hardware and communicate using communication channel, the channel is
implemented as a hardware component. In the software case the channel is
implemented as a data structure and functions.

When the threads have different natures an interface is built. The model
of the interface can be seen in Figure 6. The interface model is completely
symmetrical and layered. The interface has three layers: prcs_unit(Figure
6a), comm_unit(Figure 6b) and io_unit(Figure 6c).

The prcs_unit layer is responsible for implementing the communication
components (activation block, finalization block and communication
channel). This makes the communication transparent for the threads, once
they only communicate through these components. This layer is responsible
for rebuilding the data so the threads can used them.

prcs0

prcs1

prcsn

prcs_unit comm_unit io_unit

escalonamento

bufferização

acesso
io_unit

protocolo
externo

acesso
comm
unit

prcsn

prcs1

prcs0

prcs_unitcomm_unitio_unit

escalonamento

bufferização

acesso
io_unit

protocolo
externo

acesso
comm
unit

a) b) c)

hardware software

prcs0

prcs1

prcsn

prcs_unit comm_unit io_unit

scheduling

buffering

access to
io_unit

external
protocol

access to
comm
unit

prcsn

prcs1

prcs0

prcs_unitcomm_unitio_unit

scheduling

buffering

acesso
io_unit

external
protocol

access to
comm
unit

a) b) c)

hardware software

Figure 6: Interface
The second layer, comm_unit, is responsible for the scheduling of the

interface and work as a buffer. The scheduling is need because the interface
is a limited resource that can be used by several concurrent threads. The
buffering function allows that several communications take place while the
buffers are not full. This can make the communication faster.

8 Chapter

The last layer, io_unit, conects the software component (processor) to the
hardware component (FPGA). This layer is the only one that depends on the
target architecture. The tool InterfPISH allows the user for choosing one
from several io_unit stored in a library depending on the target architecture.
This layer is not fixed as the previous one.

3.4 IO Threads

The concurrent threads that compose the system may need some data
from the outside world. But these threads are not able to access the IO
devices directly. The access is performed by the use of special IO threads.
These threads are stored in libraries and the designer can choose the IO
thread depending on the device to be controlled and on the data type (length)
to be transferred. A process, or thread, p0 gets data from the input device
using the channel to receive data from the IO thread. It can include three
distinct blocks: a device control block, a type composition block and channel
control. The device control block is responsible for getting data from/to the
IO device. It is able to activate the control and data lines of the IO device
when some data is requested or must be sent to the device. The second
block, type composition, is responsible for adapting data types with different
lengths to be transferred through the channel. Channels are only able to
transfer specific data lengths. This means a channel that transfer a 8 bit
integer type cannot transfer a 16 bit word type and it must be handled as two
8 bits data. So the composition block is responsible for composing the data
coming from the device control, where the data is seen as a stream of bits, to
the channel specific type. The last block is responsible for controlling the
communication channel. This makes the IO thread to be seen as an ordinary
thread by the communication channel.

3.5 Hardware/Software Co-synthesis

As seen before the digital system is modeled as a set of concurrent
threads. Each of these threads executes sequentially. Another characteristic
of the threads is that they can activate other threads that run concurrently.
The threads must also be responsible for informing its parent threads that
they have finished their execution. This characteristic is necessary because
once a parent thread activates several concurrent son threads it must wait
until all the son threads finish execution. This implements the occam
semantics for concurrent processes, where one processes can activate
concurrent processes and waits until they all complete [7].

 9

In our case each thread is represented as a FSM (Finite State Machine).
This representation is consistent with the model for the digital system
because the FSM can execute tasks sequentially and can implement control
constructs like decision and loops. In this model the state transition can
represent a condition or an action.

As said before the thread is able for activating son threads. This is done
by a state transition that signals to the sons that they must leave the initial
state. An activation transition can activate any number of son threads. After
this transition, the FSM goes to a state where it waits for all the sons to
indicate their finalization.

The other state transitions can indicate an action. An action can be one of
the following: logical operation, arithmetic operation, decision, null action
and stop action, which represents a deadlock of the thread that does nothing
and stay forever in this state.

A decision allows a changing in the sequence of states depending on
conditions. The decisions can be a conditional or loop.

4. CASE STUDY: ATM SWITCH

In this section it is shown some results by applying the proposed
methodology and the tool interfPISH to the interface generation of an ATM
switch controller proposed in [8] whose partitioning is described in detail in
[9]. This ATM switch controller must decide whether a cell must be sent or
not based on four policy algorithms. The aim of discarding a cell is to reduce
the traffic on an ATM network.

The ATM switch executes four types of policy: high peak, high average,
low peak and low average. The peak policies are related to the maximum
rate that is established during connection negotiation. The average policies
observe the average number of cell arrivals during the connection. The cells
can have two types of priority: high and low. A high priority cell is
submitted to the high peak and to the high average policies. If approved in
both of them the cell is accepted. In the case the cell is rejected in some of
the policies it is submitted to the respective low policy. If reproved in any of
the low policies the cell is rejected, on the contrary, if approved in both the
low policies the cell is accepted and its priority is verified. When the cell has
a high priority, this priority is changed to low priority. A low priority cell is
submitted to both the low peak and low average policies and is rejected if
not approved in both of them.

In the example all the policies are based on the leaky bucket algorithm.
The different values for the parameters X, LCT, I and L determine which
policy is being used.

10 Chapter

In figure 7 can be seen the partitioning result in occam for the ATM
switch. It is composed of the protocol and channel declarations that define
the communication among the processes and with the outside world. The
partitioned system is composed of several concurrent processes that are
under the first PAR constructor. In the figure are highlighted the four
policies processes that must be implemented in hardware while all the other
processes are implemented in software. From this occam representation of
the partitioned system is generated a Petri Net representation. This Petri Net
is composed of 156 places and 154 transitions.

Protocol declarations
Channel declarations
PAR
 Input data for cell process
 PAR – policies processes
 HIGH PEAK POLICY HW
 HIGH AVERAGE POLICY HW
 LOW PEAK POLICY HW
 LOW AVERAGE POLICY HW
 Cell acceptance process
 Cell send process
 Table update process
 Control process 0
 Control process 1
 Control process 2
 Control process 3

figure 7: Hw/Sw partitioning in occam

The tool extracts the concurrent threads from the Petri Net representation
of the partitioned system. In this case 14 concurrent threads are generated
and the results are summarised in the Table 1. The table gives the number of
places and transitions for each thread and also its nature that can be hardware
or software thread. The hardware threads are the 4 policy processes and can
be noted that they all have the same number of places and transitions. This
comes from the fact that only the parameters are different, the policy
processes are equal.

Thread type Number
Software thread 10
Hardware threads 4

Table 1: Thread results

In Table 2 the results for the IO threads selected by the system designer
are shown. In this example all the IO threads are implemented in hardware.
For each IO thread two files are generated, an VHDL* file and a VHDL file.
The VHDL* language is an extension of VHDL that has constructs for
synchronous communication. From this extension is generated standard
VHDL code for synthesis.

 11

Number of IO Threads Type
6 Hardware

Table 2: IO Threads

As mentioned before the interface is implemented in layers. The last
layer is responsible for implementing the 3 types of communication schemes
between threads in hardware and software. One file is generated for each
policy thread, resulting in four files. In table 4 are shown the results for the
interface in hardware.

Block name Type Number of lines
Communication Hardware 1089
Activation Hardware 944
Finalisation Hardware 932

Table 3: interface in hardware

The software implementation is simpler than the hardware one. In this
case header and C files are generated for the parts of the system to be
implemented in software. In Table 4 are summarized the software results.
The first file represents the whole system in software. It contains the main
function. The second file, processos.c, implements the threads in software.
The next file, comunicacao.c, implements the communication in software.
As there are no IO threads to be implemented in software, no files are
generated. The last three lines of the table contain the three layers of the
interface. As in the case of the hardware interface, the io_unit.c file is
generated based on a description of the target architecture while the others
are generated automatically.

C file Lines H file Lines
atm_protocolo.c 58 - -
processos.c 573 processos.h 11
comunicacao.c 1997 comunicacao.h 791
e_s.c - - -
io_unit.c 40 io_unit.h 2
Comm_unit.c 230 comm_unit.h 17
prcs_unit.c 808’ Prcs_unit.h 182

Table 4: software results

4.1 Conclusions

In this paper has been described the characteristics and mechanisms of
the PISH Co-design system that makes easier the integration of IP modules
in a design, independently whether the IP must be implemented in hardware

12 Chapter

or software. The problem has been approached in two ways. Firstly making
easier IO devices integration and secondly through the automatic interface
generation. This allows the designer migrate from hardware to software IP´s
and vice-versa.

This work uses ideas of HDL extension where abstract communication
mechanisms are used for the VHDL language. It also allows the reuse of
modules stored in library, both for interface and also for IO devices.

The adopted implementation clearly separates the system in
concurrent threads, communication, interface and IO components and
uses an strategy based on the use of library components, IO threads
and inner part of the interface, and automatic generation of code.

The tool can taken into account different architectures, since new target
architectures and new IO threads can be added into the library. This way the
designer can have more choices for the implementation of the digital system.

5. REFERENCES

[1] Daniel D. Gajski, Rainer Dömer, Jianwen Zhu IP-centric Methodology and Design with
the SpecC Language Contribution to NATO-ASI workshop on System Level Synthesis,
Il Ciocco, Lucca, Italy, August 1998.

[2] R. Ernst , J. Henkel, T. Benner, Hardware-Software Co-Synthesis for Microcontrollers–
IEEE Design and Test of Computers, pp. 64-75, December 1993

[3] E.Barros and W. Rosenstiel A Clustering Approach to Support Hardware/Software
Partitioning". In: K. Buchenrieder, and J. Rozenblit (eds.), Computer Aided
Software/Hardware Engineering. Chapter 11- IEEE Press, 1994.

[4] D. Pountain and D. May, A Tutorial Introduction to OCCAM Programming. Inmos BSP
Professional Books, (1987).

[5] C. A. R. Hoare, Communicating Sequential Processes Prentice-Hall, 1985
[6] C. A. R. Hoare, Communicating Sequential Processes Prentice-Hall, 1985
[7] Geof Barret occam 3 reference manual, INMOS, 1992.
[8] J.A. G. Lima “Um controlador microprogramado para comutadores ATM”. PhD. Thesis,

Universidade Federal da Paraiba, Brasil, 1999.
[9] J. Yioda ParTS – Uma Ferramenta de Suporte ao Particionamento Hardware/Software.

Recife: Universidade Federal de Pernambuco, 1999. Dissertação Mestrado.

