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Abstract
The use of standard languages like VHDL and C for the
description of hardware and software IP has became a
common practice. Despite this, these languages, specially
the hardware description languages lack constructs that
allow the IP designer to develop highly re-usable IP
blocks. In this paper is described an abstract
communication mechanism that uses extensions to the
VHDL language, communication library for software and
automatic interface generation for the easy integration of
IP modules.

1. Introduction

Current processes for IC fabrication allow the easy
integration of millions of transistors in a single chip.
Despite this evolution in the fabrication processes,
designer are unable to fulfill this enormous capacity
respecting a more constrained time-to-market. This
phenomenon is known as “Design Productivity Gap”. One
of the most promising solutions to this problem is the IP
reuse. Where known, reliable system modules are
integrated in digital designs.

One problem arises here, how to build and integrate
these IP modules to designs. Languages currently used for
hardware description, like VHDL and Verilog don’t have
the abstract communication mechanisms needed for an
easy “plug and play” integration of IP modules. Use of
mixed hardware/software modules is a task even harder.

In this paper is described the mechanisms used in the
PISH Co-design system for an easy integration of IP
modules. The solution uses a combination of automatic
interface generation, extension of the VHDL language
with the introduction of abstract communication
constructors for hardware modules and communication
library for the software ones.

The rest of this paper is organized as follows: in section
2 is given an overview of the PISH Co-design system. In
next section some of the related works in this area are
shown. Section 4 describes the proposed system
InterfPISH, which allows automatic interface generation as
well as code generation for hardware and software
synthesis. A case study and results obtained are given in
section 5 and finally a conclusion section is given.

2. The PISH Co-design System

An overview of the PISH Co-design system can be
seen in Figure 1. It can be divided into three main stages:
specification and partitioning, co-synthesis and
prototyping.

The first stage, specification and partitioning taking
an initial specification of the digital system to be
implemented and partition it into processes to be
implemented in hardware and software components. This
system uses occam as specification mechanism [1]. The
main reason to use occam is that, being based on CSP [2]
occam has a simple and a elegant semantics, given in
terms of algebraic laws. Applying these laws,
transformations can be done in the original description.
Allowing a correct by proof partitioning. These
transformations change the initial specification and as
result new concurrent processes and communication are
introduced. Despite being a new description, the
transformed one is guaranteed to have the same semantic
as the original specification. The set of transformation
rules is applied according to the results of a cost analysis
obtained by using a Petri net based estimator and
clustering techniques[3]. The interface generation depends
on the number of concurrent processes of different nature
(hardware/software) that communicate, the type of the data
being transferred between the processes and also the target
architecture taken into account. Most co-design systems
considers a very simple architecture composed of one
software component. In order to have a pre-defined
protocol some systems consider the hardware running as a
co-processor, i.e. hardware and software do not execute
concurrently [4][5].

In this work, software and hardware can run
concurrently and for that device drivers must be generated
at the software side, as well as specific hardware to make
transparent for the hardware side which processor is being
used. The interface between hardware modules must also
be synthesized.
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Figure 1: PISH Co-design system
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3. Related Works

In this section three related work are described: SpecC,
VIP and the MODIS tool. These works focus on different
aspects of IP integration.

3.1 SpecC

The SpecC design environment uses an IP centric
methodology for the use of IP modules in heterogeneous
hardware/software[6]. This methodology makes a
separation of computation or behavior from
communication and integrates IP in two forms. The first
one integrates one IP with different protocol to a behavior
through the use of a wrapper and the second one occurs
when two wrappers with different protocols must be
connected. In this case a transducer must be inserted
between the different wrappers. The IP modules are stored
in a library for the use by the designer.

3.2 VIP

VIP (Virtual Intellectual Property) is a library of
parameterized hardware components described in
VHDL[7]. The library modules are available for the
designer as components. He or she must adapt its design to
the IP interface. In the VIP library the integration is made
easier by the existence of complete documentation that
furnishes to the designer the information needed to
perform integration.

3.3 Use of VHDL+

This approach uses a VHDL extension, VHDL+, which
implements mechanisms of communication abstraction
between hardware modules[8]. This way the designer
doesn’t have to care about the low level communication
mechanisms common to the hardware description
languages, such as signals and ports.

4. The Proposed Approach

In this section is described an approach for the easier
integration of IP blocks in the PISH co-design system.
This approach is divided in system modeling,
communication modeling and interface generation.

The flow for co-synthesis and interface generation is
shown in figure 2. It can be divided in four parts:
translation into an internal format representation, threads
and communication extraction, interface generation and
the last phase code generation. In the first part of the flow,
figure 2a, a description of the partitioned system
representing the software, hardware and communication
processes is given as input.. These processes are described
using the occam language. This is the result of the
automatic partitioning tool of the PISH system. These
descriptions are translated to Petri Net representing the
control and a graph representing the data flow.

The second part, figure 2b, performs the capture of the
concurrent threads existing in the digital system, the
extraction of the communication among the concurrent
threads and for the insertion of IO modules in order to
allow for interaction with the outside world. Initially are
identified in the Petri Net representation all the concurrent

threads. These threads can only execute sequential
statements. Concurrency in the system is obtained by the
simultaneous execution of several threads. Threads can
activate others threads in the system and also communicate
with other threads through communication channels. After
the threads identification, the communication among them
is extracted. This information is used for the
implementation of communication channels in hardware
and software, depending on the nature of the
communicating threads. In the last part of this phase IO
elements are inserted in the digital system. These IO
elements have a dual mean. They act by one side as an
execution thread and can communicate with others threads
through the use of communication channels and can also
control IO devices, at the other side.

The following part, figure 2c, is responsible for the
automatic interface generation between the hardware and
software parts of the digital system. In this step the target
architecture must be taken into account. The designer can
choose a particular target architecture from a library and
code for interface between hardware and software is
automatic generated. The system may be composed of
several concurrent threads and most may want to
communicate simultaneously. To handle this situation the
generated interface is able to schedule its use of the shared
resources by concurrent threads. The data transferred in
the communications can also be of any data length. So the
interface is also responsible for the transference of data
independent of its length.

The last step in figure 2 is the code generation phase.
VHDL code is automatically generated for the hardware
parts of the system while standard C code is generated for
the software parts of the digital system. Both codes are
standard and can be synthesized by most of the VHDL and
C tools.
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figure 2: InterPISH: co-synthesis + interface generation

4.1 System Model

In this approach the defined model for the digital
system is seen in Figure 3. As can be seen it is completely
symmetrical, what means that the software and hardware
parts of the system are treated in the same way and have
basically the same elements. The digital system is
composed of concurrent executing processes or threads



that communicate through communication channels. These
channels implement the synchronous CSP communication
semantics[2]. The IO processes are responsible for the
control and transfer of data to/from the IO devices. This
way the IO processes or IO threads have a dual behavior,
they can communicate through communication channels
and control IO devices. Between the hardware and
software parts of the digital system is the interface
component. This component is also symmetrical, with the
same parts implemented both in hardware and software.
This component performs the communication among
threads of different nature and has some important
characteristics: is transparent to the communicating
threads, it can transfer different data lengths and can also
schedule the use of the shared resources among several
concurrent threads communicating through the interface.
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Figure 3: System Model

4.2 Communication Model

Two communication models are used in the
implementation of the digital system. Direct
communication and synchronous communication by
channel.

Direct communication is used in two occasions. The
first is used when one thread activates another one. When
this happens data may be need by the activated thread, so
there is a direct transfer of data from the parent thread (the
one that activates) and the son thread (the one that is
activated). The second situation happens when one son
thread finishes its execution and then returns to the parent
thread the data previously transferred. These data values
are returned updated. In figure 6 a parent thread activates a
son thread. The set {Vp0, ..., Vpn} represents the variables
used by the parent thread and {Vf0,..., Vfm} represents the
set of variables used by the son thread. The values of the
shared variables are transferred from the parent thread to
the son thread by using the activation block shown in
figure 6. This block is also responsible for sending the
activation signal from the parent thread to the son one. The
opposite happens with the finalization block. This one,
shown in figure 7, is responsible for returning the updated
values of shared variables and also to indicate to the parent
thread that the son thread has finished its execution.

The second communication type models the
synchronous communication by channel. This
communication model implements the occam
communication semantics for concurrent processes that

cannot share variables[9]. This model is shown in figure 8
where two concurrent threads p0 and p1 transfer data
synchronously through the channel c0.
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Figure 4: Thread activation
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Figure 6: Synchronous channel communication

4.3 Automatic Interface Generation

This section details the automatic interface generation
done in the InterfPISH[10] tool. The communication
models shown in the previous section are independent on
the nature of the two communicating threads. It doesn’t
matter whether the two threads are implemented in
hardware, software or one is in hardware and the other in
software. If the two threads have the same nature the
communication component (activation block, finalization
block and communication channel) is implemented in the
same technology (hardware or software). For instance if
the two concurrent threads are in hardware and
communicate using communication channel, the channel is
implemented as a hardware component. In the software
case the channel is implemented as a data structure and
functions.

When the threads have different natures an interface is
built. The model of the interface can be seen in Figure 7.
The interface model is completely symmetrical and
layered. The interface has three layers: prcs_unit(Figure 
7a), comm_unit(Figure 7b) and io_unit(Figure 7c).

The prcs_unit layer is responsible for implementing the
communication components (activation block, finalization
block and communication channel). This makes the



communication transparent for the threads, once they only
communicate through these components. This layer is
responsible for rebuilding the data so the threads can used
them.
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Figure 7: Interface

The second layer, comm_unit, is responsible for the
scheduling of the interface and work as a buffer. The
scheduling is need because the interface is a limited
resource that can be used by several concurrent threads.
The buffering function allows that several communications
take place while the buffers are not full. This can make the
communication faster.

The last layer, io_unit, conects the software component
(processor) to the hardware component (FPGA). This layer
is the only one that depends on the target architecture. The
tool InterfPISH allows the user for choosing one from
several io_unit stored in a library depending on the target
architecture. This layer is not fixed as the previous one

4.4 IO Threads

The concurrent threads that compose the system may
need some data from the outside world. But these threads
are not able to access the IO devices directly. The access is
performed by the use of special IO threads. These threads
are stored in libraries and the designer can choose the IO
thread depending on the device to be controlled and on the
data type (length) to be transferred. Figure 8 shows the
model of an IO thread and how it can be connected with
the IO device it controls or with the channels that transfer
data.

LQSXW�GHYLFH

SURFHVV
S�

FKDQQHO�

� � �

� � �

� � �

�

GHYLFH
FRQWURO

W\SH
FRPSRVLWLRQ

LQSXW�FKDQQHO

FKDQQHO
FRQWURO

,2�SURFHVV

Figure 8: IO implementation

A process, or thread, p0 gets data from the input device
using the channel to receive data from the IO thread. It can
include three distinct blocks: a device control block, a type
composition block and channel control. The device control

block is responsible for getting data from/to the IO device.
It is able to activate the control and data lines of the IO
device when some data is requested or must be sent to the
device. The second block, type composition, is responsible
for adapting data types with different lengths to be
transferred through the channel. Channels are only able to
transfer specific data lengths. This means a channel that
transfer a 8 bit integer type cannot transfer a 16 bit word
type and it must be handled as two 8 bits data. So the
composition block is responsible for composing the data
coming from the device control, where the data is seen as a
stream of bits, to the channel specific type. The last block
is responsible for controlling the communication channel.
This makes the IO thread to be seen as an ordinary thread
by the communication channel.

4.5 Hardware/Software Co-synthesis

As seen before the digital system is modeled as a set of
concurrent threads. Each of these threads executes
sequentially. Another characteristic of the threads is that
they can activate other threads that run concurrently. The
threads must also be responsible for informing its parent
threads that they have finished their execution. This
characteristic is necessary because once a parent thread
activates several concurrent son threads it must wait until
all the son threads finish execution. This implements the
occam semantics for concurrent processes, where one
processes can activate concurrent processes and waits until
they all complete [9].

In our case each thread is represented as a FSM[11]
(Finite State Machine). This representation is consistent
with the model for the digital system because the FSM can
execute tasks sequentially and can implement control
constructs like decision and loops. In this model the state
transition can represent a condition or an action. Figure 9
shows the thread model used in this work.
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Figure 9: Thread model

The thread is represented by a FSM with some special
states. When in the first state, the machine waits for the
activation by a parent thread. The transition from the last
state to first state indicates to the parent thread the end of
execution of this thread. As said before the thread is able
for activating son threads. This is done by a state transition
that signals to the sons that they must leave the initial state.



An activation transition can activate any number of son
threads. After this transition, the FSM goes to a state
where it waits for all the sons to indicate their finalization.
The other state transitions can indicate an action. An action
can be one of the following: logical operation, arithmetic
operation, decision, null action and stop action, which
represents a deadlock of the thread that does nothing and
stay forever in this state. A decision allows a changing in
the sequence of states depending on conditions. The
decisions can be a conditional or loop.

5. Case Study: ATM switch

In this section it is shown some results by applying the
proposed methodology and the tool interfPISH to the
interface generation of an ATM switch controller proposed
in [12] whose partitioning is described in detail in [13].
This ATM switch controller must decide whether a cell
must be sent or not based on four policy algorithms. The
aim of discarding a cell is to reduce the traffic on an ATM
network.
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In Figure 10 can be seen the partitioning result in
occam for the ATM switch. It is composed of the protocol
and channel declarations that define the communication
among the processes and with the outside world. The
partitioned system is composed of several concurrent
processes that are under the first PAR constructor. In the
figure are highlighted the four policies processes that must
be implemented in hardware while all the other processes
are implemented in software.

5.1 Results

The tool extracts the concurrent threads from the Petri
Net representation of the partitioned system. In this case
14 concurrent threads are generated and the results are
summarized in the Table 1 gives the number of places and
transitions for each thread and also its nature that can be
hardware or software thread. For the hardware threads
VHDL* files are generated and from these VHDL standard
code, the results are shown in table 2. In Table 3 are the
results for the IO threads. All the IO threads are
implemented in hardware. For each IO thread two files are
generated, a VHDL* file and a VHDL file. The reader can
see that the size of the VHDL* is much smaller than the

corresponding VHDL one. The difference here is bigger
than the results in table 2 because in the previous case
there was used no communication by the hardware threads.

Thread ID Places Transitions Nature
0 P_0 2 2 Sw
1 P_0_0 7 7 Sw
2 P_0_1 4 4 Sw
3 P_0_1_0 15 17 Hw
4 P_0_1_1 15 17 Hw
5 P_0_1_2 15 17 Hw
6 P_0_1_3 15 17 Hw
7 P_0_2 46 51 Sw
8 P_0_3 8 9 Sw
9 P_0_4 4 4 Sw
10 P_0_5 7 7 Sw
11 P_0_6 7 7 Sw
12 P_0_7 7 7 sw
13 P_0_8 5 5 sw

Table 1: Thread results

Thread VHDL* Lines VHDL Lines
P_0_1_0 P_0_1_0.vhx 183 P_0_1_0.vhd 185
P_0_1_1 P_0_1_1.vhx 183 P_0_1_1.vhd 185
P_0_1_2 P_0_1_2.vhx 183 P_0_1_2.vhd 185
P_0_1_3 P_0_1_3.vhx 183 P_0_1_3.vhd 185

Table 2: Hw threads results

IO VHDL* Lines VHDL Lines

I8Int I8Int.vhx 77 I8Int.vhd 138

I21Int I21Int.vhx 116 I21Int.vhd 216

I9Int I9Int.vhx 80 I9Int.vhd 144

ODuplo ODuplo.vhx 65 ODuplo.vhd 109

O15Int O15Int.vhx 104 O15Int.vhd 187

O12Int O12Int.vhx 95 O12Int.vhd 169

Table 3: IO Threads

Table 4 shows the files generated for communication
through channels in the digital system. Table 5 shows the
files generated for the activation of hardware threads by
software ones. One file is generated for each policy thread,
resulting in four files. The four files in table 6 implement
the finalization blocks in the interface. Finally in Table 7
are summarized the results for the three layers of the
interface.For the software part, header and C files are
generated for the parts of the system to be implemented in
software.

Table 8 summarizes the software results. The first file
represents the whole system in software. The second file,
processos.c, implements the threads in software. The next
file, comunicacao.c, implements the communication in



software. As there are no IO threads to be implemented in
software, no files are generated. The last three lines of the
table contain the three layers of the interface.

Files Lines
prcs0.vhd 142
prcs1.vhd 104
prcs2.vhd 233
prcs3.vhd 149
prcs4.vhd 247
prcs5.vhd 214

Table 4: communication

Files Lines
Prcs6.vhd 236
Prcs7.vhd 236
Prcs8.vhd 236
Prcs9.vhd 236

Table 5: activation

Files Lines
Prcs10.vhd 233
Prcs11.vhd 233
Prcs12.vhd 233
Prcs13.vhd 233

Table 6: finalization

Files Lines
io_unit.vhd 86
Comm_unit.vhd 920
prcs_unit.vhd 1183

Table 7: interface in
hardware

C file Lines H file Lines
atm_protocolo.c 58 - -
processos.c 573 processos.h 11
Comunicacao.c 1997 comunicacao.h 791
e_s.c - - -
io_unit.c 40 io_unit.h 2
Comm_unit.c 230 comm_unit.h 17
prcs_unit.c 808 Prcs_unit.h 182

Table 8: software results

5.2 Conclusions

In this paper has been described the characteristics and
mechanisms of the PISH Co-design system that makes
easier the integration of IP modules in a design. The
problem has been approached in two ways. Firstly making
easier IO devices integration and secondly through the
automatic interface generation. This allows the designer
migrate from hardware to software IP´s and vice-versa.

This work uses ideas of HDL extension where abstract
communication mechanisms are used for the VHDL
language. It also allows the reuse of modules stored in
library, both for interface and also for IO devices.

The adopted implementation clearly separates the
system in concurrent threads, communication, interface
and IO components and uses an strategy based on the use
of library components, IO threads and inner part of the
interface, and automatic generation of code.

The tool can take into account different architectures,
since new target architectures and new IO threads can be
added into the library. This way the designer can have
more choices for the implementation of the digital system.
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