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Abstract: The use of standard languages like VHDL and C for the description of hardware 
and software IP has became a common practice. Despite this, these languages, 
specially the hardware description languages lack constructs that allow the IP 
designer to develop highly re-usable IP blocks. In this paper is described an 
abstract communication mechanism that uses extensions to the VHDL 
language, communication library for software and automatic interface 
generation for the easy integration of IP modules. 

1. INTRODUCTION 

Current processes for IC fabrication allow the easy integration of millions 
of transistors in a single chip. Despite this evolution in the fabrication 
processes, designer are unable to fulfill this enormous capacity respecting a 
more constrained time-to-market. This phenomena is known as “Design 
Productivity Gap”. One of the most promising solutions to this problem is 
the IP reuse. Where known, reliable system modules are integrated in digital 
designs. 

One problem arises here, how to build and integrate these IP modules to 
designs. Languages currently used for hardware description, like VHDL and 
Verilog don’t have the abstract communication mechanisms needed for an 
easy “plug and play” integration of IP modules. Use of mixed 
hardware/software modules is a task even harder. 
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In this paper is described the mechanisms used in the PISH Co-design 
system for an easy integration of IP modules. The solution uses a 
combination of automatic interface generation, extension of the VHDL 
language with the introduction of abstract communication constructors for 
hardware modules and communication library for the software ones. 

The rest of this paper is organized as follows: in section 2 is given an 
overview of the PISH Co-design system. In next section some of the related 
works in this area are shown. Section 4 describes the proposed system 
InterfPISH, which allows automatic interface generation as well as code 
generation for hardware and software synthesis. A case study and results 
obtained are given in section 5 and finally a conclusion section is given. 

2. THE PISH CO-DESIGN SYSTEM 

An overview of the PISH Co-design system can be seen in Figure 1. It 
can be divided into three main stages: specification and partitioning, co-
synthesis and prototyping.  

The first stage, specification and partitioning taking an initial 
specification of the digital system to be implemented and partition it into 
processes to be implemented in hardware and software components. This 
system uses occam as specification mechanism [4]. The main reason to use 
occam is that, being based on CSP [5] occam has a simple and a elegant 
semantics, given in terms of algebraic laws, which allows the partitioning be 
performed by applying a series of algebraic transformations into the initial 
occam description in order to preserve the semantics. These transformations 
change the initial specification and as result new concurrent processes and 
communication are introduced. Despite being a new description, the 
transformed one is guaranteed to have the same semantic as the original 
specification. The set of transformation rules is applied according to the 
results of a cost analysis obtained by using a Petri net based estimator and 
clustering techniques [3]. The interface generation depends on the number of 
concurrent processes of different nature (hardware/software) that 
communicate, the type of the data being transferred between the processes 
and also the target architecture taken into account. Most co-design systems 
considers a very simple architecture composed of one software component. 
In order to have a pre-defined protocol some systems consider the hardware 
running as a co-processor, i.e. hardware and software do not execute 
concurrently [1][2]. 

In this work, software and hardware can run concurrently and for that 
device drivers must be generated at the software side, as well as specific 
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hardware to make transparent for the hardware side which processor is being 
used. The interface between hardware modules must also be synthesized. 

Occam
description partitioning

estimators

Formal
verification

Swprocesses Hwprocesses

Software
synthesis

Hardware
synthesis

Communication
synthesis

Interface
generation

processor

FPGAFPGA

FPGA FPGA

PROTOTYPING

Psw
Phw Pcon PconPhw

Phw Phw

Control processes

Pcon Pcon

 

Figure 1: PISH Co-design system 

3. THE PROPOSED APPROACH 

In this section is described an approach for co-synthesis that allows the 
generation of code for hardware and software synthesis, including the 
automatic interface generation between the hardware and software parts of 
the digital system. 

The flow for co-synthesis and interface generation is shown in Figure 1. 
It can be divided in four parts: translation into an internal format 
representation, threads and communication extraction, interface generation 
and the last phase code generation. In the first part of the flow, Figure 1a, a 
description of the partitioned system representing the software, hardware and 
communication processes is given as input.. These processes are described 
using the occam language. This is the result of the automatic partitioning 
tool of the PISH system. These descriptions are translated to Petri Net 
representing the control and a graph representing the data flow. 

The second part, Figure 1b, performs the capture of the concurrent 
threads existing in the digital system, the extraction of the communication 
among the concurrent threads and for the insertion of IO modules in order to 
allow for interaction with the outside world. Initially are identified in the 
Petri Net representation all the concurrent threads. These threads can only 
execute sequential statements. Concurrency in the system is obtained by the 
simultaneous execution of several threads. Threads can activate others 
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threads in the system and also communicate with other threads through 
communication channels. After the threads identification, the 
communication among them is extracted. This information is used for the 
implementation of communication channels in hardware and software, 
depending on the nature of the communicating threads. In the last part of this 
phase IO elements are inserted in the digital system. These IO elements have 
a dual mean. They act by one side as an execution thread and can 
communicate with others threads through the use of communication 
channels and can also control IO devices, at the other side. 

The following part, Figure 1c, is responsible for the automatic interface 
generation between the hardware and software parts of the digital system. In 
this step the target architecture must be taken into account. The designer can 
choose a particular target architecture from a library and code for interface 
between hardware and software is automatic generated. The system may be 
composed of several concurrent threads and most may want to communicate 
simultaneously. To handle this situation the generated interface is able to 
schedule its use of the shared resources by concurrent threads. The data 
transferred in the communications can also be of any data length. So the 
interface is also responsible for the transference of data independent of its 
length. 

The last step in Figure 1 is the code generation phase. VHDL code is 
automatically generated for the hardware parts of the system while standard 
C code is generated for the software parts of the digital system. Both codes 
are standard and can be synthesized by most of the VHDL and C tools. 
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Figure 1: InterPISH: co-synthesis + interface generation 
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3.1 System Model 

In this approach the defined model for the digital system is seen in 
Figure 2. As can be seen it is completely symmetrical, what means that the 
software and hardware parts of the system are treated in the same way and 
have basically the same elements. The digital system is composed of 
concurrent executing processes or threads that communicate through 
communication channels. These channels implement the synchronous CSP 
communication semantics [6]. The IO processes are responsible for the 
control and transfer of data to/from the IO devices. This way the IO 
processes or IO threads have a dual behavior, they can communicate through 
communication channels and control IO devices. Between the hardware and 
software parts of the digital system is the interface component. This 
component is also symmetrical, with the same parts implemented both in 
hardware and software. This component performs the communication among 
threads of different nature and has some important characteristics: is 
transparent to the communicating threads, it can transfer different data 
lengths and can also schedule the use of the shared resources among several 
concurrent threads communicating through the interface. 
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Figure 2: System Model 

3.2 Communication Model 

Two communication models are used in the implementation of the digital 
system. Direct communication and synchronous communication by channel.  

Direct communication is used in two occasions. The first is used when 
one thread activates another one. When this happens data may be need by 
the activated thread, so there is a direct transfer of data from the parent 
thread (the one that activates) and the son thread (the one that is activated). 
The second situation happens when one son thread finishes its execution and 
then returns to the parent thread the data previously transferred. These data 
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values are returned updated. In Figure 3 a parent thread activates a son 
thread. The set {Vp0, ..., Vpn} represents the variables used by the parent 
thread and {Vf0,..., Vfm} represents the set of variables used by the son 
thread. The values of the shared variables are transferred from the parent 
thread to the son thread by using the activation block shown in Figure 3. 
This block is also responsible for sending the activation signal from the 
parent thread to the son one. The opposite happens with the finalization 
block. This one, shown in Figure 4, is responsible for returning the updated 
values of  shared variables and also to indicate to the parent thread that the 
son thread has finished its execution. 

The second communication type models the synchronous communication 
by channel. This communication model implements the occam 
communication semantics for concurrent processes that cannot share 
variables[7]. This model is shown in Figure 5 where two concurrent threads 
p0 and p1 transfer data synchronously through the channel c0. 
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Figure 3: Thread activation 
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Figure 4: Thread finalization 
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Figure 5: Synchronous channel communication 
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3.3 Automatic Interface Generation 

This section details the automatic interface generation done in the 
InterfPISH tool. The communication models shown in the previous section 
are independent on the nature of the two communicating threads. It doesn’t 
matter whether the two threads are implemented in hardware, software or 
one is in hardware and the other in software. If the two threads have the 
same nature the communication component (activation block, finalization 
block and communication channel) is implemented in the same technology 
(hardware or software). For instance if the two concurrent threads are in 
hardware and communicate using communication channel, the channel is 
implemented as a hardware component. In the software case the channel is 
implemented as a data structure and functions. 

When the threads have different natures an interface is built. The model 
of the interface can be seen in Figure 6. The interface model is completely 
symmetrical and layered. The interface has three layers: prcs_unit(Figure 
6a), comm_unit(Figure 6b) and io_unit(Figure 6c). 

The prcs_unit layer is responsible for implementing the communication 
components (activation block, finalization block and communication 
channel). This makes the communication transparent for the threads, once 
they only communicate through these components. This layer is responsible 
for rebuilding the data so the threads can used them. 
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Figure 6: Interface 
The second layer, comm_unit, is responsible for the scheduling of the 

interface and work as a buffer. The scheduling is need because the interface 
is a limited resource that can be used by several concurrent threads. The 
buffering function allows that several communications take place while the 
buffers are not full. This can make the communication faster. 
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The last layer, io_unit, conects the software component (processor) to the 
hardware component (FPGA). This layer is the only one that depends on the 
target architecture. The tool InterfPISH allows the user for choosing one 
from several io_unit stored in a library depending on the target architecture. 
This layer is not fixed as the previous one. 

3.4 IO Threads 

The concurrent threads that compose the system may need some data 
from the outside world. But these threads are not able to access the IO 
devices directly. The access is performed by the use of special IO threads. 
These threads are stored in libraries and the designer can choose the IO 
thread depending on the device to be controlled and on the data type (length) 
to be transferred. A process, or thread, p0 gets data from the input device 
using the channel to receive data from the IO thread. It can include three 
distinct blocks: a device control block, a type composition block and channel 
control. The device control block is responsible for getting data from/to the 
IO device. It is able to activate the control and data lines of the IO device 
when some data is requested or must be sent to the device. The second 
block, type composition, is responsible for adapting data types with different 
lengths to be transferred through the channel. Channels are only able to 
transfer specific data lengths. This means a channel that transfer a 8 bit 
integer type cannot transfer a 16 bit word type and it must be handled as two 
8 bits data. So the composition block is responsible for composing the data 
coming from the device control, where the data is seen as a stream of bits, to 
the channel specific type. The last block is responsible for controlling the 
communication channel. This makes the IO thread to be seen as an ordinary 
thread by the communication channel. 

 

3.5 Hardware/Software Co-synthesis 

As seen before the digital system is modeled as a set of concurrent 
threads. Each of these threads executes sequentially. Another characteristic 
of the threads is that they can activate other threads that run concurrently. 
The threads must also be responsible for informing its parent threads that 
they have finished their execution. This characteristic is necessary because 
once a parent thread activates several concurrent son threads it must wait 
until all the son threads finish execution. This implements the occam 
semantics for concurrent processes, where one processes can activate 
concurrent processes and waits until they all complete [7]. 
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In our case each thread is represented as a FSM (Finite State Machine). 
This representation is consistent with the model for the digital system 
because the FSM can execute tasks sequentially and can implement control 
constructs like decision and loops. In this model the state transition can 
represent a condition or an action. 

As said before the thread is able for activating son threads. This is done 
by a state transition that signals to the sons that they must leave the initial 
state. An activation transition can activate any number of son threads. After 
this transition, the FSM goes to a state where it waits for all the sons to 
indicate their finalization. 

The other state transitions can indicate an action. An action can be one of 
the following: logical operation, arithmetic operation, decision, null action 
and stop action, which represents a deadlock of the thread that does nothing 
and stay forever in this state. 

A decision allows a changing in the sequence of states depending on 
conditions. The decisions can be a conditional or loop.  

4. CASE STUDY: ATM SWITCH 

In this section it is shown some results by applying the proposed 
methodology and the tool interfPISH to the interface generation of an ATM 
switch controller proposed in [8] whose partitioning is described in detail in 
[9]. This ATM switch controller must decide whether a cell must be sent or 
not based on four policy algorithms. The aim of discarding a cell is to reduce 
the traffic on an ATM network. 

The ATM switch executes four types of policy: high peak, high average, 
low peak and low average. The peak policies are related to the maximum 
rate that is established during connection negotiation. The average policies 
observe the average number of cell arrivals during the connection. The cells 
can have two types of priority: high and low. A high priority cell is 
submitted to the high peak and to the high average policies. If approved in 
both of them the cell is accepted. In the case the cell is rejected in some of 
the policies it is submitted to the respective low policy. If reproved in any of 
the low policies the cell is rejected, on the contrary, if approved in both the 
low policies the cell is accepted and its priority is verified. When the cell has 
a high priority, this priority is changed to low priority. A low priority cell is 
submitted to both the low peak and low average policies and is rejected if 
not approved in both of them. 

In the example all the policies are based on the leaky bucket algorithm. 
The different values for the parameters X, LCT, I and L determine which 
policy is being used. 
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In figure 7 can be seen the partitioning result in occam for the ATM 
switch. It is composed of the protocol and channel declarations that define 
the communication among the processes and with the outside world. The 
partitioned system is composed of several concurrent processes that are 
under the first PAR constructor. In the figure are highlighted the four 
policies processes that must be implemented in hardware while all the other 
processes are implemented in software. From this occam representation of 
the partitioned system is generated a Petri Net representation. This Petri Net 
is composed of 156 places and 154 transitions. 

 
Protocol declarations 
Channel declarations 
PAR 
  Input data for cell process 
  PAR – policies processes 
    HIGH PEAK POLICY HW 
    HIGH AVERAGE POLICY HW 
    LOW PEAK POLICY HW 
    LOW AVERAGE POLICY HW 
  Cell acceptance process 
  Cell send process 
  Table update process 
  Control process 0 
  Control process 1 
  Control process 2 
  Control process 3 

 

figure 7: Hw/Sw partitioning in occam 
 

The tool extracts the concurrent threads from the Petri Net representation 
of the partitioned system. In this case 14 concurrent threads are generated 
and the results are summarised in the Table 1. The table gives the number of 
places and transitions for each thread and also its nature that can be hardware 
or software thread. The hardware threads are the 4 policy processes and can 
be noted that they all have the same number of places and transitions. This 
comes from the fact that only the parameters are different, the policy 
processes are equal. 

 
Thread type Number 
Software thread 10 
Hardware threads 4 

Table 1: Thread results 

In Table 2 the results for the IO threads selected by the system designer 
are shown. In this example all the IO threads are implemented in hardware. 
For each IO thread two files are generated, an VHDL* file and a VHDL file. 
The VHDL* language is an extension of VHDL that has constructs for 
synchronous communication. From this extension is generated standard 
VHDL code for synthesis. 
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Number of IO Threads Type 
6 Hardware 
  

Table 2: IO Threads 

As mentioned before the interface is implemented in layers. The last 
layer is responsible for implementing the 3 types of communication schemes 
between threads in hardware and software. One file is generated for each 
policy thread, resulting in four files. In table 4 are shown the results for the 
interface in hardware. 

 
Block name Type Number of lines 
Communication Hardware 1089 
Activation Hardware 944 
Finalisation Hardware 932 

Table 3: interface in hardware 
 

The software implementation is simpler than the hardware one. In this 
case header and C files are generated for the parts of the system to be 
implemented in software. In Table 4 are summarized the software results. 
The first file represents the whole system in software. It contains the main 
function. The second file, processos.c, implements the threads in software. 
The next file, comunicacao.c, implements the communication in software. 
As there are no IO threads to be implemented in software, no files are 
generated. The last three lines of the table contain the three layers of the 
interface. As in the case of the hardware interface, the io_unit.c file is 
generated based on a description of the target architecture while the others 
are generated automatically. 

 
C file Lines H file Lines 
atm_protocolo.c 58 - - 
processos.c 573 processos.h 11 
comunicacao.c 1997 comunicacao.h 791 
e_s.c - - - 
io_unit.c 40 io_unit.h 2 
Comm_unit.c 230 comm_unit.h 17 
prcs_unit.c 808’ Prcs_unit.h 182 

Table 4: software results 

4.1 Conclusions 

In this paper has been described the characteristics and mechanisms of 
the PISH Co-design system that makes easier the integration of IP modules 
in a design, independently whether the IP must be implemented in hardware 
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or software. The problem has been approached in two ways. Firstly making 
easier IO devices integration and secondly through the automatic interface 
generation. This allows the designer migrate from hardware to software IP´s 
and vice-versa. 

This work uses ideas of HDL extension where abstract communication 
mechanisms are used for the VHDL language. It also allows the reuse of 
modules stored in library, both for interface and also for IO devices. 

The adopted implementation clearly separates the system in 
concurrent threads, communication, interface and IO components and 
uses an strategy based on the use of library components, IO threads 
and inner part of the interface, and automatic generation of code. 

The tool can taken into account different architectures, since new target 
architectures and new IO threads can be added into the library. This way the 
designer can have more choices for the implementation of the digital system. 
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